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Abstract
The purpose of this paper is to define a new random operator called the generalized
φ-weakly contraction of the rational type. This new random operator includes those
studied by Khan et al. (Filomat 31(12):3611–3626, 2017) and Zhang et al. (Appl. Math.
Mech. 32(6):805–810, 2011) as special cases. We prove some convergence, existence,
and stability results in separable Banach spaces. Moreover, we produce some
numerical examples to demonstrate the applicability of our analytical results.
Furthermore, we apply our results in proving the existence of a solution of a nonlinear
integral equation of the Hammerstein type.
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1 Introduction
The process of solving some real life problems is characterized with uncertainties, ambigu-
ities, and difficulties. To develop an approach for solving probabilistic models, probabilis-
tic functional analysis has emerged as one of the indispensable mathematical disciplines
and tools. Consequently, it has attracted the attention of well-known mathematicians over
the years in view of its applications in diverse areas from pure mathematics to engineering
and applied sciences. Random nonlinear analysis, which is an important branch of prob-
abilistic functional analysis, deals with the solution of several classes of random operator
equations and related problems. Interestingly, the development of random methods has
revolutionized the financial markets and related sectors in many world economies (see,
e.g., [27]). Whenever the mathematical models or equations used to describe certain phe-
nomena in the physical, engineering, and biological systems that contain some param-
eters or coefficients that have specific interpretations, but whose values are not known,
then it is more realistic to study such equations as random operator equations (see, e.g.,
Graef et al. [16]). Random fixed point theorems are stochastic generalizations of classi-
cal or deterministic fixed point theorems and are required for the theory of stochastic
dynamic programming, random equations, random matrices, random partial differential
equations, and various classes of random operators arising in physical systems (see, e.g.,
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[20, 27]). Random fixed point theory was initiated in 1950s by Prague school of proba-
bilists. Spacek [35] and Hans [17] established a stochastic analogue of the Banach fixed
point theorem in a separable complete metric space. Itoh [19] in 1979 generalized and
extended Spacek and Han’s theorem to a multivalued contraction random operator. The
survey article by Bharucha-Reid [12] in 1976, in which he established the sufficient con-
ditions for a stochastic analogue of Schauder’s fixed point theorem for random operators,
gave wings to random fixed point theory. This area of research over the years has received
the attention of several well-known mathematicians leading to the development of sev-
eral interesting techniques to obtaining the solution of nonlinear random systems (see,
e.g., [7–10, 15–17, 19, 20, 22, 23, 27–30, 33–35, 37]).

In 2011, Zhang et al. [37] proved some stability and convergence results for some ran-
dom iterative sequence generated by a φ-weakly contractive random operator. Okeke and
Abbas [27] introduced the concept of generalized φ-weakly contraction random operators
and proved some interesting random fixed point theorems for this kind of random opera-
tors in separable Banach spaces. There results unify and generalize the results of Zhang et
al. [37]. Recently, Khan et al. [22] introduced a generalized random operator and proved
some convergence and stability results for those kinds of random operators in separable
Banach spaces. Their results generalize and improve several known random fixed point
results in the literature, including the results of Okeke and Abbas [27].

In 2012, Chugh et al. [13] proposed a new three step iterative scheme, called the CR
iterative scheme. They proved that the CR iterative scheme is equivalent to and converges
faster than all of Picard, Mann [25], Ishikawa [18], Agarwal et al. [2], Noor [26], and SP [32]
iterative schemes for certain contractive operators in the sense of Berinde [11]. In 2013,
Karahan and Ozdemir [21] proposed a new three step iterative scheme. They proved that
this iteration process is faster than all of Picard, Mann [25], and S [2] iteration processes
in the sense of Berinde [11].

Motivated by the results above, we introduce a random operator, called the general-
ized φ-weakly contraction of the rational type. This new random operator includes those
studied by Khan et al. [22] and Zhang et al. [37] as special cases. We introduce the random
versions of the CR iterative scheme and the Karahan–Ozdemir iterative scheme. We prove
some existence, convergence, and stability results for the generalized φ-weakly contrac-
tion of the rational type via these random iteration schemes. Some numerical examples
are given to demonstrate the applicability of our analytical results. Furthermore, we apply
our results in proving the existence of a solution of a nonlinear integral equation of the
Hammerstein type. Our results unify, extend, and generalize several deterministic fixed
point theorems in stochastic version, including the results of Akewe et al. [4], Akewe and
Okeke [3], Chugh et al. [13], and Karahan and Ozdemir [21] among others.

2 Preliminaries
Let (Ω ,Σ ,μ) be a complete probability measure space and (E, B(E)) be a measurable space,
where E is a separable Banach space, B(E) is Borel sigma algebra of E, (Ω ,Σ) is a measur-
able space (Σ—sigma algebra), and μ is a probability measure on Σ , that is, a measure
with total measure one. A mapping ξ : Ω → E is called (a) E-valued random variable if
ξ is (Σ , B(E))-measurable; (b) strongly μ-measurable if there exists a sequence {ξn} of μ-
simple functions converging to ξ μ-almost everywhere. Due to the separability of a Ba-
nach space E, the sum of two E-valued random variables is an E-valued random variable.
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A mapping T : Ω × E → E is called a random operator if, for each fixed e in E, the map-
ping T(·, e) : Ω → E is measurable. Throughout this study, we assume that (Ω , ξ ,μ) is a
complete probability measure space and E is a nonempty subset of a separable Banach
space X.

The following definitions will be needed in this study

Definition 2.1 ([20]) A random variable x : Ω → E is Bochner integrable if, for each

ω ∈ Ω ,
∫

Ω

∥∥x(ω)
∥∥dμ(ω) < ∞, (2.1)

i.e., ‖x(ω)‖ ∈ L1(Ω , ξ ,μ).

Note: The Bochner integral is a natural generalization of the Lebesgue integral for
vector-valued set functions.

Proposition 2.1 ([20]) A random variable x : Ω → E is Bochner integrable if and only if
there exists a sequence of random variables {xn}∞n=1 converging strongly to x almost surely
such that

lim
n→∞

∫
Ω

∥∥xn(ω) – x(ω)
∥∥dμ(ω) = 0. (2.2)

Definition 2.2 ([37]) Let (Ω , ξ ,μ) be a complete probability measure space and E be a
nonempty subset of a separable Banach space X. Let T : Ω ×E → E be a random operator.
Denote by RF(T) = {x∗(ω) ∈ E : T(ω, x∗(ω)) = x∗(ω),ω ∈ Ω} the random fixed point set
of T . For any given arbitrary measurable mapping x0 : Ω → E, let {xn(ω)}∞n=0 be a sequence
of measurable mapping from Ω to E, and

xn+1(ω) = f
(
T , xn(ω)

)
, n = 0, 1, 2, . . . , (2.3)

where f is some function measurable in the second variable.
Let x∗(ω) be a random fixed point of T and Bochner integrable with respect to {xn(ω)}∞n=0.

Let {yn(ω)}∞n=0 ⊂ Ω × E be an arbitrary sequence of measurable mapping. Denote

εn(ω) =
∥∥yn+1(ω) – f

(
T , yn(ω)

)∥∥,

and assume that ‖εn(ω)‖ ∈ L1(Ω , ξ ,μ), n = 0, 1, 2, . . . Then the iterative scheme (2.3) is T-
stable almost surely (or the iterative scheme (2.3) is stable with respect to T almost surely)
if and only if

lim
n→∞

∫
Ω

∥∥εn(ω)
∥∥dμ(ω) = 0

implies that x∗(ω) is Bochner integrable with respect to {yn(ω)}∞n=0.

Definition 2.3 ([37]) Let (Ω ,Σ ,μ) be a complete probability measure space and E be
a nonempty subset of a separable Banach space X. A random operator T : Ω × E → E
is called a φ-weakly contractive type random operator if there exists a continuous and
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nondecreasing function φ : R+ → R
+ with φ(t) > 0 for each t ∈ (0,∞) and φ(0) = 0 such

that, for each x,ς ∈ E, ω ∈ Ω , we have

∫
Ω

∥∥T(ω, x) – T(ω,ς )
∥∥dμ(ω) ≤

∫
Ω

‖x – ς‖dμ(ω) – φ

(∫
Ω

‖x – ς‖dμ(ω)
)

. (2.4)

Definition 2.4 ([27]) Let (Ω , ξ ,μ) be a complete probability measure space and E be a
nonempty subset of a separable Banach space X. A random operator T : Ω × E → E is
the generalized φ-weakly contractive type if there exist L(ω) ≥ 0 and a continuous and
nondecreasing function φ : R+ → R

+ with φ(t) > 0 for each t ∈ (0,∞) and φ(0) = 0 such
that, for each x,ς ∈ E, ω ∈ Ω ,

∫
Ω

∥∥T(ω, x) – T(ω,ς )
∥∥dμ(ω)

≤ eL(ω)‖x–ς‖
[∫

Ω

‖x – ς‖dμ(ω) – φ

(∫
Ω

‖x – ς‖dμ(ω)
)]

. (2.5)

Definition 2.5 ([22]) A random operator T : Ω ×C → C is generalized φ-weakly contrac-
tive type if there exist L(ω) ≥ 0 and a continuous and nondecreasing function φ : R+ →R

+

with φ(t) > 0 for each t ∈ (0,∞), φ(0) = 0 and for each x, y ∈ C, ω ∈ Ω , we have

∫
Ω

∥∥T(ω, x) – T(ω, y)
∥∥dμ(ω)

≤ eL(ω)‖x–T(ω,x)‖
[∫

Ω

‖x – y‖dμ(ω) – φ

(∫
Ω

‖x – y‖dμ(ω)
)]

. (2.6)

Motivated by the results above, we introduce the following generalized φ-weakly con-
traction of the rational type.

Definition 2.6 A random operator T : Ω × C → C is a generalized φ-weakly contraction
of the rational type if there exist L(ω), M(ω) ≥ 0 and a continuous and nondecreasing func-
tion φ : R+ → R

+ with φ(t) > 0 for each t ∈ (0,∞), φ(0) = 0, and for each x, y ∈ C, ω ∈ Ω ,
we have

∫
Ω

∥∥T(ω, x) – T(ω, y)
∥∥dμ(ω) ≤ eL(ω)‖x–T(ω,x)‖

[∫
Ω

‖x – y‖
1 + M(ω)‖x – T(ω, x)‖ dμ(ω)

– φ

(∫
Ω

‖x – y‖
1 + M(ω)‖x – T(ω, x)‖ dμ(ω)

)]
. (2.7)

Remark 2.1 Observe that if M(ω) = 0, then relation (2.7) reduces to relation (2.6). Clearly,
the generalized φ-weakly contraction of the rational type (2.7) includes (2.4) and (2.6) as
special cases.

Let T : Ω × C → C be a random operator where C is a nonempty convex subset of X.
Suppose that u0 : Ω → C and p0 : Ω → C are arbitrary measurable mappings, the random
versions of the CR iterative scheme [13] and the Karahan–Ozdemir iterative scheme [21]
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are given as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0(ω) ∈ C,

un+1(ω) = (1 – αn)vn(ω) + αnT(ω, vn(ω)),

vn(ω) = (1 – βn)T(ω, un(ω)) + βnT(ω, yn(ω)),

yn(ω) = (1 – γn)un(ω) + γnT(ω, un(ω)), n ∈N,

(2.8)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p0(ω) ∈ C,

pn+1(ω) = (1 – αn)T(ω, pn(ω)) + αnT(ω, qn(ω)),

qn(ω) = (1 – βn)T(ω, pn(ω)) + βnT(ω, rn(ω)),

rn(ω) = (1 – γn)pn(ω) + γnT(ω, pn(ω)), n ∈N.

(2.9)

Definition 2.7 ([11]) Let {an}∞n=0, {bn}∞n=0 be two sequences of positive numbers that con-
verge to a, respectively b. Assume that there exists

l = lim
n→∞

|an – a|
|bn – b| . (2.10)

1. If l = 0, then it is said that the sequence {an}∞n=0 converges to a faster than the
sequence {bn}∞n=0 to b;

2. If 0 < l < ∞, then we say that the sequences {an}∞n=0 and {bn}∞n=0 have the same rate of
convergence.

Lemma 2.1 ([5]) Let {ζn} and {λn} be two sequences of nonnegative real numbers.
Let {σn} be a sequence of positive numbers satisfying the conditions

∑∞
n=1 σn = ∞ and

limn→∞ ζn
σn

= 0. If the following condition is satisfied:

λn+1 ≤ λn – σnφ(λn) + ζn, ∀n ≥ 1,

where φ : R+ →R
+ is a continuous and strictly increasing function with φ(0) = 0, then {λn}

converges to 0 as n → ∞.

3 Convergence theorems in separable Banach spaces
We begin this section by proving some convergence and existence of fixed point results in
separable Banach spaces. Our results unify, generalize, and extend several known deter-
ministic fixed point theorems in stochastic version.

Theorem 3.1 Let C be a nonempty closed and convex subset of a separable Banach space
X, T : Ω × C → C be a random generalized φ-weakly contraction of the rational type
satisfying condition (2.7) with RF(T) �= ∅. Suppose that x∗(ω) is the random fixed point of
T and {un(ω)} is the random CR-iteration process defined by (2.8), where {αn}, {βn}, and
{γn} are real sequences in (0, 1) such that

∑∞
n=1 βnγn = ∞. Then the random fixed point

x∗(ω) of T is Bochner integrable.

Proof To prove that x∗(ω) is Bochner integrable, it suffices to prove that

lim
n→∞

∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) = 0. (3.1)
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Using relations (2.7) and (2.8), we have

∫
Ω

∥∥un+1(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – αn)
∫

Ω

∥∥vn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥T
(
ω, vn(ω)

)
– x∗(ω)

∥∥dμ(ω)

= (1 – αn)
∫

Ω

∥∥vn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, vn(ω)

)∥∥dμ(ω)

≤ (1 – αn)
∫

Ω

∥∥vn(ω) – x∗(ω)
∥∥dμ(ω)

+ αneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – vn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – vn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

= (1 – αn)
∫

Ω

∥∥vn(ω) – x∗(ω)
∥∥dμ(ω)

+ αneL(ω)‖0‖
[∫

Ω

‖vn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω) – φ

(∫
Ω

‖vn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

)]

= (1 – αn)
∫

Ω

∥∥vn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥vn(ω) – x∗(ω)
∥∥dμ(ω) – φ

(∫
Ω

∥∥vn(ω) – x∗(ω)
∥∥dμ(ω)

)

≤
∫

Ω

∥∥vn(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – βn)
∫

Ω

∥∥T
(
ω, un(ω)

)
– x∗(ω)

∥∥dμ(ω)

+ βn

∫
Ω

∥∥T
(
ω, yn(ω)

)
– x∗(ω)

∥∥dμ(ω)

≤ (1 – βn)eL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – un(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – un(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

+ βneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – yn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – yn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

= (1 – βn)eL(ω)‖0‖
[∫

Ω

‖un(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω) – φ

(∫
Ω

‖un(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

)]

+ βneL(ω)‖0‖
[∫

Ω

‖yn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω) – φ

(∫
Ω

‖yn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

)]
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= (1 – βn)
[∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) – φ

(∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

)]

+ βn

[∫
Ω

∥∥yn(ω) – x∗(ω)
∥∥dμ(ω) – φ

(∫
Ω

∥∥yn(ω) – x∗(ω)
∥∥dμ(ω)

)]

≤ (1 – βn)
∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) + βn

∫
Ω

∥∥yn(ω) – x∗(ω)
∥∥dμ(ω). (3.2)

Next, we obtain the following estimate:

∫
Ω

∥∥yn(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – γn)
∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

+ γn

∫
Ω

∥∥T
(
ω, un(ω)

)
– x∗(ω)

∥∥dμ(ω)

≤ (1 – γn)
∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

+ γneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – un(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – un(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

= (1 – γn)
∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) + γneL(ω)‖0‖

[∫
Ω

‖un(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

– φ

(∫
Ω

‖un(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

)]

= (1 – γn)
∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) + γn

∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

– γnφ

(∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

)

=
∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) – γnφ

(∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

)
. (3.3)

Using relation (3.3) in (3.2), we have

∫
Ω

∥∥un+1(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – βn)
∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) – βnγnφ

(∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

)

=
∫

Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) – βnγnφ

(∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω)

)
. (3.4)

If we take λn =
∫
Ω

‖un(ω) – x∗(ω)‖dμ(ω), σn = βnγn, and ζn = 0 in Lemma 2.1, by the as-
sumptions of Theorem 3.1, we see that all the conditions of Lemma 2.1 are satisfied. There-
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fore, we have

lim
n→∞

∫
Ω

∥∥un(ω) – x∗(ω)
∥∥dμ(ω) = 0. (3.5)

The proof of Theorem 3.1 is completed. �

Theorem 3.2 Let C be a nonempty closed and convex subset of a separable Banach space
X, T : Ω × C → C be a random generalized φ-weakly contraction of the rational type sat-
isfying condition (2.7) with RF(T) �= ∅. Suppose x∗(ω) is the random fixed point of T and
{pn(ω)} is the random Karahan–Ozdemir iteration process defined by (2.9), where {αn},
{βn}, and {γn} are real sequences in (0, 1) such that βn(1 – γn) ≤ βn, αnβnγn ≤ γn, and∑∞

n=1 βnγn = ∞. Then the random fixed point x∗(ω) of T is Bochner integrable.

Proof To prove that x∗(ω) is Bochner integrable, it suffices to prove that

lim
n→∞

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) = 0. (3.6)

Using relations (2.7) and (2.9), we have

∫
Ω

∥∥pn+1(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – αn)
∫

Ω

∥∥T
(
ω, pn(ω)

)
– x∗(ω)

∥∥dμ(ω)

+ αn

∫
Ω

∥∥T
(
ω, qn(ω)

)
– x∗(ω)

∥∥dμ(ω)

= (1 – αn)
∫

Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, pn(ω)

)∥∥dμ(ω)

+ αn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, qn(ω)

)∥∥dμ(ω)

≤ (1 – αn)eL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – pn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – pn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

+ αneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – qn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – qn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

≤ (1 – αn)eL(ω)‖0‖
∫

Ω

‖pn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

+ αneL(ω)‖0‖
∫

Ω

‖qn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

= (1 – αn)
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) + αn

∫
Ω

∥∥qn(ω) – x∗(ω)
∥∥dμ(ω). (3.7)
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Next, using the assumption that βn(1 – γn) ≤ βn, we have

∫
Ω

∥∥qn(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – βn)
∫

Ω

∥∥T
(
ω, pn(ω)

)
– x∗(ω)

∥∥dμ(ω)

+ βn

∫
Ω

∥∥T
(
ω, rn(ω)

)
– x∗(ω)

∥∥dμ(ω)

= (1 – βn)
∫

Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, pn(ω)

)∥∥dμ(ω)

+ βn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, rn(ω)

)∥∥dμ(ω)

≤ (1 – βn)eL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – pn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – pn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

+ βneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – rn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – rn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

≤ (1 – βn)eL(ω)‖0‖
∫

Ω

‖pn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

+ βneL(ω)‖0‖
∫

Ω

‖rn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

= (1 – βn)
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) + βn

∫
Ω

∥∥rn(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – βn)
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

[
(1 – γn)

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ γn

∫
Ω

∥∥T
(
ω, pn(ω)

)
– x∗(ω)

∥∥dμ(ω)
]

= (1 – βn)
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn(1 – γn)
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ βnγn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, pn(ω)

)∥∥dμ(ω)

≤ (1 – βn)
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ βnγn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, pn(ω)

)∥∥dμ(ω)
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=
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) + βnγn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, pn(ω)

)∥∥dμ(ω)

≤
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ βnγneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – pn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – pn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

=
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) + βnγn

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

– βnφ

(∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

)
. (3.8)

Using (3.8) in (3.7) and the assumption that αnβnγn ≤ γn, we obtain

∫
Ω

∥∥pn+1(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – αn)
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

[∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) + βnγn

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

– βnφ

(∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

)]

= (1 – αn)
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) + αnβnγn

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

– αnβnφ

(∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

)

=
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) + αnβnγn

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

– αnβnφ

(∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

)

≤
∫

Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) – αnβnφ

(∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω)

)

+ γn

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω). (3.9)

If we take λn =
∫
Ω

‖pn(ω)–x∗(ω)‖dμ(ω), σn = αnβn, and ζn = γn
∫
Ω

‖pn(ω)–x∗(ω)‖dμ(ω)
in Lemma 2.1, by the assumptions of Theorem 3.2, we see that all the conditions of
Lemma 2.1 are satisfied. Therefore, we have

lim
n→∞

∫
Ω

∥∥pn(ω) – x∗(ω)
∥∥dμ(ω) = 0. (3.10)

The proof of Theorem 3.2 is completed. �
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Next, we obtain the following theorem which is a generalization of the results of Zhang
et al. [37] among others.

Theorem 3.3 Let C be a nonempty closed and convex subset of a separable Banach space
X, T : Ω × C → C be a random generalized φ-weakly contraction of the rational type
satisfying condition (2.7) with RF(T) �= ∅. Suppose that x∗(ω) is the random fixed point of
T and {xn(ω)} is the random Mann-iteration process defined by

⎧⎨
⎩

x0(ω) ∈ C,

xn+1(ω) = (1 – αn)xn(ω) + αnT(ω, xn(ω)), n ∈N,
(3.11)

where {αn} is a real sequence in (0, 1) such that
∑∞

n=1 αn = ∞. Then the random fixed point
x∗(ω) of T is Bochner integrable.

Proof The proof of Theorem 3.3 follows similar lines as in the proof of Theorem 3.1. �

Remark 3.1 Theorem 3.1, Theorem 3.2, and Theorem 3.3 generalize several known results
in the literature, including the results of Khan et al. [22], Okeke and Abbas [27], and Zhang
et al. [37]. Moreover, our results extend and generalize several deterministic fixed point
theorems in stochastic version, including the results of Chugh et al. [13] and Karahan and
Ozdemir [21] among others.

Next, we prove the following existence results in separable Banach spaces.

Theorem 3.4 Suppose that X is a separable Banach space and (Ω ,Σ ,μ) is a complete
probability measure space. Let T : Ω × X → X be a continuous random operator such that

∥∥T(ω, x1) – T(ω, x2)
∥∥ ≤ ‖x1 – x2‖ – φ

(‖x1 – x2‖
)

(3.12)

almost surely for all x1, x2 ∈ X, where φ is a continuous and nondecreasing function φ :
R

+ → R
+ with φ(t) > 0 for each t ∈ (0,∞) and φ(0) = 0 almost surely. Then T has a unique

random fixed point.

Proof Suppose

A =
{
ω ∈ Ω : T(ω, x) is a continuous function of x

}
, (3.13)

Cx1,x2 =
{
ω ∈ Ω :

∥∥T(ω, x1) – T(ω, x2)
∥∥ ≤ ‖x1 – x2‖ – φ

(‖x1 – x2‖
)}

(3.14)

and

B =
{
φ : R+ →R

+ such that φ is continuous and nondecreasing, with

φ(t) > 0,∀t ∈ (0,∞) and φ(0) = 0
}

. (3.15)

Suppose that H is a countable dense subset of X. Then we show that

⋂
x1,x2∈X

(Cx1,x2 ∩ A ∩ B) =
⋂

h1,h2∈H

(Ch1,h2 ∩ A ∩ B). (3.16)
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Now, we show that

⋂
h1,h2∈H

Ch1,h2 ∩ A ∩ B ⊂
⋂

x1,x2∈X

Cx1,x2 ∩ A ∩ B. (3.17)

Let ω ∈ ⋂
h1,h2∈H (Ch1,h2 ∩ A ∩ B), then for each h1, h2 ∈ H , we have

∥∥T(ω, h1) – T(ω, h2)
∥∥ ≤ ‖h1 – h2‖ – φ

(‖h1 – h2‖
)
. (3.18)

Suppose x1, x2 ∈ X, we obtain

∥∥T(ω, x1) – T(ω, x2)
∥∥

≤ ∥∥T(ω, x1) – T(ω, h1)
∥∥ +

∥∥T(ω, h1) – T(ω, h2)
∥∥ +

∥∥T(ω, h2) – T(ω, x2)
∥∥

≤ ∥∥T(ω, x1) – T(ω, h1)
∥∥ +

∥∥T(ω, h2) – T(ω, x2)
∥∥ + ‖h1 – h2‖ – φ

(‖h1 – h2‖
)

≤ ∥∥T(ω, x1) – T(ω, h1)
∥∥ +

∥∥T(ω, h2) – T(ω, x2)
∥∥ + ‖h1 – x1‖

+ ‖x1 – x2‖ + ‖x2 – h2‖ – φ
(‖x1 – x2‖

)
. (3.19)

Since for each ω ∈ Ω , T(ω, x) is a continuous function of x, this means that for arbitrary
ε > 0, there exists δi(xi) > 0 (i = 1, 2) such that ‖T(ω, x1) – T(ω, h1)‖ < ε

2 whenever ‖x1 –
h1‖ < δ1(x1) and ‖T(ω, h2) – T(ω, x2)‖ < ε

2 whenever ‖h2 – x2‖ < δ2(x2).
Now choose δ1 = min{δ1(x1), ε

2 } and δ2 = min{δ2(x2), ε
2 }. Using the choice of δ1, δ2, we see

that (3.19) becomes

∥∥T(ω, x1) – T(ω, x2)
∥∥ ≤ ε

2
+

ε

2
+

ε

2
+ ‖x1 – x2‖ +

ε

2
– φ

(‖x1 – x2‖
)

≤ ε + ‖x1 – x2‖ – φ
(‖x1 – x2‖

)
. (3.20)

Since ε > 0 is arbitrary, it follows from (3.20) that

∥∥T(ω, x1) – T(ω, x2)
∥∥ ≤ ‖x1 – x2‖ – φ

(‖x1 – x2‖
)
. (3.21)

This means that ω ∈ ⋂
x1,x2∈X Cx1,x2 ∩ A ∩ B, this implies that

⋂
h1,h2∈H

Ch1,h2 ∩ A ∩ B ⊂
⋂

x1,x2∈X

Cx1,x2 ∩ A ∩ B. (3.22)

Similarly, we can easily show that

⋂
x1,x2∈X

Cx1,x2 ∩ A ∩ B ⊂
⋂

h1,h2∈H

Ch1,h2 ∩ A ∩ B. (3.23)

Hence, by (3.22) and (3.23), we have

⋂
x1,x2∈X

Cx1,x2 ∩ A ∩ B =
⋂

h1,h2∈H

Ch1,h2 ∩ A ∩ B. (3.24)
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Suppose

M′ =
⋂

h1,h2∈H

Ch1,h2 ∩ A ∩ B, (3.25)

then μ(M′) = 1.
Therefore, for all ω ∈ M′, T(ω, x) is a deterministic operator satisfying relation (3.12).

Hence T has a unique random fixed point in X. The proof of Theorem 3.4 is completed. �

Example 3.1 Suppose that Ω = [0, 1] and Σ is the sigma algebra of the Lebesgue measur-
able subsets of Ω . Let X = R, C = [0, 2] and define the generalized φ-weakly contraction of
the rational type operator T : Ω × C → C as T(ω, x) = ω–x

6 . Then the measurable mapping
x∗ : Ω → X defined by x∗(ω) = ω

7 for every ω ∈ Ω is a random fixed point of T . Let φ(t) = t
3

for each t ∈ (0,∞), L(ω) = 7, and M(ω) = 5, then we have

∫
Ω

∥∥T(ω, x) – T(ω, y)
∥∥dμ(ω)

=
[∫

Ω

‖x – y‖
1 + 5‖x – T(ω, x)‖ dμ(ω) – φ

(∫
Ω

‖x – y‖
1 + 5‖x – T(ω, x)‖ dμ(ω)

)]

≤ e7‖x–T(ω,x)‖
[∫

Ω

‖x – y‖
1 + 5‖x – T(ω, x)‖ dμ(ω)

–
1
3

∫
Ω

‖x – y‖
1 + 5‖x – T(ω, x)‖ dμ(ω)

]
. (3.26)

Clearly, T satisfies condition (2.7). Choose the prototype sequences αn = βn = n2

1+n2 , γn =
n3

1+n3 . Then
∑∞

n=1 βnγn =
∑∞

n=1
n5

(1+n2)(1+n3) = ∞. Hence, all the conditions of Theorem 3.1
are satisfied; therefore, the random fixed point x∗(ω) = ω

7 of T(ω, x) is Bochner integrable.

4 Stability theorems in separable Banach spaces
In this section, we establish some stability results in separable Banach spaces. Our results
unify, generalize, and extend several known deterministic fixed point theorems in stochas-
tic version. Furthermore, we give a numerical example to demonstrate the applicability of
our analytical results.

Theorem 4.1 Let C be a nonempty closed and convex subset of a separable Banach space
X, T : Ω × C → C be a random generalized φ-weakly contraction of the rational type
satisfying condition (2.7) with RF(T) �= ∅. Suppose that x∗(ω) is the random fixed point of
T and {un(ω)} is the random CR-iteration process defined by (2.8), where {αn}, {βn}, and
{γn} are real sequences in (0, 1) such that 0 < α ≤ αn, 0 < β ≤ βn, and 0 < γ ≤ γn. Then
{un(ω)} is T-stable almost surely.

Proof Suppose that {hn(ω)} is an arbitrary sequence of random variables in E and

∥∥εn(ω)
∥∥ =

∥∥hn+1(ω) – (1 – αn)mn(ω) + αnT
(
ω, mn(ω)

)∥∥, (4.1)
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where

⎧⎨
⎩

mn(ω) = (1 – βn)T(ω, hn(ω)) + βnT(ω, sn(ω)),

sn(ω) = (1 – γn)hn(ω) + γnT(ω, hn(ω))
(4.2)

and limn→∞
∫
Ω

‖εn(ω)‖dμ(ω) = 0.
Next, we prove that x∗(ω) is Bochner integrable with respect to the sequence {hn(ω)}. It

follows from (4.1) that

∫
Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω)

≤
∫

Ω

∥∥hn+1(ω) – (1 – αn)mn(ω) – αnT
(
ω, mn(ω)

)∥∥dμ(ω)

+ (1 – αn)
∫

Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥T
(
ω, mn(ω)

)
– x∗(ω)

∥∥dμ(ω)

=
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – αn)

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, mn(ω)

)∥∥dμ(ω)

≤
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – αn)

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

+ αneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – mn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – mn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

≤
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – αn)

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

+ αneL(ω)‖0‖
∫

Ω

‖mn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

=
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – αn)

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

=
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) +

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

≤
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥T
(
ω, hn(ω)

)
– x∗(ω)

∥∥dμ(ω)

+ βn

∫
Ω

∥∥T
(
ω, sn(ω)

)
– x∗(ω)

∥∥dμ(ω)

=
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, hn(ω)

)∥∥dμ(ω)

+ βn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, sn(ω)

)∥∥dμ(ω)
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≤
∫

Ω

∥∥εn(ω)
∥∥dμ(ω)

+ (1 – βn)eL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – hn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – hn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

+ βneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – sn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – sn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

≤
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – βn)eL(ω)‖0‖

∫
Ω

‖hn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

+ βneL(ω)‖0‖
∫

Ω

‖sn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

=
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

∫
Ω

∥∥sn(ω) – x∗(ω)
∥∥dμ(ω). (4.3)

Next, we have the following estimate:

∫
Ω

∥∥sn(ω) – x∗(ω)
∥∥dμ(ω)

≤ (1 – γn)
∫

Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) + γn

∫
Ω

∥∥T
(
ω, hn(ω)

)
– x∗(ω)

∥∥dμ(ω)

= (1 – γn)
∫

Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ γn

∫
Ω

∥∥T
(
ω, x∗(ω)

)
– T

(
ω, hn(ω)

)∥∥dμ(ω)

≤ (1 – γn)
∫

Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ γneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – hn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – hn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

= (1 – γn)
∫

Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) + γneL(ω)‖0‖

[∫
Ω

‖hn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

– φ

(∫
Ω

‖hn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

)]

= (1 – γn)
∫

Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) + γn

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

– γnφ

(∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

)

=
∫

Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) – γnφ

(∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

)
. (4.4)
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Substituting (4.4) in (4.3), we have

∫
Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω)

≤
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

[∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) – γnφ

(∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

)]

=
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) – βnγnφ

(∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

)

=
∫

Ω

∥∥εn(ω)
∥∥dμ(ω) +

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

– βnγnφ

(∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

)
. (4.5)

Using the assumptions that limn→∞
∫
Ω

‖εn(ω)‖dμ(ω) = 0, 0 < α ≤ αn, 0 < β ≤ βn, and
0 < γ ≤ γn for all n ∈N, we have

lim
n→∞

∫
Ω

‖εn(ω)‖dμ(ω)
βnγn

≤ lim
n→∞

∫
Ω

‖εn(ω)‖dμ(ω)
βγ

= 0. (4.6)

If in Lemma 2.1 we take λn =
∫
Ω

‖hn(ω) – x∗(ω)‖dμ(ω), σn = βnγn, and ζn =∫
Ω

‖εn(ω)‖dμ(ω), we see that all the conditions of Lemma 2.1 are satisfied. Therefore,
we have

lim
n→∞

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) = 0. (4.7)

Conversely, suppose that x∗(ω) is Bochner integrable with respect to the sequence
{hn(ω)}, then we have

∫
Ω

∥∥εn(ω)
∥∥dμ(ω)

=
∫

Ω

∥∥hn+1(ω) – (1 – αn)mn(ω) – αnT
(
ω, mn(ω)

)∥∥dμ(ω)

≤
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) + (1 – αn)

∫
Ω

∥∥x∗(ω) – mn(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥x∗(ω) – T
(
ω, mn(ω)

)∥∥dμ(ω)

≤
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) + (1 – αn)

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

+ αneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – mn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – mn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]
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=
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) + (1 – αn)

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

+ αneL(ω)‖0‖
[∫

Ω

‖mn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω) – φ

(∫
Ω

‖mn(ω) – x∗(ω)‖
1 + M(ω)‖0‖ dμ(ω)

)]

≤
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) + (1 – αn)

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

+ αn

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

=
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) +

∫
Ω

∥∥mn(ω) – x∗(ω)
∥∥dμ(ω)

≤
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥T
(
ω, hn(ω)

)
– x∗(ω)

∥∥dμ(ω)

+ βn

∫
Ω

∥∥T
(
ω, sn(ω)

)
– x∗(ω)

∥∥dμ(ω)

≤
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω)

+ (1 – βn)eL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – hn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – hn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

+ βneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖x∗(ω) – sn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖x∗(ω) – sn(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

≤
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

∫
Ω

∥∥sn(ω) – x∗(ω)
∥∥dμ(ω)

≤
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

[
(1 – γn)

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) + γn

∫
Ω

∥∥T
(
ω, hn(ω)

)
– x∗(ω)

∥∥dμ(ω)
]

≤
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) + (1 – βn)

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ βn

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ βnγneL(ω)‖x∗(ω)–T(ω,x∗(ω))‖
[∫

Ω

‖hn(ω) – x∗(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

– φ

(∫
Ω

‖hn(ω) – x∗(ω)‖
1 + M(ω)‖x∗(ω) – T(ω, x∗(ω))‖ dμ(ω)

)]

=
∫

Ω

∥∥hn+1(ω) – x∗(ω)
∥∥dμ(ω) +

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

+ βnγn

∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω) – βnγnφ

(∫
Ω

∥∥hn(ω) – x∗(ω)
∥∥dμ(ω)

)
. (4.8)
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Therefore, we obtain

lim
n→∞

∫
Ω

∥∥εn(ω)
∥∥dμ(ω) = 0. (4.9)

This means that the random CR-iteration process {un(ω)} defined by (2.8) is T-stable al-
most surely. The proof of Theorem 4.1 is completed. �

Theorem 4.2 Let C be a nonempty closed and convex subset of a separable Banach space
X, T : Ω × C → C be a random generalized φ-weakly contraction of the rational type
satisfying condition (2.7) with RF(T) �= ∅. Suppose that x∗(ω) is the random fixed point of T
and {pn(ω)} is the random Karahan–Ozdemir iteration process defined by (2.9), where {αn},
{βn}, and {γn} are real sequences in (0, 1) such that 0 < α ≤ αn, 0 < β ≤ βn, and 0 < γ ≤ γn.
Then {pn(ω)} is T-stable almost surely.

Proof The proof of Theorem 4.2 follows similar lines as in the proof of Theorem 4.1. �

Remark 4.1 Theorem 4.1 and Theorem 4.2 generalize several known results in the litera-
ture, including the results of Khan et al. [22], Okeke and Abbas [27], and Zhang et al. [37].
Moreover, our results extend and generalize several deterministic fixed point theorems in
stochastic version, including the results of Chugh et al. [13] and Karahan and Ozdemir
[21] among others.

Next, we give the following numerical example to demonstrate the applicability of our
results.

Example 4.1 Suppose that Ω = [0, 1] and Σ is the sigma algebra of the Lebesgue measur-
able subsets of Ω . Let X = R, C = [0, 2] and define the generalized φ-weakly contraction of
the rational type operator T : Ω × C → C as T(ω, x) = ω–x

6 . Then the measurable mapping
x∗ : Ω → X defined by x∗(ω) = ω

7 for every ω ∈ Ω is a random fixed point of T . Let φ(t) = t
3

for each t ∈ (0,∞), L(ω) = 7, and M(ω) = 5, then we have

∫
Ω

∥∥T(ω, x) – T(ω, y)
∥∥dμ(ω)

=
[∫

Ω

‖x – y‖
1 + 5‖x – T(ω, x)‖ dμ(ω) – φ

(∫
Ω

‖x – y‖
1 + 5‖x – T(ω, x)‖ dμ(ω)

)]

≤ e7‖x–T(ω,x)‖
[∫

Ω

‖x – y‖
1 + 5‖x – T(ω, x)‖ dμ(ω)

–
1
3

∫
Ω

‖x – y‖
1 + 5‖x – T(ω, x)‖ dμ(ω)

]
. (4.10)

Clearly, T satisfies condition (2.7). Suppose that {un(ω)} is the random CR-iteration pro-
cess defined by (2.8), where αn = βn = n2

1+n2 , γn = n3

1+n3 . Then 0 < α ≤ αn, 0 < β ≤ βn, and
0 < γ ≤ γn. Let {yn(ω)} = ω

n2 be an arbitrary sequence of measurable mapping in C. Hence,
all the conditions of Theorem 4.1 are satisfied. Therefore, {un(ω)} is T-stable almost surely.
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5 Application to random nonlinear integral equation of the Hammerstein type
In this section, we shall apply Theorem 3.4 to prove the existence of a solution in a Banach
space of a random nonlinear integral equation of the form

x(t;ω) = h(t;ω) +
∫

S
k(t, s;ω)f

(
s, x(s;ω)

)
dμ0(s), (5.1)

where
(i) S is a locally compact metric space with a metric d on S × S equipped with a

complete σ -finite measure μ0 defined on the collection of Borel subsets of S;
(ii) ω ∈ Ω , where ω is a supporting element of a set of probability measure space

(Ω ,β ,μ);
(iii) x(t;ω) is the unknown vector-valued random variable for each t ∈ S;
(iv) h(t;ω) is the stochastic free term defined for t ∈ S;
(v) k(t, s;ω) is the stochastic kernel defined for t and s in S and

(vi) f (t, x) is a vector-valued function of t ∈ S and x.
The integral Eq. (5.1) is interpreted as a Bochner integral (see Padgett [31]). Further-

more, we shall assume that S is the union of a countable family of compact sets {Cn} having
the properties that C1 ⊂ C2 ⊂ · · · and that for any other compact set S there is Ci which
contains it (see Arens [6]).

Definition 5.1 ([14]) We define the space C(S, L2(Ω ,β ,μ)) to be the space of all con-
tinuous functions from S into L2(Ω ,β ,μ) with the topology of uniform convergence
on compacta, i.e., for each fixed t ∈ S, x(t;ω) is a vector-valued random variable such
that

∥∥x(t;ω)
∥∥2

L2(Ω ,β ,μ) =
∫

Ω

∣∣x(t;ω)
∣∣2 dμ(ω) < ∞.

Note that C(S, L2(Ω ,β ,μ)) is a locally convex space, whose topology is defined by a
countable family of semi-norms (see Yosida [36]) given by

∥∥x(t;ω)
∥∥

n = sup
t∈Cn

∥∥x(t;ω)
∥∥

L2(Ω ,β ,μ), n = 1, 2, . . . .

Moreover, C(S, L2(Ω ,β ,μ)) is complete relative to this topology, since L2(Ω ,β ,μ) is
complete.

We define BC = BC(S, L2(Ω ,β ,μ)) to be the Banach space of all bounded continuous
functions from S into L2(Ω ,β ,μ) with the norm

∥∥x(t;ω)
∥∥

BC = sup
t∈S

∥∥x(t;ω)
∥∥

L2(Ω ,β ,μ).

The space BC ⊂ C is the space of all second order vector-valued stochastic process defined
on S, which is bounded and continuous in mean square. We will consider the function
h(t;ω) and f (t, x(t;ω)) to be in the space C(S, L2(Ω ,β ,μ)) with respect to the stochastic
kernel. We assume that for each pair (t, s), k(t, s;ω) ∈ L∞(Ω ,β ,μ) and denote the norm
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by

∥∥k(t, s;ω)
∥∥ =

∥∥k(t, s;ω)
∥∥

L∞(Ω ,β ,μ) = μ – ess sup
ω∈Ω

∣∣k(t, s;ω)
∣∣.

Suppose that k(t, s;ω) is such that |‖k(t, s;ω)‖|.‖x(s;ω)‖L2(Ω ,β ,μ) is μ0-integrable with re-
spect to s for each t ∈ S and x(s;ω) in C(S, L2(Ω ,β ,μ)), and there exists a real-valued func-
tion G defined μ0-a.e. on S, so that G(S)‖x(s;ω)‖L2(Ω ,β ,μ) is μ0-integrable and for each pair
(t, s) ∈ S × S,

∣∣∥∥k(t, u;ω) – k(s, u;ω)
∥∥∣∣.∥∥x(u,ω)

∥∥
L2(Ω ,β ,μ) ≤ G(u)

∥∥x(u,ω)
∥∥

L2(Ω ,β ,μ)

μ0-a.e. Furthermore, for almost all s ∈ S, k(t, s;ω) will be continuous in t from S into
L∞(Ω ,β ,μ).

Now, we define the random integral operator T on C(S, L2(Ω ,β ,μ)) by

(Tx)(t;ω) =
∫

S
k(t, s;ω)x(s;ω) dμ0(s), (5.2)

where the integral is a Bochner integral. Moreover, we have that for each t ∈ S, (Tx)(t;ω) ∈
L2(Ω ,β ,μ) and that (Tx)(t;ω) is continuous in mean square by Lebesgue dominated con-
vergence theorem. So (Tx)(t;ω) ∈ C(S, L2(Ω ,β ,μ)).

Definition 5.2 ([1, 24]) Let B and D be two Banach spaces. The pair (B, D) is said to be
admissible with respect to a random operator T(ω) if T(ω)(B) ⊂ D.

Lemma 5.1 ([20]) The linear operator T defined by (5.2) is continuous from C(S, L2(Ω ,
β ,μ)) into itself.

Lemma 5.2 ([20, 24]) If T is a continuous linear operator from C(S, L2(Ω ,β ,μ)) into itself
and B, D ⊂ C(S, L2(Ω ,β ,μ)) are Banach spaces stronger than C(S, L2(Ω ,β ,μ)) such that
(B, D) is admissible with respect to T , then T is continuous from B into D.

Remark 5.1 ([31]) The operator T defined by (5.2) is a bounded linear operator from B
into D. It is to be noted that a random solution of Eq. (5.1) will mean a function x(t;ω) in
C(S, L2(Ω ,β ,μ)) which satisfies Eq. (5.1) μ-a.e.

We now prove the following theorem.

Theorem 5.1 We consider the stochastic integral Eq. (5.1) subject to the following condi-
tions:

(a) B and D are Banach spaces stronger than C(S, L2(Ω ,β ,μ)) such that (B, D) is
admissible with respect to the integral operator defined by (5.2);

(b) x(t;ω) → f (t, x(t;ω)) is an operator from the set

Q(ρ) =
{

x(t;ω) : x(t;ω) ∈ D,
∥∥x(t;ω)

∥∥
D ≤ ρ

}
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into the space B satisfying

∥∥f
(
t, x1(t;ω)

)
– f

(
t, x2(t;ω)

)∥∥
B

≤ ∥∥x1(t;ω) – x2(t;ω)
∥∥

D – φ
(∥∥x1(t;ω) – x2(t;ω)

∥∥
D

)
(5.3)

for all x1(t;ω), x2(t;ω) ∈ Q(ρ), where φ : R+ →R
+ is a continuous and nondecreasing

function such that φ(t) > 0 for each t ∈ (0,∞) and φ(0) = 0.
(c) h(t;ω) ∈ D.
Then there exists a unique random solution of (5.1) in Q(ρ), provided

∥∥h(t;ω)
∥∥

D + c(ω)
∥∥f (t; 0)

∥∥
B ≤ ρ

(
1 – c(ω)

)
, (5.4)

where c(ω) is the norm of T(ω).

Proof We define the operator U(ω) from Q(ρ) into D as follows:

(Ux)(t;ω) = h(t;ω) +
∫

S
k(t, s;ω)f

(
s, x(s;ω)

)
dμ0(s). (5.5)

Next we have

∥∥(Ux)(t;ω)
∥∥

D ≤ ∥∥h(t;ω)
∥∥

D + c(ω)
∥∥f

(
t, x(t;ω)

)∥∥
B

≤ ∥∥h(t;ω)
∥∥

D + c(ω)
∥∥f (t; 0)

∥∥
B + c(ω)

∥∥f
(
t, x(t;ω)

)
– f (t; 0)

∥∥
B. (5.6)

Using the condition of (5.3), we have

∥∥f
(
t, x(t;ω)

)
– f (t; 0)

∥∥
B ≤ ∥∥x(t;ω)

∥∥
D – φ

(∥∥x(t;ω)
∥∥

D

)

≤ ρ – φ(ρ)

≤ ρ. (5.7)

Using (5.7) in (5.6), we have

∥∥(Ux)(t;ω)
∥∥

D ≤ ∥∥h(t;ω)
∥∥

D + c(ω)
∥∥f (t; 0)

∥∥
B + c(ω)ρ

≤ ρ. (5.8)

This means that (Ux)(t;ω) ∈ Q(ρ). Then, for each x1(t;ω), x2(t;ω) ∈ Q(ρ), we have by using
assumption (b) that

∥∥(Ux1)(t;ω) – (Ux2)(t;ω)
∥∥

D

=
∥∥∥∥
∫

S
k(t, s;ω)

[
f
(
s, x1(s;ω)

)
– f

(
s, x2(s;ω)

)]
dμ0(s)

∥∥∥∥
D

≤ ∥∥x1(t;ω) – x2(t;ω)
∥∥

D – φ
(∥∥x1(t;ω) – x2(t;ω)

∥∥
D

)
. (5.9)

Since φ : R+ → R
+ is a continuous and nondecreasing function such that φ(t) > 0 for

each t ∈ (0,∞) and φ(0) = 0, it follows that U(ω) is a nonlinear contractive operator on
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Q(ρ). Therefore, by Theorem 3.4 there exists a unique random fixed point x∗(t,ω) of U(ω),
which is the random solution of Eq. (5.1). The proof of Theorem 5.1 is completed. �

The following example demonstrates the applicability of Theorem 5.1.

Example 5.1 We consider the following nonlinear stochastic integral equation:

x(t;ω) =
∫ ∞

0

e–t–s

16(1 + |x(s;ω)|) ds –
1
2

∫ ∞

0

e–t–s

16(1 + |x(s;ω)|) ds. (5.10)

By comparing relation (5.10) with (5.1), we observe that

h(t;ω) = 0, k(t, s;ω) =
1
4

e–t–s, f
(
s, x(s;ω)

)
=

1
4(1 + |x(s;ω)|) . (5.11)

By the usual computation, we clearly see that (5.3) is satisfied with φ(j) = j
2 and φ(0) = 0

2 = 0
for all j ∈ (0,∞). Hence, all the conditions of Theorem 5.1 are satisfied. Therefore, there
exists a unique random fixed point x∗(t,ω) of the integral operator T satisfying (5.2).

6 Conclusion
In this research, we defined a new random operator called the generalized φ-weakly con-
traction of the rational type. This new random operator includes those studied by Khan et
al. [22] and Zhang et al. [37] as special cases. We also introduced the random versions of
some known faster fixed point iterative schemes (see [13, 21]). We proved some conver-
gence and stability results for our newly introduced random operator via these random
fixed point iterations. An existence result was also established for a generalized random
operator. Moreover, we produced some numerical examples to demonstrate the applica-
bility of our analytical results. Furthermore, we applied our results in proving the existence
of a solution of a nonlinear integral equation of the Hammerstein type. Our results gen-
eralize several known results in the literature, including the results of Khan et al. [22] and
Zhang et al. [37]. Moreover, our results unify, extend, and generalize several deterministic
fixed point theorems in stochastic version, including the results of Akewe et al. [4], Akewe
and Okeke [3], Chugh et al. [13], and Karahan and Ozdemir [21] among others.
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