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Abstract
Set-valued contractions of Leader type in quasi-triangular spaces are constructed,
conditions guaranteeing the existence of nonempty sets of periodic points, fixed
points and endpoints of such contractions are established, convergence of dynamic
processes of these contractions are studied, uniqueness properties are derived, and
single-valued cases are considered. Investigated dynamic systems are not necessarily
continuous and spaces are not necessarily sequentially complete or Hausdorff.
Obtained results suggest, in particular, strategies to new studies of functional Bellman
equations and variable discounted Bellman equations in metric spaces and integral
Volterra equations in locally convex spaces. Results in this direction are also presented
in this paper. More precisely, without continuity of Bellman and Volterra appropriate
operators, the sets of solutions of these equations (which are periodic points of these
operators) are studied and new and general convergence, existence and uniqueness
theorems concerning such equations are proved.
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1 Introduction
The fixed point theory has been advanced by a number of authors. The most popular
research in complete metric spaces has risen from the ideas of Banach [5] and Caccioppoli
[13] for single-valued maps and Nadler [40, 41] for set-valued maps.

We mention that the results of Leader [32], concerning necessary and sufficient con-
ditions for the existence of contractive fixed points of set-valued and single-valued maps
with complete graphs in metric spaces, generalize the results of Banach [5], R. Cacciop-
poli [13], Burton [12], Rakotch [42], Geraghty [21, 22], Matkowski [34–36], Walter [51],
Dugundji [18], Tasković [46], Dugundji and Granas [19], Browder [11], Krasnosel’skĭı et
al. [30], Boyd and Wong [10], Mukherjea [39], Meir and Keeler [38], and many others.
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Moreover, Leader’s method as presented in [32] does not require the complete assumption
of metric spaces. Presentation concerning generality and some structural properties of
Leader contractions in metric spaces was fully exploited in Jachymski [23, 24] and Jachym-
ski and Jóźwik [25].

Concerning the Bellman functional equations (see [6–8]), variable δ-discounted Bell-
man equations (see, e.g., [14, 26, 34]) and Volterra integral equations (see [50]), most of
the results contained in several works and books require such assumptions which (by us-
ing various techniques or by utilizing various known fixed point theorems) imply that the
appropriate Bellman and Volterra operators are continuous (on suitable Banach spaces or
complete metric spaces or sequentially complete locally convex vector spaces).

Let X be a (nonempty) set. A distance on X × X is a map X × X → [0; +∞). A distance
space is a set X together with family of distances X × X → [0; +∞). We will furnish some
simple examples of various distance spaces and set-valued and single-valued contractions
on these spaces and such that the more than traditional conclusions of known fixed point
theorems are valid even if some hypotheses on these spaces or contractions are ignored
or weakened or replaced by different and less restrictive ones. Also we will furnish sim-
ple examples of various types of Bellman functional equations or variable δ-discounted
Bellman equations or Volterra integral equations such that the appropriate Bellman or
Volterra operators are discontinuous and without fixed points, whereas solutions of these
equations exist and are not necessarily the singletons.

This raises the following natural questions: (i) Are there not necessarily Hausdorff or
sequentially complete distance spaces together with families of distances which are not
necessarily continuous or vanish on the diagonal or are symmetric or triangular ones?
Then we ask whether in such distance spaces there exist not necessarily continuous set-
valued and single-valued contractions which have nonempty sets of periodic points or
fixed points or endpoints. (ii) How large is the set of these distance spaces? (iii) What
structures controlling the limiting behavior of the sequences of dynamic processes and
Picard iterations of these set-valued and single-valued contractions, respectively, does
this set possess? (iv) What are connections between periodic points or fixed points or
endpoints and the limits of dynamic processes or Picard iterations of these set-valued or
single-valued contractions? (v) How large and general is the class of such set-valued and
single-valued contractions? (vi) Which suitable techniques, methods and ideas are use-
ful for studying these problems as major complications arise in such general spaces? (vii)
Are the developments of this sort new in known distance spaces and new even in met-
ric spaces or normed spaces or locally convex spaces or gauge spaces? (viii) Have these
investigations the new and different applications, e.g., to studying of Bellman functional
equations or variable δ-discounted Bellman equations or Volterra integral equations? (ix)
Are possible unifications and generalizations of known spaces and results? (x) Are theo-
rems of this type optimal?

The objects we are interested in are quasi-triangular spaces. The purpose of this pa-
per, by providing efficient tools and techniques for investigating the set-valued and single-
valued dynamic systems and Bellman and Volterra type operators in these spaces and also
for better understanding generality and specific properties of these spaces, is to show how
to answer these questions positively.

Basic definitions, notations and remarks are given in Sects. 2–8.
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Motivation for general convergence, periodic point, fixed point and endpoint results
presented in Theorems 9.1–9.4 of this paper and concerning the new constructed here
set-valued and single-valued contractions in quasi-triangular spaces comes from the fixed
point theorems in metric spaces established by Leader in his significant paper [32].

Section 10 contains the proofs of Theorems 9.1–9.4. In Sect. 11, we present a number
of examples.

As applications of our convergence, periodic point and fixed point Theorems 9.3 and 9.4
for single-valued contractions in metric and gauge spaces, we provide and prove, without
restrictive assumptions, the new and general convergence, existence and uniqueness the-
orems concerning solutions of Bellman functional equations and variable δ-discounted
Bellman equations in metric spaces and Volterra integral equations in locally convex
spaces. More precisely, we concentrate on convergence, existence and uniqueness prob-
lems concerning periodic and fixed points of appropriate Bellman and Volterra operators.
Thus we studied the structure of sets of solutions of these equations in more general set-
ting. Results in this direction are presented in Theorems 12.1–12.4, 13.1–13.3 and 14.1–
14.4 of this paper.

2 Quasi-triangular spaces (X,PC;A). PC;A-separability. Set-valued and
single-valued dynamic systems (X, T) in (X,PC;A). Fixed points, periodic
points and edpoints

Quasi-triangular spaces which unify and generalize an existing body of distance spaces
(such as metric, ultra metric, quasi-metric, ultra quasi-metric, b-metric, partial met-
ric, partial b-metric, pseudometric, quasi-pseudometric, ultra quasi-pseudometric, par-
tial quasi-pseudometric, topological, uniform, quasi-uniform, gauge, ultra gauge, partial
gauge, quasi-gauge, ultra quasi-gauge, partial quasi-gauge, normed, locally convex spaces,
ultra quasi-triangular and partial quasi-triangular (see, e.g., [4, 15, 16, 28, 31, 37, 43, 44,
49, 52–54])) are defined as follows.

Definition 2.1 ([53, 54]) Let X be a (nonempty) set, let A be an index set, and let C =
{Cα}α∈A ∈ [1;∞)A.

(A) We say that a family PC;A = {Pα : α ∈A} of distances Pα : X2 → [0,∞), α ∈A, is a
quasi-triangular family on X if ∀α∈A∀u,v,w∈X{Pα(u, w) ≤ Cα[Pα(u, v) + Pα(v, w)]}.
A quasi-triangular space (X,PC;A) is a set X together with the quasi-triangular
family PC;A on X .

(B) We say that a family PA = {Pα : α ∈A} of distances Pα : X2 → [0,∞), α ∈A, is a
triangular family on X if ∀α∈A∀u,v,w∈X{Pα(u, w) ≤ Pα(u, v) + Pα(v, w)}. A triangular
space (X,PA) is a set X together with the triangular family PA on X .

(C) If Cα = 1 for each α ∈A, then PC;A is denoted by PA. If the set A has only one
element, then PC;A is denoted by P.

(D) Let (X,PC;A) be a quasi-triangular space. We say that PC;A is separating on X if
∀u,w∈X{u �= w ⇒ ∃α∈A{Pα(u, w) > 0 ∨ Pα(w, u) > 0}}.

Remark 2.1 Note that “C = {Cα}α∈A ∈ [1;∞)A” means exactly that [1;∞)A =
∏

α∈A[1;∞) = {x = {xα}α∈A : ∀α∈A{xα ∈ [1;∞)}}.

Definition 2.2 Let X be a vector space over K (where K is R or C), A be an index set, and
C = {Cα}α∈A ∈ [1;∞)A.
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(A) We say that a family NC;A = {Nα : α ∈A} of maps Nα : X → [0,∞), α ∈A, is a
locally convex quasi-triangular family on X if
∀α∈A∀u,v∈X{Nα(u + v) ≤ Cα[Nα(u) + Nα(v)]} and ∀α∈A∀u∈X∀λ∈K{Nα(λu) = |λ|Nα(u)}.

(B) A locally convex quasi-triangular space (X,NC;A) is a set X together with the locally
convex quasi-triangular family NC;A = {Nα : α ∈A} on X .

(C) Let (X,NC;A) be a locally convex quasi-triangular space. We say that NC;A is
separating on X if ∀u∈X{u �= 0 ⇒ ∃α0∈A{Nα0 (u) > 0}}.

Remark 2.2 We see that each locally convex quasi-triangular space is a symmetric quasi-
triangular space. Indeed, if X is a vector space over K and NC;A = {Nα : α ∈ A}, Nα : X →
[0,∞), α ∈ A, is a locally convex quasi-triangular family, then PC;A = {Pα : α ∈ A} where
Pα(u, v) = Nα(u – v), α ∈A, (u, v) ∈ X × X, is a symmetric and quasi-triangular family and
(X,PC;A) is a symmetric quasi-triangular space.

Remark 2.3 Let (X,PC;A) be a quasi-triangular space. In general, the distances Pα , α ∈
A, do not vanish on the diagonal, are asymmetric, and do not satisfy the triangle in-
equality (i.e., conditions ∀α∈A∀u∈X{Pα(u, u) = 0} or ∀α∈A∀u,w∈X{Pα(u, w) = Pα(w, u)} or
∀α∈A∀u,v,w∈X{Pα(u, w) ≤ Pα(u, v) + Pα(v, w)} do not necessarily hold).

We will use (xm : m ∈N) ⊂ X as a sequence and as a set as the situation demands.
Asymmetry of Pα , α ∈ A, justify the use of term “left” and term “right”. When the sym-

metry holds, then term “left” and term “right” are identical.

Definition 2.3 Let (X,PC;A) be a quasi-triangular space.
(A) We say that (xm : m ∈N) ⊂ X is left (respectively, right) PC;A-convergent in X if

LIML–PC;A
(xm :m∈N) = {u ∈ X : ∀α∈A{limm→∞ Pα(u, xm) = 0}} �= ∅ (respectively,

LIMR–PC;A
(xm :m∈N) = {v ∈ X : ∀α∈A{limm→∞ Pα(xm, v) = 0}} �= ∅).

(B) We say that (xm : m ∈N) ⊂ X is left (respectively, right) PC;A-convergent to u ∈ X
(respectively, v ∈ X) if u ∈ LIML–PC;A

(xm :m∈N) (respectively, v ∈ LIMR–PC;A
(xm :m∈N)).

Let (X,PC;A) be a quasi-triangular space. The set-valued dynamic system on (X,PC;A)
is defined as a pair (X, T), where T : X → 2X ; here, 2X denotes the family of all nonempty
subsets of X. The single-valued dynamic system on (X,PC;A) is defined as a pair (X, T),
where T is a single-valued map T : X → X, i.e., ∀x∈X{T(x) ∈ X}.

For q ∈N and for set-valued and single-valued dynamic systems (X, T), we define T [q] =
T ◦ T ◦ · · · ◦ T (q-times).

Let (X, T) be a set-valued dynamic system on (X,PC;A). For each w0 ∈ X, we denote by
OX,T (w0) the set of all dynamic processes or trajectories starting at w0 or motions of the
system (X, T) (see [1–3, 56]), i.e.,

OX,T
(
w0) =

{(
wm : m ∈ {0} ∪N

)
: ∀m∈{0}∪N

{
wm+1 ∈ T

(
wm)}}

.

By FixX(T), PerX(T) and EndX(T) we denote the sets of all fixed points, periodic points
and endpoints (stationary points) of (X, T), respectively, i.e., FixX(T) = {w ∈ X : w ∈ T(w)},
PerX(T) = {w ∈ X : w ∈ T [q](w) for some q ∈N} and EndX(T) = {w ∈ X : {w} = T(w)}.

Let (X, T) be a single-valued dynamic system on (X,PC;A). For each w0 ∈ X, a sequence
(wm = T [m](w0) : m ∈ {0} ∪N), T [0] = IX (an identity map on X), is called a Picard iteration
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starting at w0 of the system (X, T). By FixX(T) and PerX(T) we denote the sets of all fixed
points and periodic points of (X, T), respectively, i.e., FixX(T) = {w ∈ X : w = T(w)} and
PerX(T) = {w ∈ X : w = T [q](w) for some q ∈N}.

3 Left (right) families JC;A generated by PC;A, JC;A-separability, and relation
between JC;A-separability and PC;A-separability in (X,PC;A)

For given quasi-triangular spaces (X,PC;A), it is natural to define the notions of the sets
J

L
(X,PC;A) (respectively, JR

(X,PC;A)) of left (respectively, right) families JC;A generated by
PC;A. These sets JL

(X,PC;A) (respectively, JR
(X,PC;A)) provide on X new structures which are

richer than structures provided on X by PC;A.

Definition 3.1 Let (X,PC;A) be a quasi-triangular space.
(A) The family JC;A = {Jα : α ∈A} of distances Jα : X × X → [0;∞), α ∈A, is said to be

a left family generated by PC;A if the following two conditions hold:
(A.1) ∀α∈A∀u,v,w∈X{Jα(u, w) ≤ Cα[Jα(u, v) + Jα(v, w)]}.
(A.2) For any sequences (xm : m ∈N) and (ym : m ∈N) in X with the properties

∀α∈A{limm→∞ supn>m Jα(xm, xn) = 0} and ∀α∈A{limm→∞ Jα(ym, xm) = 0} we
have ∀α∈A{limm→∞ Pα(ym, xm) = 0}.

(B) The family JC;A = {Jα : α ∈A} of distances Jα : X × X → [0;∞), α ∈A, is said to be
a right family generated by PC;A if the following two conditions hold:
(B.1) ∀α∈A∀u,v,w∈X{Jα(u, w) ≤ Cα[Jα(u, v) + Jα(v, w)]}.
(B.2) For any sequences (xm : m ∈N) and (ym : m ∈N) in X with the properties

∀α∈A{limm→∞ supn>m Jα(xn, xm) = 0} and ∀α∈A{limm→∞ Jα(xm, ym) = 0} we
have ∀α∈A{limm→∞ Pα(xm, ym) = 0}.

(C) Denote by J
L
(X,PC;A) (respectively, JR

(X,PC;A)) the set of all left (respectively, right)
families JC;A generated by PC;A.

(D) If Cα = 1 for each α ∈A, then JC;A, PC;A, JL
(X,PC;A) and J

R
(X,PC;A) we denoted by

JA, PA, JL
(X,PA) and J

R
(X,PA), respectively. If the set A has only one element, then

JC;A, PC;A, JL
(X,PC;A) and J

R
(X,PC;A) is denoted by J , P, JL

(X,P) and J
R
(X,P), respectively.

Remark 3.1 The following hold:
(a) PC;A ∈ J

L
(X,PC;A) ∩ J

R
(X,PC;A).

(b) The structures on X determined by left (respectively, right) families JC;A generated
by PC;A are more general than the structure on X determined by PC;A.

(c) Let JC;A ∈ J
L
(X,PC;A) ∪ J

R
(X,PC;A); thus, in particular, let JC;A = PC;A. In general, the

distances Jα , α ∈A, do not vanish on the diagonal, are asymmetric, and do not
satisfy the triangle inequality (i.e., ∀α∈A∀u∈X{Jα(u, u) = 0} or
∀α∈A∀u,w∈X{Jα(u, w) = Jα(w, u)} or ∀α∈A∀u,v,w∈X{Jα(u, w) ≤ Jα(u, v) + Jα(v, w)} do not
necessarily hold).

(d) Asymmetry of Jα , α ∈A, justify the use of term “left” and term “right”. When the
symmetry holds, then term “left” and term “right” are identical.

Definition 3.2 Let (X,PC;A) be a quasi-triangular space and let JC;A = {Jα : α ∈ A} ∈
J

L
(X,PC;A) ∪J

R
(X,PC;A). We say thatJC;A is separating on X if ∀u,w∈X{u �= w ⇒ ∃α0∈A{Jα0 (u, w) >

0 ∨ Jα0 (w, u) > 0}}.
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The technique for establishing uniqueness of fixed points and endpoints of dynamic
systems is separation (Definition 2.1(D)), contraction property (conditions (d) of Theo-
rems 9.1 and 9.3) and Proposition 3.1 below.

Proposition 3.1 ([53]) Let (X,PC;A) be a quasi-triangular space. If PC;A is separating on
X, then each JC;A ∈ J

L
(X,PC;A) ∪ J

R
(X,PC;A) is separating on X.

Remark 3.2 The distances in uniform spaces (these distances are determined by unifor-
mity and generalize uniformity) first appeared in Vályi [48]. We also mention at this stage
that various concepts of distances in metric spaces (X, d) which generalize d, of this sort,
are given by Kada et al. [27] (w-distances), Lin and Du [33] (τ -functions), Suzuki [45] (τ -
distances) and Ume [47] (u-distances). General distances in cone uniform spaces, which
generalize these distances and simplify the arguments substantially, are treated in [55]. In
the appearing literature, these distances and their generalizations in other spaces provide
efficient tools to study various problems of fixed point theory. In this paper, using sets
J

L
(X,PC;A) and J

R
(X,PC;A) defined above, we also generalize these ideas.

4 Left (respectively, right) JC;A-convergences of sequences in (X,PC;A). Left
(respectively, right) JC;A-Hausdorff spaces (X,PC;A)

The above considerations suggest the appropriate definition regarding left (respectively,
right) JC;A-convergence of sequences in (X,PC;A).

Definition 4.1 Let (X,PC;A) be a quasi-triangular space. Let JC;A ∈ J
L
(X,PC;A) ∪ J

R
(X,PC;A);

thus, in particular, let JC;A = PC;A.
(A) We say that (xm : m ∈N) ⊂ X is left (respectively, right) JC;A-convergent in X if

JC;A ∈ J
L
(X,PC;A) and LIML–JC;A

(xm :m∈N) = {u ∈ X : ∀α∈A{limm→∞ Jα(u, xm) = 0}} �= ∅

(respectively, JC;A ∈ J
R
(X,PC;A) and

LIMR–JC;A
(xm :m∈N) = {v ∈ X : ∀α∈A{limm→∞ Jα(xm, v) = 0}} �= ∅).

(B) We say that (xm : m ∈N) ⊂ X is left (respectively, right) JC;A-convergent to u ∈ X
(respectively, v ∈ X) if JC;A ∈ J

L
(X,PC;A) and u ∈ LIML–JC;A

(xm :m∈N) (respectively,

JC;A ∈ J
R
(X,PC;A) and v ∈ LIMR–JC;A

(xm :m∈N)).

Remark 4.1 Let (X,PC;A) be a quasi-triangular space. Assume that JC;A ∈ J
L
(X,PC;A) (re-

spectively, JC;A ∈ J
R
(X,PC;A)); thus, in particular, JC;A = PC;A. It is clear that if sequence

(xm : m ∈ N) ⊂ X is left (respectively, right) JC;A-convergent in X, then LIML–JC;A
(xm :m∈N) ⊂

LIML–JC;A
(ym :m∈N) (respectively, LIMR–JC;A

(xm :m∈N) ⊂ LIMR–JC;A
(ym :m∈N)) for each subsequence (ym : m ∈ N)

of sequence (xm : m ∈N).

Definition 4.2 Let (X,PC;A) be a quasi-triangular space. Let JC;A ∈ J
L
(X,PC;A) ∪ J

R
(X,PC;A);

thus, in particular, let JC;A = PC;A. We say that (X,PC;A) is left (respectively, right) JC;A-
Hausdorff if for each left (respectively, right) JC;A-convergent sequence (xm : m ∈ N) in
X we have: JC;A ∈ J

L
(X,PC;A) and LIML–JC;A

(xm :m∈N) is a singleton (respectively, JC;A ∈ J
R
(X,PC;A)

and LIMR–JC;A
(xm :m∈N) is a singleton).
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5 Left (respectively, right) JC;A-admissible on M ∈ 2X of set-valued and
single-valued dynamic systems (X, T) in (X,PC;A)

Left (respectively, right) JC;A-admissible of set-valued and single-valued dynamic systems
(X, T) on M ∈ 2X in (X,PC;A) are defined as follows.

Definition 5.1 Let (X,PC;A) be a quasi-triangular space, and let (X, T) be a set-valued
dynamic system.

(A) Let JC;A ∈ J
L
(X,PC;A); thus, in particular, let JC;A = PC;A. (X, T) is said to be a left

JC;A-admissible in a point w0 ∈ X if each dynamic process
(wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0, which is left JC;A-sequence (i.e.
satisfying the condition ∀α∈A{limm→∞ supn>m Jα(wm, wn) = 0}), is left JC;A-
converging in X (i.e. has property LIML–JC;A

(wm :m∈{0}∪N) �= ∅).
(B) Let JC;A ∈ J

R
(X,PC;A); thus, in particular, let JC;A = PC;A. (X, T) is said to be a right

JC;A-admissible in a point w0 ∈ X if each dynamic process
(wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0, which is right JC;A-sequence (i.e.
satisfying the condition ∀α∈A{limm→∞ supn>m Jα(wn, wm) = 0}), is right JC;A-
converging in X (i.e. has the property LIMR–JC;A

(wm :m∈{0}∪N) �= ∅).
(C) Let M ∈ 2X . (X, T) is said to be a left (respectively, right) JC;A-admissible on M if

JC;A ∈ J
L
(X,PC;A) (respectively, JC;A ∈ J

R
(X,PC;A)) and (X, T) is a left (respectively,

right) JC;A-admissible in each point w0 ∈ M.

Definition 5.2 Let (X,PC;A) be a quasi-triangular space, and let (X, T) be a single-valued
dynamic system.

(A) Let JC;A ∈ J
L
(X,PC;A); thus, in particular, let JC;A = PC;A. (X, T) is said to be a left

JC;A-admissible in a point w0 ∈ X if a sequence (T [m](w0) : m ∈ {0} ∪N), which is
left JC;A-sequence (i.e. satisfying the condition

∀α∈A
{

lim
m→∞ sup

n>m
Jα

(
T [m](w0), T [n](w0)) = 0

}
),

is left JC;A-converging in X (i.e. has the property LIML–JC;A
(T [m](w0):m∈{0}∪N) �= ∅).

(B) Let JC;A ∈ J
R
(X,PC;A); thus, in particular, let JC;A = PC;A. (X, T) is said to be a right

JC;A-admissible in a point w0 ∈ X if a sequence (T [m](w0) : m ∈ {0} ∪N), which is
right JC;A-sequence (i.e. satisfying the condition

∀α∈A
{

lim
m→∞ sup

n>m
Jα

(
T [n](w0), T [m](w0)) = 0

}
),

is right JC;A-converging in X (i.e. has the property LIMR–JC;A
(T [m](w0):m∈{0}∪N) �= ∅).

(C) Let M ∈ 2X . (X, T) is said to be a left (respectively, right) JC;A-admissible on M iff
JC;A ∈ J

L
(X,PC;A) (respectively, JC;A ∈ J

R
(X,PC;A)) and (X, T) is a left (respectively,

right) JC;A-admissible in each point w0 ∈ M.

6 Relation between left (respectively, right) JC;A-admissible property and left
(respectively, right) JC;A-sequential completeness in (X,PC;A)

Here, we record some relation between properties of left (respectively, right) JC;A-
admissible (set-valued or single-valued) dynamic systems (X, T) on M ∈ 2X in (X,PC;A)
and left (respectively, right) JC;A-sequential completeness of (X,PC;A).
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Definition 6.1 Let (X,PC;A) be a quasi-triangular space. Assume that JC;A ∈ J
L
(X,PC;A) ∪

J
R
(X,PC;A); thus, in particular, JC;A = PC;A.
(A) We say that a sequence (um : m ∈N) ⊂ X is left (respectively, right) JC;A-sequence if

JC;A ∈ J
L
(X,PC;A) and ∀α∈A{limm→∞ supn>m Jα(um, un) = 0} (respectively,

JC;A ∈ J
R
(X,PC;A) and ∀α∈A{limm→∞ supn>m Jα(un, um) = 0}).

(B) If every left (respectively, right) JC;A-sequence (um : m ∈N) ⊂ X is left
(respectively, right) JC;A-convergent in X (i.e., JC;A ∈ J

L
(X,PC;A) and

LIML–JC;A
(um :m∈N) �= ∅ (respectively, JC;A ∈ J

R
(X,PC;A) and LIMR–JC;A

(um :m∈N) �= ∅)), then
(X,PC;A) is called left (respectively, right) JC;A-sequential complete.

Remark 6.1 Let (X,PC;A) be a quasi-triangular space. Assume that JC;A ∈ J
L
(X,PC;A) ∪

J
R
(X,PC;A)); thus, in particular, JC;A = PC;A. If (X,PC;A) is left (respectively, right) JC;A-

sequentially complete, then each (set-valued and single-valued) dynamic system (X, T) is
left (respectively, right) JC;A-admissible on each M ∈ 2X .

7 Left (respectively, right) JC;A-closed on M ∈ 2X of set-valued and
single-valued dynamic systems (X, T [q]), q ∈ N, in (X,PC;A)

The idea of “closed maps” as generalization of continuity first arose in Berge [9] (see also
Klein and Thompson [29]). Our formulation of the notion of left (respectively, right)JC;A-
closed on M ∈ 2X of set-valued and single-valued dynamic systems (X, T [q]), q ∈ N, in
(X,PC;A) are defined as follows.

Definition 7.1 Let (X,PC;A) be a quasi-triangular space. Suppose (X, T) is a set-valued
dynamic system, T : X → 2X , and let q ∈ N.

(A) Let w0 ∈ X . Let JC;A ∈ J
L
(X,PC;A); thus, in particular, let JC;A = PC;A. We say that a

set-valued dynamic system (X, T [q]) is left JC;A-closed in a point w0, if for each
dynamic process (wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0 with property
U = LIML–JC;A

(wm :{0}∪N) �= ∅ (i.e. left JC;A-convergent in X) and containing two left
JC;A-converging in X subsequences (xm : m ∈ N) and (ym : m ∈N) (thus, in
particular, LIML–JC;A

(wm :{0}∪N) ⊂ LIML–JC;A
(xm :m∈N) ∩ LIML–JC;A

(ym :m∈N)) satisfying
∀m∈N{ym ∈ T [q](xm)}, we have ∃u∈U{u ∈ T [q](u)}.

(B) Let w0 ∈ X . Let JC;A ∈ J
R
(X,PC;A); thus, in particular, let JC;A = PC;A. We say that a

set-valued dynamic system (X, T [q]) is right JC;A-closed in a point w0, if for each
dynamic process (wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0 with property
V = LIMR–JC;A

(wm :{0}∪N) �= ∅ (i.e. right JC;A-convergent in X) and containing two right
JC;A-converging in X subsequences (xm : m ∈ N) and (ym : m ∈N) (thus, in
particular, LIMR–JC;A

(wm :{0}∪N) ⊂ LIMR–JC;A
(xm :m∈N) ∩ LIMR–JC;A

(ym :m∈N)) satisfying
∀m∈N{ym ∈ T [q](xm)}, we have ∃v∈V {v ∈ T [q](v)}.

(C) Let M ∈ 2X . A set-valued dynamic system (X, T [q]) is said to be a left (respectively,
right) JC;A-closed on M, if JC;A ∈ J

L
(X,PC;A) (respectively, JC;A ∈ J

R
(X,PC;A)) and

(X, T [q]) is a left (respectively, right) JC;A-closed in each point w0 ∈ M.

Definition 7.2 Let (X,PC;A) be a quasi-triangular space. Suppose (X, T) is a single-valued
dynamic system, T : X → X, and let q ∈N.

(A) Let w0 ∈ X . Let JC;A ∈ J
L
(X,PC;A); thus, in particular, let JC;A = PC;A. We say that a

single-valued dynamic system (X, T [q]) is a left JC;A-closed in a point w0, if in the
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case when a sequence (T [m](w0) : m ∈ {0} ∪N) has property
U = LIML–JC;A

(T [m](w0):{0}∪N) �= ∅ (i.e. is left JC;A- converging in X) and contains two left
JC;A- converging in X subsequences (xm : m ∈N) and (ym : m ∈N) (thus, in
particular, LIML–JC;A

(T [m](w0):{0}∪N) ⊂ LIML–JC;A
(xm :m∈N) ∩ LIML–JC;A

(ym :m∈N)) satisfying
∀m∈N{ym = T [q](xm)}, then we have ∃u∈U{u = T [q](u)}.

(B) Let w0 ∈ X . Let JC;A ∈ J
R
(X,PC;A); thus, in particular, let JC;A = PC;A. We say that a

single-valued dynamic system (X, T [q]) is a right JC;A-closed in a point w0, if in the
case when a sequence (T [m](w0) : m ∈ {0} ∪N) has property
V = LIMR–JC;A

(T [m](w0):{0}∪N) �= ∅ (i.e. is right JC;A-converging in X) and contains two
right JC;A-converging in X subsequences (xm : m ∈N) and (ym : m ∈N) (thus, in
particular, LIMR–JC;A

(T [m](w0):{0}∪N) ⊂ LIMR–JC;A
(xm :m∈N) ∩ LIMR–JC;A

(ym :m∈N)) satisfying
∀m∈N{ym = T [q](xm)}, then we have ∃v∈V {v = T [q](v)}.

(C) Let M ∈ 2X . A single-valued dynamic system (X, T [q]) is said to be a left
(respectively, right) JC;A-closed on M, if JC;A ∈ J

L
(X,PC;A) (respectively,

JC;A ∈ J
R
(X,PC;A)) and (X, T [q]) is a left (respectively, right) JC;A-closed in each

point w0 ∈ M.

8 SA-Family of accumulation maps
The notion of families JC;A generated by PC;A (Sect. 3) and the following notion of SA-
family are crucial in constructions of contractions (9.1), (9.11), (9.12) and (9.25).

Definition 8.1 Let A be an index set. The family SA = {Sα : α ∈A} is said to be SA-family
of accumulation maps Sα , α ∈A, (simply, SA-family) if:

(A) ∀α∈A{Sα : [0;∞) → [1;∞)}.
(B) Sα , α ∈A, are strictly increasing on (0;∞), i.e., ∀α∈A∀0<t1<t2{Sα(t1) < Sα(t2)}.
(C) ∀α∈A{Sα(0) = 1}.
(D) ∀α∈A{t → 0 iff Sα(t) → 1}.
(E) ∀α∈A∀t1,t2∈[0;∞){Sα(t1 + t2) ≤ Sα(t1) · Sα(t2)}.
(F) ∀α∈A∀t∈[0;∞)∀β∈[1;∞){Sα(βt) ≤ [Sα(t)]β}.

Remark 8.1 We record some observations concerning SA-family. (a) The maps Sα , α ∈A,
are not necessarily continuous. (b) From (A)–(C) it follows that: (b1) ∀α∈A∀t∈[0;∞){Sα(t) =
1 implies t = 0}. (b2) ∀α∈A∀t∈[0;∞){t > 0 implies Sα(t) > 1}.

Example 8.1 Let A be an index set. If family SA = {Sα : α ∈ A}, Sα : [0;∞) → [1;∞), α ∈
A, is such that, for arbitrary and fixed α ∈A, the map Sα : [0;∞) → [1;∞) is one from the
following:

Sα(t) = ct
α , t ∈ [0;∞), (8.1)

Sα(t) = 1 +
t

aα + bαt
, t ∈ [0;∞), (8.2)

Sα(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 + t
aα+bα t if t > 1,

1 + t/(n+1)
aα+bα t/(n+1) if 1

n+1 < t ≤ 1
n , n ∈N,

1 if t = 0,

(8.3)

Sα(t) = 1 +
ln(1 + t)

aα + bα ln(1 + t)
, t ∈ [0;∞), (8.4)
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Sα(t) = 1 +
t + bα ln(1 + t)

aα + t + bα ln(1 + t)
, t ∈ [0;∞), (8.5)

where cα ∈ (1;∞), aα ∈ (0;∞) and bα ∈ [0;∞), then SA is an SA-family.
We prove conditions (A)–(F) for map Sα given by (8.2). Clearly (A), (C) and (D) hold.

Moreover, the maps Sα , α ∈A, are strictly increasing on (0;∞) since

∀α∈A∀τ∈(0;∞)
{

S′
α(τ ) = aα/(aα + bατ )2 > 0

}
.

Next we see that

∀α∈A∀τ1,τ2∈[0;∞)

{

Sα(τ1 + τ2)

= 1 +
τ1 + τ2

aα + bα(τ1 + τ2)
< 1 +

τ1

aα + bατ1
+

τ2

aα + bατ2

<
(

1 +
τ1

aα + bατ1

)

·
(

1 +
τ2

aα + bατ2

)

= Sα(τ1) · Sα(τ2)
}

.

It remains to prove

∀α∈A∀τ∈[0;∞), β∈[1;∞)

{

Sα(βτ ) = 1 +
βτ

aα + bαβτ

≤
(

1 +
τ

aα + bατ

)β

=
[
Sα(τ )

]β

}

. (8.6)

It is clear that (8.6) holds for β = 1. For β > 1 let

hα(τ ) =
(

1 +
τ

aα + bατ

)β

– 1 –
βτ

aα + bαβτ
.

Observing that

h′
α(τ ) = aαβ

[(

1 +
τ

aα + bατ

)β–1 1
(aα + bατ )2 –

1
(aα + bαβτ )2

]

,

h′′
α(τ ) = aαβ

[

(β – 1)
(

1 +
τ

aα + bατ

)β–2 aα

(aα + bατ )4

–
(

1 +
τ

aα + bατ

)β–1 2bα

(aα + bατ )3 +
2bαβ

(aα + bαβτ )3

]

,

h′
α(0) = 0, h′′

α(0) = β(β – 1)
2bα + 1

a2
α

> 0,

we conclude the proof (8.6) for β > 1.
Now, we prove conditions (A)–(F) for map Sα given by (8.5). The maps Sα are strictly

increasing on (0;∞). Indeed, it is clear that

∀t∈(0;∞)

{

S′
α(t) =

aα(1 + t + bα)
(1 + t)[(aα + t + bα ln(1 + t)]2 > 0

}

.
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Next we see that

∀t1,t2∈[0;∞)

{

Sα(t1 + t2)

= 1 +
t1 + t2 + bα ln(1 + t1 + t2)

aα + t1 + t2 + bα ln(1 + t1 + t2)

< 1 +
t1 + t2 + bα ln(1 + t1 + t2 + t1 · t2)

aα + t1 + t2 + bα ln(1 + t1 + t2)

= 1 +
t1 + t2 + bα ln(1 + t1) + bα ln(1 + t2)

aα + t1 + t2 + bα ln(1 + t1 + t2)

< 1 +
t1 + bα ln(1 + t1)

aα + t1 + bα ln(1 + t1)
+

t2 + bα ln(1 + t2)
aα + t2 + bα ln(1 + t2)

<
(

1 +
t1 + bα ln(1 + t1)

aα + t1 + bα ln(1 + t1)

)

·
(

1 +
t2 + bα ln(1 + t2)

aα + t2 + bα ln(1 + t2)

)

= Sα(t1) · Sα(t2)
}

.

It remains to prove

∀α∈A∀τ∈[0;∞), β∈[1;∞)

{

Sα(βτ ) = 1 +
βτ + bα ln(1 + βτ )

aα + βτ + bα ln(1 + βτ )

≤
[

1 +
τ + bα ln(1 + τ )

aα + τ + bα ln(1 + τ )

]β

=
[
Sα(τ )

]β

}

. (8.7)

It is clear that (8.7) holds for β = 1. For β > 1 let

hα(t) =
[

1 +
t + bα ln(1 + t)

aα + t + bα ln(1 + t)

]β

– 1 –
βt + bα ln(1 + βt)

aα + βt + bα ln(1 + βt)
.

Observing that

h′
α(t)

= aαβ

{[

1 +
t + bα ln(1 + t)

aα + t + bα ln(1 + t)

]β–1 aα(1 + t + bα)
[aα + t + bα ln(1 + t)]2(1 + t)

–
[

1 +
t + bα ln(1 + t)

aα + t + bα ln(1 + t)

]β–1 2(1 + t + bα)2 + bα[aα + t + bα ln(1 + t)]
[aα + t + bα ln(1 + t)]3(1 + t)2

+ β
2(1 + βt + bα)2 + bα[aα + βt + bα ln(1 + βt)]

[aα + bα ln(1 + βt)]3(1 + βt)2

}

,

h′′
α(t)

= aαβ

{

(β – 1)
[

1 +
t + bα ln(1 + t)

aα + t + bα ln(1 + t)

]β–2 (1 + t + bα)2

[aα + bα ln(1 + t)]4(1 + t)2

–
[

1 +
t + bα ln(1 + t)

aα + t + bα ln(1 + t)

]β–1 2(1 + t + bα)2 + bα[aα + t + bα ln(1 + t)]
[aα + t + bα ln(1 + t)]3(1 + t)2

+ β
2(1 + βt + bα)2 + bα[aα + βt + bα ln(1 + βt)]

[aα + bα ln(1 + βt)]3(1 + βt)2

}

,
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h′
α(0) = 0, h′′

α(0) = β(β – 1)
1 + 2aα(1 + bα)2 + a2

αbα

a3
α

> 0,

we conclude the proof (8.7) for β > 1. Therefore, (B), (E) and (F) hold. Clearly (A), (C) and
(D) hold.

9 Convergence, periodic point, fixed point and endpoint theorems for
set-valued and single-valued contractions of Leader type in (X,PC;A)

As a result, our arguments become versatile and can readily extend the study of contrac-
tions to more general settings (see Theorems 9.1–9.4).

Theorem 9.1 Let (X,PC;A) be a quasi-triangular space, and let (X, T) be a set-valued
dynamic system, T : X → 2X . Assume that:

(a) JC;A ∈ J
L
(X,PC;A) (respectively, JC;A ∈ J

R
(X,PC;A)).

(b) (X, T) is left (respectively, right) JC;A-admissible on X .
(c) SA = {Sα : α ∈A} is an SA-family.
(d) The SA-family SA = {Sα : α ∈A}, (X, T) and JC;A = {Jα : α ∈A} ∈ J

L
(X,PC;A)

(respectively, JC;A = {Jα : α ∈A} ∈ J
R
(X,PC;A)) satisfy

⎧
⎨

⎩

∀α∈A∀ε>1∃η>1∃r∈N∀x0,y0∈X∀(xm :m∈{0}∪N)∈OX,T (x0)∀(ym :m∈{0}∪N)∈OX,T (y0)

∀s,l∈N{Sα(Jα(xs, yl)) < ε · η ⇒ [Sα(Jα(xs+r, yl+r))]Cα < ε}.
(9.1)

Then the following hold:
(A) Convergence of all dynamic processes. For each point w0 ∈ X and for each dynamic

process (wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0, we have

∅ �= LIML–JC;A
(wm :m∈{0}∪N) ⊂ LIML–PC;A

(wm :m∈{0}∪N) (9.2)

where JC;A ∈ J
L
(X,PC;A) (respectively,

∅ �= LIMR–JC;A
(wm :m∈{0}∪N) ⊂ LIMR–PC;A

(wm :m∈{0}∪N) (9.3)

where JC;A ∈ J
R
(X,PC;A)).

(B) Existence of periodic points of all dynamic processes. If there exists q ∈N such that
the set-valued dynamic system (X, T [q]) is left (respectively, right) JC;A-closed on X ,
then

FixX
(
T [q]) �= ∅. (9.4)

Moreover, for each point w0 ∈ X and for each dynamic process
(wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0, we see that there exists a point
u ∈ FixX(T [q]) (respectively, v ∈ FixX(T [q])) such that

u ∈ LIML–JC;A
(wm :m∈{0}∪N) ⊂ LIML–PC;A

(wm :m∈{0}∪N) (9.5)

where JC;A ∈ J
L
(X,PC;A) (respectively,

v ∈ LIMR–JC;A
(wm :m∈{0}∪N) ⊂ LIMR–PC;A

(wm :m∈{0}∪N) (9.6)
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where JC;A ∈ J
R
(X,PC;A)).

(C) Existence of unique endpoint of all dynamic processes. If the set-valued dynamic
system (X, T) is left (respectively, right) JC;A-closed on X and the family
PC;A = {Pα : α ∈A} is separating on X , then there exists a unique endpoint w of T in
X , i.e.

EndX(T) =
{

w ∈ X : {w} = T(w)
}

= {w}, (9.7)

satisfying

∀α∈A
{

Jα(w, w) = 0
}

. (9.8)

Furthermore, for each w0 ∈ X and for each dynamic process
(wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0, we have

w ∈ LIML–JC;A
(wm :m∈{0}∪N) ⊂ LIML–PC;A

(wm :m∈{0}∪N) (9.9)

where JC;A ∈ J
L
(X,PC;A) (respectively,

w ∈ LIMR–JC;A
(wm :m∈{0}∪N) ⊂ LIMR–PC;A

(wm :m∈{0}∪N) (9.10)

where JC;A ∈ J
R
(X,PC;A)).

Theorem 9.2 Let (X,PC;A) be a quasi-triangular space, and let (X, T) be a set-valued
dynamic system, T : X → 2X . Assume that:

(a) JC;A ∈ J
L
(X,PC;A) (respectively, JC;A ∈ J

R
(X,PC;A)).

(b) There exists M ∈ 2X such that (X, T) is left (respectively, right) JC;A-admissible on M.
(c) SA = {Sα : α ∈A} is an SA-family.
(d) The SA-family SA = {Sα : α ∈A}, (X, T), M and JC;A = {Jα : α ∈A} ∈ J

L
(X,PC;A)

(respectively, JC;A = {Jα : α ∈A} ∈ J
R
(X,PC;A)) satisfy

⎧
⎨

⎩

∀α∈A∀ε>1∃η>1∃r∈N∀w0∈M∀(wm :m∈{0}∪N)∈OX,T (w0)∀s,l∈N
{Sα(Jα(ws, wl)) < ε · η ⇒ [Sα(Jα(ws+r , wl+r))]Cα < ε}.

(9.11)

Then the following hold:
(A) Convergence of dynamic processes. For each point w0 ∈ M and for each dynamic

process (wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0, we have

∅ �= LIML–JC;A
(wm :m∈{0}∪N) ⊂ LIML–PC;A

(wm :m∈{0}∪N) where JC;A ∈ J
L
(X,PC;A)

(respectively,

∅ �= LIMR–JC;A
(wm :m∈{0}∪N) ⊂ LIMR–PC;A

(wm :m∈{0}∪N) where JC;A ∈ J
R
(X,PC;A)).
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(B) Existence of periodic points of dynamic processes. If there exist q ∈N and w0 ∈ M
such that the set-valued dynamic system (X, T [q]) is left (respectively, right)
JC;A-closed in a point w0, then

FixX
(
T [q]) �= ∅.

Moreover, for each dynamic process (wm : m ∈ {0} ∪N) ∈OX,T (w0) starting at w0,
there exists a point u ∈ FixX(T [q]) (respectively, v ∈ FixX(T [q])) such that

u ∈ LIML–JC;A
(wm :m∈{0}∪N) ⊂ LIML–PC;A

(wm :m∈{0}∪N) where JC;A ∈ J
L
(X,PC;A)

(respectively,

v ∈ LIMR–JC;A
(wm :m∈{0}∪N) ⊂ LIMR–PC;A

(wm :m∈{0}∪N) where JC;A ∈ J
R
(X,PC;A)).

Theorem 9.3 Let (X,PC;A) be a quasi-triangular space, and let (X, T) be a single-valued
dynamic system, T : X → X. Assume that:

(a) JC;A ∈ J
L
(X,PC;A) (respectively, JC;A ∈ J

R
(X,PC;A)).

(b) (X, T) is left (respectively, right) JC;A-admissible on X .
(c) SA = {Sα : α ∈A} is an SA-family.
(d) The SA-family SA = {Sα : α ∈A}, (X, T) and JC;A = {Jα : α ∈A} ∈ J

L
(X,PC;A)

(respectively, JC;A = {Jα : α ∈A} ∈ J
R
(X,PC;A)) satisfy

⎧
⎨

⎩

∀α∈A∀ε>1∃η>1∃r∈N∀x,y∈X∀s,l∈N{Sα(Jα(T [s](x), T [l](y)))

< ε · η ⇒ [Sα(Jα(T [s+r](x), T [l+r](y)))]Cα < ε}.
(9.12)

Then the following hold:
(A) Convergence of all Picard iterations. For each point w0 ∈ X , we have

∅ �= LIML–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIML–PC;A

(T [m](w0):m∈{0}∪N) (9.13)

where JC;A ∈ J
L
(X,PC;A) (respectively,

∅ �= LIMR–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIMR–PC;A

(T [m](w0):m∈{0}∪N) (9.14)

where JC;A ∈ J
R
(X,PC;A)).

(B) Existence of periodic points of all Picard iterations. If there exists q ∈N such that the
single-valued dynamic system (X, T [q]) is left (respectively, right) JC;A-closed on X ,
then

FixX
(
T [q]) �= ∅. (9.15)

Moreover, for each point w0 ∈ X , there exists a point u ∈ FixX(T [q]) (respectively,
v ∈ FixX(T [q])) such that

u ∈ LIML–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIML–PC;A

(T [m](w0):m∈{0}∪N) (9.16)
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and

∀α∈A∀n∈{1,2,...,q}
{

Jα
(
u, T [n](u)

)
= Jα

(
T [n](u), u

)
= 0

}
(9.17)

where JC;A ∈ J
L
(X,PC;A) (respectively,

v ∈ LIMR–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIMR–PC;A

(T [m](w0):m∈{0}∪N) (9.18)

and

∀α∈A∀n∈{1,2,...,q}
{

Jα
(
v, T [n](v)

)
= Jα

(
T [n](v), v

)
= 0

}
(9.19)

where JC;A ∈ J
R
(X,PC;A)).

(C) Existence of unique fixed point of all Picard iterations. If (X, T) is left (respectively,
right) JC;A-closed on X and the family PC;A = {Pα : α ∈A} is separating on X , then

∃w∈X
{

FixX(T) = {w}}. (9.20)

Moreover, for each w0 ∈ X ,

w ∈ LIML–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIML–PC;A

(T [m](w0):m∈{0}∪N) (9.21)

and

∀α∈A
{

Jα(w, w) = 0
}

(9.22)

where JC;A ∈ J
L
(X,PC;A) (respectively,

w ∈ LIMR–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIMR–PC;A

(T [m](w0):m∈{0}∪N) (9.23)

and

∀α∈A
{

Jα(w, w) = 0
}

(9.24)

where JC;A ∈ J
R
(X,PC;A)).

Theorem 9.4 Let (X,PC;A) be a quasi-triangular space, and let (X, T) be a single-valued
dynamic system, T : X → X. Assume that:

(a) JC;A ∈ J
L
(X,PC;A) (respectively, JC;A ∈ J

R
(X,PC;A)).

(b) There exists M ∈ 2X such that (X, T) is left (respectively, right) JC;A-admissible on M.
(c) SA = {Sα : α ∈A} is an SA-family.
(d) The SA-family SA = {Sα : α ∈A}, (X, T), M and JC;A = {Jα : α ∈A} ∈ J

L
(X,PC;A)

(respectively, JC;A = {Jα : α ∈A} ∈ J
R
(X,PC;A)) satisfy

⎧
⎨

⎩

∀α∈A∀ε>1∃η>1∃r∈N∀w0∈M∀s,l∈N{Sα(Jα(T [s](w0), T [l](w0)))

< ε · η ⇒ [Sα(Jα(T [s+r](w0), T [l+r](w0)))]Cα < ε}.
(9.25)
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Then the following hold:
(A) Convergence of Picard iterations. For each point w0 ∈ M, we have

∅ �= LIML–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIML–PC;A

(T [m](w0):m∈{0}∪N) where JC;A ∈ J
L
(X,PC;A)

(respectively,

∅ �= LIMR–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIMR–PC;A

(T [m](w0):m∈{0}∪N) where JC;A ∈ J
R
(X,PC;A)).

(B) Existence of periodic points of Picard iterations. If there exist q ∈N and w0 ∈ M
such that the single-valued dynamic system (X, T [q]) is left (respectively, right)
JC;A-closed in a point w0, then

FixX
(
T [q]) �= ∅.

Moreover, there exists a point u ∈ FixX(T [q]) (respectively, v ∈ FixX(T [q])) such that

u ∈ LIML–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIML–PC;A

(T [m](w0):m∈{0}∪N)

and

∀α∈A∀n∈{1,2,...,q}
{

Jα
(
u, T [n](u)

)
= Jα

(
T [n](u), u

)
= 0

}

where JC;A ∈ J
L
(X,PC;A) (respectively,

v ∈ LIMR–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIMR–PC;A

(T [m](w0):m∈{0}∪N)

and

∀α∈A∀n∈{1,2,...,q}
{

Jα
(
v, T [n](v)

)
= Jα

(
T [n](v), v

)
= 0

}

where JC;A ∈ J
R
(X,PC;A)).

Definition 9.1 Let (X,PC;A) be a quasi-triangular space. If assumptions (a)–(d) of Theo-
rems 9.1, 9.2, 9.3 or 9.4 hold, then a dynamic system (X, T) we call admissible (SA,JC;A)-
contraction in (X,PC;A).

Remark 9.1 Let (X,PC;A) be a quasi-triangular space. Assume that JC;A ∈ J
L
(X,PC;A) ∪

J
R
(X,PC;A); thus, in particular, JC;A = PC;A.
(A) If (X,PC;A) is left (respectively, right) JC;A-sequentially complete, then each

(set-valued and single-valued) dynamic system (X, T) is left (respectively, right)
JC;A-admissible on each M ∈ 2X , i.e. then hypothesis (b) of Theorems 9.1–9.4
automatically holds.

(B) In general, (X,PC;A) are not necessarily left (respectively, right) JC;A-Hausdorff or
left (respectively, right) JC;A-sequentially complete. Convergence, periodic point,
endpoint and fixed point Theorems 9.1–9.4 presented above are without these
properties.
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10 Proofs of Theorems 9.1–9.4
In the sequel, for w0 ∈ X, let (wm : m ∈ {0} ∪N) has property (wm : m ∈ {0} ∪N) ∈OX,T (w0)
when (X, T) is set-valued or (wm : m ∈ {0} ∪ N) is of the form (wm = T [m](w0) : m ∈
{0}∪N) when (X, T) is single-valued. Moreover, we assert that hypotheses (a)–(d) of Theo-
rems 9.1–9.4 hold. This means that the hypotheses of the auxiliary Propositions 10.1–10.3
hold.

Proposition 10.1 Let JC;A ∈ J
L
(X,PC;A) ∪ J

R
(X,PC;A). Let w0 ∈ X be such that

∀α∈A∀ε>1∃η>1∃r∈N∀s,l∈N{Sα(Jα(ws, wl)) < ε · η ⇒ [Sα(Jα(ws+r , wl+r))]Cα < ε}. For each α ∈ A
and k ∈N, define

δ(SA ,JC;A);α,k
(
w0) = inf

{
	(SA ,JC;A);α,k

(
w0, n

)
: n ∈N

}
(10.1)

where

	(SA ,JC;A);α,k
(
w0, n

)
= max

{
Sα

(
Jα

(
ws, wl)) : n ≤ s, l ≤ n + k

}
, n ∈N. (10.2)

The following holds:

∀α∈A∀k∈N
{
δ(SA ,JC;A);α,k

(
w0) = 1

}
. (10.3)

Proof of Proposition 10.1 Suppose on the contrary that (10.3) is false. Then, by (10.1),

∃α0∈A∃k0∈N∃ε0>1
{
δ(SA ,JC;A);α0,k0

(
w0) = ε0

}
(10.4)

where

δ(SA ,JC;A);α0,k0

(
w0) = inf

{
	(SA ,JC;A);α0,k0

(
w0, n

)
: n ∈N

}
. (10.5)

Observe that with this choice of α0 and ε0, we can use hypothesis and then there exist
η0 > 1 and r0 ∈N such that

∀s,l∈N
{

Sα0

(
Jα0

(
ws, wl)) < ε0 · η0 ⇒ [

Sα0

(
Jα0

(
ws+r0 , wl+r0

))]Cα0 < ε0
}

. (10.6)

Also observe that with this choice of α0, k0, ε0 and η0 from (10.4) and (10.5) we get

∃n0∈N
{
δ(SA ,JC;A);α0,k0

(
w0) = ε0 ≤ 	(SA ,JC;A);α0,k0

(
w0, n0

)
< ε0 · η0

}
. (10.7)

Naturally (10.7) gives

∀n0≤s,l≤n0+k0

{
Sα0

(
Jα0

(
ws, wl)) < ε0 · η0

}
(10.8)

since, by (10.2), 	(SA ,JC;A);α0,k0 (w0, n0) = max{Sα0 (Jα0 (ws, wl)) : n0 ≤ s, l ≤ n0 + k0}. Now,
from (10.6) and (10.8) one gets

∀n0+r0≤s,l≤n0+r0+k0

{[
Sα0

(
Jα0

(
ws, wl))]Cα0 < ε0

}
. (10.9)
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Next, since 	(SA ,JC;A);α0,k0 (w0, n0 + r0) = max{Sα0 (Jα0 (ws, wl)) : n0 + r0 ≤ s, l ≤ n0 + r0 + k0},
therefore (10.9) implies

[
	(SA ,JC;A);α0,k0

(
w0, n0 + r0

)
)
]Cα0 < ε0. (10.10)

However, by (10.4), (10.5) and (10.10), we obtain

ε0 = δ(SA ,JC;A);α0,k0

(
w0) = inf

{
	(SA ,JC;A);α0,k0

(
w0, n

)
: n ∈N

}

≤ 	(SA ,JC;A);α0,k0

(
w0, n0 + r0

) ≤ [
	(SA ,JC;A);α0,k0

(
w0, n0 + r0

)
)
]Cα0 < ε0

which is impossible. Therefore, (10.3) holds. �

Proposition 10.2 Let JC;A ∈ J
L
(X,PC;A) ∪ J

R
(X,PC;A). Let α0 ∈ A, ε0 > 1 and w0 ∈ X be such

that

∃η0>1∃r0∈N∀s,l∈N
{

Sα0

(
Jα0

(
ws, wl)) < ε0 · η0

⇒ [
Sα0

(
Jα0

(
ws+r0 , wl+r0

))]Cα0 < ε0
}

. (10.11)

Then the following hold:

∃n0∈N
{[

	(SA ,JC;A);α0,r0

(
w0, n0

)]Cα0 < min{ε0,η0}
}

(10.12)

and

∀s,l≥n0

{
Sα0

(
Jα0

(
ws, wl)) < ε2

0
}

. (10.13)

Here

[
	(SA ,JC;A);α0,r0

(
w0, n0

)]Cα0

= max
{[

Sα0

(
Jα0

(
ws, wl))]Cα0 : n0 ≤ s, l ≤ n0 + r0

}
. (10.14)

Proof of Proposition 10.2 Indeed, let α0, ε0, w0, η0 and r0 be as in (10.11).
We prove that (10.12) holds. From (10.3), for α0, w0 and k0 = r0, we get

δ(SA ,JC;A);α0,r0

(
w0) = inf

{
	(SA ,JC;A);α0,r0

(
w0, n

)
: n ∈ N

}
= 1 (10.15)

where

	(SA ,JC;A);α0,r0

(
w0, n

)

= max
{

Sα0

(
Jα0

(
ws, wl)) : n ≤ s, l ≤ n + r0

}
, n ∈N. (10.16)

Observe that (10.15) and (10.16) imply

inf
{[

	(SA ,JC;A);α0,r0

(
w0, n

)]Cα0 : n ∈N
}

= 1 (10.17)
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where

[
	(SA ,JC;A);α0,r0

(
w0, n

)]Cα0

= max
{[

Sα0

(
Jα0

(
ws, wl))]Cα0 : n ≤ s, l ≤ n + r0

}
, n ∈N. (10.18)

Now, from (10.17) and (10.18), using the fact that min{ε0,η0} > 1 one gets (10.12).
Now we prove that (10.13) holds. First, we establish that

∀l≥n0

{[
Sα0

(
Jα0

(
wn0+r0 , wl))]Cα0 < ε0

}
. (10.19)

If (10.19) is false, then ∃l≥n0{[Sα0 (Jα0 (wn0+r0 , wl))]Cα0 ≥ ε0}; in other words,

L =
{

l ∈N : l ≥ n0 ∧ [
Sα0

(
Jα0

(
wn0+r0 , wl))]Cα0 ≥ ε0

} �= ∅. (10.20)

Thus, denoting

l0 = min L, (10.21)

by (10.12) and (10.14), the conclusion is that l0 > n0 and in view of (10.20) and (10.21) this
implies

∀n0≤l<l0
{[

Sα0

(
Jα0

(
wn0+r0 , wl))]Cα0 < ε0

}
. (10.22)

We claim that

l0 > n0 + r0. (10.23)

To see this, suppose the contrary and let l0 ≤ n0 + r0. We claim that then, by virtue
of (10.14), [Sα0 (Jα0 (wn0+r0 , wl0 ))]Cα0 ≤ max{[Sα0 (Jα0 (wi, wj))]Cα0 : n0 ≤ i, j ≤ n0 + r0} =
[	(SA ,JC;A);α0,r0 (w0, n0)]Cα0 < min{ε0,η0} ≤ ε0, which, in view of (10.20)–(10.22), is im-
possible. Thus (10.23) holds.

From (10.23) we deduce that n0 < l0 – r0 < l0 and next from (10.22) we conclude that

[
Sα0

(
Jα0

(
wn0+r0 , wl0–r0

))]Cα0 < ε0. (10.24)

Next, in view of (A.1) and (B.1) of Definition 3.1, Definition 8.1, (10.14) and (10.24),
we obtain Sα0 (Jα0 (wn0 , wl0–r0 )) ≤ Sα0 (Cα0 [Jα0 (wn0 , wn0+r0 ) + Jα0 (wn0+r0 , wl0–r0 )]) ≤
[Sα0 (Jα0 (wn0 , wn0+r0 ))]Cα0 · [Sα0 (Jα0 (wn0+r0 , wl0–r0 ))]Cα0 < [	(SA ,JC;A);α0,r0 (w0, n0)]Cα0 · ε0 <
η0 · ε0. Hence, using (10.11) we therefore have [Sα0 (Jα0 (wn0+r0 , wl0 ))]Cα0 < ε0. In view of
(10.20) and (10.21), this is impossible.

The proof of (10.19) is complete.
To continue, we require the following analogue of (10.19). It takes the following form

∀s≥n0

{[
Sα0

(
Jα0

(
ws, wn0+r0

))]Cα0 < ε0
}

. (10.25)

Arguments are very close to those given in the proof of (10.19).
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Finally, to establish (10.13), we see that, by (A.1) and (B.1) of Definition 3.1, by Defini-
tion 8.1, by (10.25) and by (10.19), we obtain

∀s,l≥n0

{
Sα0

(
Jα0

(
ws, wl))

≤ Sα0

[
Cα0 Jα0

(
ws, wn0+r0

)
+ Cα0 Jα0

(
wn0+r0 , wl)]

≤ [
Sα0

(
Jα0

(
ws, wn0+r0

))]Cα0 · [Sα0

(
Jα0

(
wn0+r0 , wl))]Cα0 < ε0 · ε0

}
.

Therefore, (10.13) holds. �

Proposition 10.3 Let JC;A ∈ J
L
(X,PC;A) ∪ J

R
(X,PC;A). Let w0 ∈ X be such that

∀α∈A∀ε>1∃η>1∃r∈N∀s,l∈N{Sα(Jα(ws, wl)) < ε · η ⇒ [Sα(Jα(ws+r , wl+r))]Cα < ε}. Then

∀α∈A
{

lim
m→∞ sup

n>m
Jα

(
wm, wn) = 0

}
where JC;A ∈ J

L
(X,PC;A) (10.26)

and

∀α∈A
{

lim
m→∞ sup

n>m
Jα

(
wn, wm)

= 0
}

where JC;A ∈ J
R
(X,PC;A). (10.27)

Proof of Proposition 10.3 Indeed, by Proposition 10.2, we get
∀α∈A∀ε>1∃n0∈N∀s,l≥n0{Sα(Jα(ws, wl)) < ε2} or, equivalently, ∀α∈A{limm,n→∞ Sα(Jα(wm, wn)) =
1}. By Definition 8.1, this gives ∀α∈A{limm,n→∞ Jα(wm, wn) = 0} or, equivalently,
∀α∈A∀ε>0∃n0∈N∀s,l≥n0{Jα(ws, wl) < ε/2}. Hence, we obtain, in particular, that
∀α∈A∀ε>0∃m0∈N∀n>m≥m0{Jα(wm, wn) < ε/2} and ∀α∈A∀ε>0∃m0∈N∀n>m≥m0{Jα(wn, wm) < ε/2}.
From this it follows that ∀α∈A∀ε>0∃m0∈N∀m≥m0{supn>m Jα(wm, wn) ≤ ε/2 < ε} and also
∀α∈A∀ε>0∃m0∈N∀m≥m0{supn>m Jα(wn, wm) ≤ ε/2 < ε} and hence (10.26) and (10.27) hold. �

Proof of Theorem 9.1 The proof will be broken into Steps 1–3.
Step 1. The statement (A) of Theorem 9.1 holds.
To prove (9.2), letJC;A ∈ J

L
(X,PC;A), let (X, T) be leftJC;A-admissible on X, and let w0 ∈ X

and (wm : m ∈ {0} ∪ N) ∈OX,T (w0) be arbitrary and fixed. By (10.26), Definition 5.1(A)
and hypothesis (b), we get LIML–JC;A

(wm :m∈{0}∪N) = {w ∈ X : ∀α∈A{limm→∞ Jα(w, wm) = 0}} �= ∅.
However, by hypothesis (a), JC;A is left family generated by PC;A. Therefore, fixing
w ∈ LIML–JC;A

(wm :m∈{0}∪N), defining (xm = wm : m ∈ {0} ∪ N) and (ym = w : m ∈ {0} ∪ N) we
get ∀α∈A{limm→∞ supn>m Jα(xm, xn) = 0} and ∀α∈A{limm→∞ Jα(ym, xm) = 0}. Hence, by
Definition 3.1(A), we obtain ∀α∈A{limm→∞ Pα(ym, xm) = 0}. Clearly, this
means ∀α∈A{limm→∞ Pα(w, wm) = 0}, i.e. w ∈ LIML–PC;A

(wm :m∈{0}∪N). Consequently, ∅ �=
LIML–JC;A

(wm :m∈{0}∪N) ⊂ LIML–PC;A
(wm :m∈{0}∪N). Thus (9.2) holds.

If JC;A ∈ J
R
(X,PC;A), (X, T) is right JC;A-admissible on X, and if w0 ∈ X and (wm : m ∈

{0} ∪ N) ∈OX,T (w0) are arbitrary and fixed, then, using (10.27), a similar computation as
above shows that ∅ �= LIMR–JC;A

(wm :m∈{0}∪N) ⊂ LIMR–PC;A
(wm :m∈{0}∪N). Therefore, (9.3) also holds.

Step 2. The statement (B) of Theorem 9.1 holds.
First, we show that (9.4) and (9.5) hold in the left case. With this aim, let w0 ∈ X and

(wm : m ∈ {0} ∪ N) ∈OX,T (w0) be arbitrary and fixed. By statement (A), we have ∅ �= U =
LIML–JC;A

(wm :m∈{0}∪N) ⊂ LIML–PC;A
(wm :m∈{0}∪N). Moreover, wmq+s ∈ T [q](w(m–1)q+s) where s = 1, 2, . . . , q

and m ∈N. Assuming that s0 ∈ {1, 2, . . . , q} is arbitrary and fixed, we see that the sequences
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(ym = wmq+s0 : m ∈ N) and (xm = w(m–1)q+s0 : m ∈ N) satisfy ∀m∈N{ym ∈ T [q](xm)}, and, as
subsequences of (wm : m ∈ {0} ∪ N), are left JC;A-convergent to each point of the set
U = LIML–JC;A

(wm :m∈{0}∪N). Furthermore, LIML–JC;A
(wm :m∈{0}∪N) ⊂ LIML–JC;A

(ym :m∈N) and LIML–JC;A
(wm :m∈{0}∪N) ⊂

LIML–JC;A
(xm :m∈N). Hence, we derive ∅ �= U = LIML–JC;A

(wm :m∈{0}∪N) ⊂ LIML–JC;A
(ym :m∈N) ∩ LIML–JC;A

(xm :m∈N).
By the above, since T [q] is left JC;A-closed on X, in virtue of Definition 7.1(A), we get
∃u∈U{u ∈ T [q](u)}.

The above considerations lead to the conclusion that FixX(T [q]) �= ∅ and that for each
w0 ∈ X and for each dynamic process (wm : m ∈ {0} ∪ N) ∈ OX,T (w0) starting w0 there
exists a point u ∈ FixX(T [q]) such that (wm : m ∈ {0} ∪N) is left JC;A-convergent and also
left PC;A-convergent to u, so (9.4) and (9.5) hold in the left case.

In a similar way, we show that (9.4) and (9.6) hold in the right case.
Step 3. The statement (C) of Theorem 9.1 holds.
Part 1. First, we show that

FixX(T) = {w} for some w ∈ X. (10.28)

Otherwise, x0 ∈ T(x0), y0 ∈ T(y0) and x0 �= y0 for some x0, y0 ∈ X; remember that, by state-
ment (B), FixX(T) �= ∅. By Proposition 3.1, since the family PC;A = {Pα : α ∈A} is separat-
ing on X, there exists α0 ∈A such that Jα0 (x0, y0) > 0 or Jα0 (y0, x0) > 0. Suppose Jα0 (x0, y0) >
0. Then, by Definition 8.1, Sα0 (Jα0 (x0, y0)) = ε0 for some ε0 > 1. Therefore, by hypothesis
(d), we conclude that for these α0 ∈ A and ε0 > 1, there exist η0 > 1 and r0 ∈ N, such that
dynamic processes (xm = x0 : m ∈ {0}∪N) ∈OX,T (x0) and (ym = y0 : m ∈ {0}∪N) ∈OX,T (y0)
satisfy

∀s,l∈N
{

Sα0

(
Jα0

(
xs, yl)) = Sα0

(
Jα0

(
x0, y0)) = ε0 < ε0 · η0

⇒ Sα0

(
Jα0

(
x0, y0)) = Sα0

(
Jα0

(
xs+r0 , yl+r0

))

≤ [
Sα0

(
Jα0

(
xs+r0 , yl+r0

))]Cα0 < ε0
}

.

Clearly, this is impossible. We obtain a similar conclusion in the case when Jα0 (y0, x0) > 0.
We proved that Jα0 (x0, y0) = Jα0 (y0, x0) = 0. Consequently, by Definition 3.2, (10.28) holds.

Part 2. Let, by (10.28), w ∈ FixX(T) = {w}. We show that

∀α∈A
{

Jα(w, w) = 0
}

. (10.29)

Otherwise, there exists α0 ∈ A such that Sα0 (Jα0 (w, w)) > 1. Clearly, w ∈ T [m](w) for m ∈
{0}∪N which gives (xm = w : m ∈ {0}∪N) ∈OX,T (x0) and (ym = w : m ∈ {0}∪N) ∈OX,T (y0).
Thus by (9.1) we get that for ε0 = Sα0 (Jα0 (w, w)) > 1 there exist η0 > 1 and r0 ∈ N such that
dynamic processes (xm = w : m ∈ {0} ∪N) and (ym = w : m ∈ {0} ∪N) satisfy

∀s,l∈N
{

Sα0

(
Jα0

(
xs, yl)) = Sα0

(
Jα0 (w, w)

)
= ε0 < ε0 · η0

⇒ Sα0

(
Jα0 (w, w)

) ≤ [
Sα0

(
Jα0 (w, w)

)]Cα0

=
[
Sα0

(
Jα0

(
xs+r0 , yl+r0

))]Cα0 < ε0
}

,

which is impossible. Therefore, (10.29) holds.
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Part 3. For each x0 ∈ X and r ∈N we say that u ∈ T [r](x0) if there exists a sequence (xm :
m ∈ {0, . . . , r}) = (x0, x1, . . . , xr) satisfying ∀m∈{0,...,r–1}{xm+1 ∈ T(xm)} and such that u = xr .

Part 4. By (10.28), we get FixX(T) = {w} for some w ∈ X. We prove that

∀α∈A
{

sup
u,v∈T(w)

Jα(u, v) = 0
}

. (10.30)

Let r ∈ N be arbitrary and fixed and let (xm : m ∈ {0} ∪ N) ∈OX,T (w) and (ym : m ∈ {0} ∪
N) ∈OX,T (w) be dynamic processes such that xn = yn = w for n ∈ {0, . . . , r – 1} and let xr =
u ∈ T [r](w) and yr = v ∈ T [r](w) be arbitrary and fixed. Then, by (10.29), for each α ∈A, ε >
1, η > 1 and n ∈ {0, . . . , r – 1} we get Sα(Jα(xn, yn)) = Sα(Jα(w, w)) = Sα(0) = 1 < ε · η. Hence,
by using (9.1) and since ∀α∈A{Cα ≥ 1}, we obtain ∀α∈A∀ε>1∃r∈N∀u,v∈T [r](w){Sα(Jα(u, v)) ≤
[Sα(Jα(u, v))]Cα < ε} and this implies that ∀α∈A∀ε>0∃r∈N{supu,v∈T [r](w) Jα(u, v) ≤ ε}. Observe
further that by using property w ∈ T(w) ⊂ T [m](w) for m ∈ N, we find
∀α∈A∀ε>0{supu,v∈T(w) Jα(u, v) ≤ ε}, that is, ∀α∈A{supu,v∈T(w) Jα(u, v) = 0}.

Part 5. Note that T(w) = {w}. Otherwise, u, v ∈ T(w) and u �= v and, by Proposition 3.1,
since the family PC;A = {Pα : α ∈ A} is separating on X, there exists α0 ∈ A such that
Jα0 (u, v) > 0 or Jα0 (v, u) > 0. Consequently, supu,v∈T(w) Jα0 (u, v) > 0. Clearly, this is impossible
by (10.30). Therefore, (9.7) holds.

Part 6. Property (9.8) follows from Parts 2 and 5. By statement (B), properties (9.9) and
(9.10) hold. �

Proof of Theorem 9.2 With the notation of the Theorem 9.2, Steps 1 and 2 of the proof of
Theorem 9.1 are adapted to w0 ∈ M and (wm : m ∈ {0} ∪N) ∈OX,T (w0) satisfying assump-
tions of Theorem 9.2. �

Proof of Theorem 9.3 The proof will be broken into Steps 1–3.
Step 1. The statement (A) of Theorem 9.3 holds.
First, we prove (9.13). Let JC;A ∈ J

L
(X,PC;A) and let (X, T) be left JC;A-admissible on X.

Let w0 ∈ X be arbitrary and fixed. Define the sequence (wm = T [m](w0) : m ∈ {0} ∪ N).
Clearly hypothesis (d) implies hypothesis of Proposition 10.3 and, by (10.26), Defini-
tion 5.2(A) and hypothesis (b), we get that this sequence is left JC;A-convergent in X,
i.e.

LIML–JC;A
(T [m](w0):m∈{0}∪N) =

{
w ∈ X : ∀α∈A

{
lim

m→∞ Jα
(
w, T [m](w0)) = 0

}}
�= ∅. (10.31)

However, by hypothesis (a), JC;A is the left family generated by PC;A. Therefore, fixing
w ∈ LIML–JC;A

(T [m](w0):m∈{0}∪N), defining

(
xm = T [m](w0) : m ∈ {0} ∪N

)
and

(
ym = w : m ∈ {0} ∪N

)
(10.32)

and using (10.26) and (10.28) we get ∀α∈A{limm→∞ supn>m Jα(xm, xn) = 0} and
∀α∈A{limm→∞ Jα(ym, xm) = 0}. Hence, by Definition 3.1(A), we obtain ∀α∈A{limm→∞ Pα(ym,
xm) = 0}. Next, by (10.29), we observe that this is of the form ∀α∈A{limm→∞ Pα(w,
T [m](w0)) = 0}. Therefore, w ∈ LIML–PC;A

(T [m](w0):m∈{0}∪N). By (10.28), this means that ∅ �=
LIML–JC;A

(T [m](w0):m∈{0}∪N) ⊂ LIML–PC;A
(T [m](w0):m∈{0}∪N). We proved (9.13).
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Let now JC;A ∈ J
R
(X,PC;A) and let (X, T) be right JC;A-admissible on X. Then, using

(10.27), a similar computation shows that, for each w0 ∈ X, ∅ �= LIMR–JC;A
(T [m](w0):m∈{0}∪N) ⊂

LIMR–PC;A
(T [m](w0):m∈{0}∪N), which means that (9.14) holds.

Step 2. Conclusion (B) of Theorem 9.3 holds.
First, we show that (9.15)–(9.17) hold in the left case.
Let w0 ∈ X be arbitrary and fixed. By statement (A), the sequence (wm = T [m](w0) :

m ∈ {0} ∪ N) satisfies ∅ �= U = LIML–JC;A
(wm :m∈{0}∪N) ⊂ LIML–PC;A

(wm :m∈{0}∪N). Moreover, for this se-
quence we have wmq+s = T [q](w(m–1)q+s) where s = 1, 2, . . . , q and m ∈ N. Assuming that
s0 ∈ {1, 2, . . . , q} is arbitrary and fixed, we see that the sequences (ym = wmq+s0 : m ∈N) and
(xm = w(m–1)q+s0 : m ∈ N) satisfy ∀m∈N{ym = T [q](xm)}, and, as subsequences of (wm : m ∈
{0} ∪ N), are left JC;A-convergent to each point of the set LIML–JC;A

(T [m](w0):m∈{0}∪N). Further-

more, LIML–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIML–JC;A

(ym :m∈N) and LIML–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIML–JC;A

(xm :m∈N). Hence,

we derive ∅ �= U = LIML–JC;A
(T [m](w0):m∈{0}∪N) ⊂ LIML–JC;A

(ym :m∈N) ∩ LIML–JC;A
(xm :m∈N). By the above, since

T [q] is left JC;A-closed on X, in virtue of Definition 7.2(A), we get ∃u∈U{u = T [q](u)}.
The above considerations lead to the conclusion that FixX(T [q]) �= ∅ and that for each

w0 ∈ X there exists a point u ∈ FixX(T [q]) such that the sequence (wm = T [m](w0) : m ∈
{0} ∪ N) is left JC;A-convergent and left PC;A-convergent to u, so (9.15) and (9.16) hold
in the left case.

Next, we show that (9.17) holds, i.e. that ∀α∈A∀n∈{1,2,...,q}{Jα(u, T [n](u)) = Jα(T [n](u), u) =
0} holds. Suppose that ∃α0∈A∃n0∈{1,2,...,q}{Jα0 (u, T [n0](u)) > 0 ∨ Jα0 (T [n0](u), u) > 0}. If Jα0 (u,
T [n0](u)) > 0, then, by Definition 8.1, Sα0 (Jα0 (u, T [n0](u))) > 1, and putting

ε0 = Sα0

(
Jα0

(
u, T [n0](u)

))
(10.33)

for some ε0 > 1, by hypotheses (c) and (d), we get

∃η0>1∃r0∈N∀s,l∈N
{

Sα0

(
Jα0

(
T [s](u), T [l](u)

))
< ε0 · η0

⇒ [
Sα0

(
Jα0

(
T [s+r0](u), T [l+r0](u)

))]Cα0 < ε0
}

. (10.34)

Using (9.15), (9.16) and (10.33) we therefore have

∀m∈N
{

T [mq](u) = u
}

(10.35)

and Sα0 (Jα0 (T [q](u), T [q+n0](u))) = Sα0 (Jα0 (u, T [n0](u))) = ε0 < ε0 · η0. Hence, using (10.34)
for s = q and l = q + n0, we get the inequalities [Sα0 (Jα0 (T [q+r0](u), T [q+n0+r0](u)))]Cα0 < ε0 <
ε0 · η0. It follows from this that

Sα0

(
Jα0

(
T [q+r0](u), T [q+n0+r0](u)

))
< ε0 < ε0 · η0 (10.36)

since Cα0 ≥ 1 and Sα0 (Jα0 (T [q+r0](u), T [q+n0+r0](u))) ≥ 1. Similarly, by (10.36), using (10.34)
for s = q + r0 and l = q + n0 + r0 we conclude that [Sα0 (Jα0 (T [q+2r0](u), T [q+n0+2r0](u)))]Cα0 <
ε0 < ε0 · η0 and this gives

Sα0

(
Jα0

(
T [q+2r0](u), T [q+n0+2r0](u)

))
< ε0 < ε0 · η0 (10.37)
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since Cα0 ≥ 1 and Sα0 (Jα0 (T [q+2r0](u), T [q+n0+2r0](u))) ≥ 1. In view of (10.35) and (10.37), and
by induction, using (10.34), we find

∀m∈N
{

Sα0

(
Jα0

(
T [q+mr0](u), T [q+n0+mr0](u)

))

≤ [
Sα0

(
Jα0

(
T [q+mr0](u), T [q+n0+mr0](u)

))]Cα0 < ε0 < ε0 · η0
}

. (10.38)

If m = q in (10.38), we also have

Sα0

(
Jα0

(
T [q+qr0](u), T [q+n0+qr0](u)

))
< ε0 < ε0 · η0. (10.39)

By using (10.33), (10.35) and (10.39), we obtain ε0 = Sα0 (Jα0 (u, T [n0](u))) =
Sα0 (Jα0 (T [q+qr0](u), T [q+n0+qr0](u))) < ε0. It is absurd. Therefore, Jα0 (u, T [n0](u)) = 0. Simi-
larly, we prove that Jα0 (T [n0](u), u) = 0. We proved that (9.17) holds.

In a similar way, we show that (9.15), (9.18) and (9.19) hold in the case of right.
Step 3. The conclusion (C) of Theorem 9.3 holds.
Since (X, T) is left (respectively, right) PC;A-closed on X, thus, by conclusion (B), we

have FixX(T) �= ∅. We show that FixX(T) = {w} for some w ∈ X. Otherwise, x, y ∈ FixX(T)
and x �= y for some x, y ∈ X; remember that, by the above, FixX(T) �= ∅. By Proposition 3.1,
since the family PC;A = {Pα : α ∈ A} is separating on X, there exists α0 ∈ A such that
Jα0 (x, y) > 0 or Jα0 (y, x) > 0. Suppose Jα0 (x, y) > 0. Then, by Definition 8.1, Sα0 (Jα0 (x, y)) = ε0

for some ε0 > 1 and, by hypothesis (d), for these α0 ∈ A and ε0 > 1, there exist η0 > 1 and
r0 ∈N, such that

∀s,l∈N
{

Sα0

(
Jα0

(
T [s](x), T [l](y)

))
= Sα0

(
Jα0 (x, y)

)
= ε0 < ε0 · η0

⇒ [
Sα0

(
Jα0

(
T [s+r0](x), T [l+r0](y)

))]Cα0 < ε0
}

. (10.40)

However, for each s, l ∈N, Sα0 (Jα0 (x, y)) = Sα0 (Jα0 (T [s+r0](x), T [l+r0](y))) = ε0 and (10.40) im-
ply that ε0 > 1, Cα0 ≥ 1 and ε

Cα0
0 < ε0. Clearly, this is impossible. We obtain a similar con-

clusion in the case when Jα0 (y, x) > 0. We proved that Jα0 (x, y) = Jα0 (y, x) = 0. Consequently,
by Definition 3.2, FixX(T) = {w} for some w ∈ X, that is (9.20) holds.

Now, (9.20) with (B) means that, for each w0 ∈ X, the sequence (wm = T [m](w0) : m ∈
{0} ∪N) is left (respectively, right) PC;A-convergent to w. Thus (9.21) and (9.23) hold.

Finally, we show that (9.22) and (9.24) hold, i.e. that ∀α∈A{Sα(Jα(w, w)) = 1} where
FixX(T) = {w}. Indeed, if we assume that there exists α0 ∈ A such that Sα0 (Jα0 (w, w)) > 1,
then, denoting ε0 = Sα0 (Jα0 (w, w)) > 1, by (9.12), there exist η0 > 1 and r0 ∈N, such that

∀s,l∈N
{

Sα0

(
Jα0

(
T [s](w), T [l](w)

))
< ε0 · η0

⇒ [
Sα0

(
Jα0

(
T [s+r0](w), T [l+r0](w)

))]Cα0 < ε0
}

. (10.41)

However, for each s, l ∈ N, we have Sα0 (Jα0 (T [s](w), T [l](w))) = Sα0 (Jα0 (w, w)) = ε0 < ε0 · η0.
Thus, using (10.41), we obtain 1 < ε0 = Sα0 (Jα0 (w, w)) = Sα0 (Jα0 (T [s+r0](w), T [l+r0](w))) ≤
[Sα0 (Jα0 (T [s+r0](w), T [l+r0](w)))]Cα0 < ε0, i.e., 1 < ε0, Cα0 ≥ 1 and ε

Cα0
0 < ε0, which is impossi-

ble. Therefore, (9.22) and (9.24) hold.
The proof of Theorem 9.3 is complete. �
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Proof of Theorem 9.4 Thus the condition (9.25) holds. Then, defining (wm = T [m](w0) :
m ∈ {0} ∪N) where w0 ∈ M and next, for this sequence, using a similar argument as in the
proofs of Propositions 10.1–10.3 and Steps 1 and 2 of the proof of Theorem 9.3, we have
the assertions. �

11 Examples
Example 11.1 Let X = (0; 1), let P : X × X → [0; +∞) be given by

P(u, v) =

⎧
⎨

⎩

0 if u ≥ v,

(v – u)4 if u < v,
(11.1)

where u, v ∈ X, and let a set-valued dynamic system (X, T) has the form

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x/3 + 1/3; 1/2) ∪ (1/2; –x/3 + 2/3) if x ∈ (0; 1/2),

{1/2} if x = 1/2,

(–x/3 + 2/3; 1/2) ∪ (1/2; x/3 + 1/3) if x ∈ (1/2; 1).

(11.2)

Let us observe that:
Part 1. P is quasi-triangular distance with C = 8 and (X,P{8};{1}) = (X, P) is quasi-

triangular space. We have ∀u,v,w∈X{P(u, w) ≤ 8[P(u, v) + P(v, w)]}; see Definition 2.1(A) and
[53, Example 1, p. 10].

Part 2. For J = P, for each S{1}-family S{1} = {S} (see Definition 8.1) and for (X, T) the hy-
potheses (a)–(d) of Theorem 9.1 hold. Indeed, hypothesis (a) holds since, by Remark 3.1(a),
P ∈ J

L
(X,P) ∩ J

R
(X,P) (see, Definition 3.1(D)).

Next, we see that (X, T) is left and right P-admissible in each point w0 ∈ X (see Defini-
tion 5.1). In fact, from (11.2), for m ∈ N, we get

T [m](X – {1/2}) =

( m∑

i=1

1/3m; 1/2

)

∪
(

1/2; 1 –
m∑

i=1

1/3m

)

=
((

1 – 1/3m)
/2; 1/2

) ∪ (
1/2; 1 –

(
1 – 1/3m)

/2
)
, (11.3)

T [m]({1/2}) = {1/2}. (11.4)

By applying (11.1)–(11.4), by Definition 2.3, and by direct reasoning the calculations
show that:

Case A. Let w0 ∈ (0; 1/2) ∪ (1/2; 1). If (wm : m ∈ {0} ∪ N) ∈OX,T (w0) satisfies
∃m0∈N∀m≥m0{wm ∈ ((1 – 1/3m)/2; 1/2)}, then limm→∞ supn>m P(wm, wn) =
limm→∞ supn>m P(wn, wm) = 0, [1/2; 1) = LIML–P

(wm :m∈{0}∪N) and {1/2} = LIMR–P
(wm :m∈{0}∪N).

Case B. Let w0 ∈ (0; 1/2) ∪ (1/2; 1). If (wm : m ∈ {0} ∪ N) ∈OX,T (w0) satisfies
∃m0∈N∀m≥m0{wm ∈ (1/2; 1 – (1 – 1/3m)/2)}, then limm→∞ supn>m P(wm, wn) =
limm→∞ supn>m P(wn, wm) = 0, {1/2} = LIML–P

(wm :m∈{0}∪N) and (0; 1/2] = LIMR–P
(wm :m∈{0}∪N).

Case C. Let w0 ∈ (0; 1/2) ∪ (1/2; 1). If (wm : m ∈ {0} ∪ N) ∈OX,T (w0) satisfies
∀m0∈N∃m1>m0∃m2>m0{wm1 ∈ ((1 – 1/3m1 )/2; 1/2) and wm2 ∈ (1/2; 1 – (1 – 1/3m2 )/2)}, then
limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn, wm) = 0, {1/2} = LIML–P

(wm :m∈{0}∪N) and
{1/2} = LIMR–P

(wm :m∈{0}∪N).
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Case D. If w0 = 1/2, then (wm : m ∈ {0} ∪ N) ∈OX,T (w0) is such that ∀m∈N{wm = 1/2},
limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn, wm) = 0, [1/2; 1) = LIML–P

(wm :m∈{0}∪N) and
(0; 1/2] = LIMR–P

(wm :m∈{0}∪N).
Therefore, by Definition 5.1, hypothesis (b) follows from Cases A–D.
Finally, let us observe that (X, T), J = P, and arbitrary S{1}-family S{1} = {S} satisfy (9.1).

Indeed, by (11.1)–(11.4), we note that

⎧
⎪⎪⎨

⎪⎪⎩

∀ε>0∃r∈N∀x0,y0∈X∀(xm :m∈{0}∪N)∈OX,T (x0)∀(ym :m∈{0}∪N)∈OX,T (y0)

∀s,l∈N{8 · P(xs+r , yl+r) ≤ 8 · (xs+r – yl+r)4

≤ 8 · (1/34r)(1/3l – 1/3s)4/24 < ε}.

Consequently, using Definition 8.1, we obtain

⎧
⎨

⎩

∀ε>1∃r∈N∀x0,y0∈X∀(xm :m∈{0}∪N)∈OX,T (x0)∀(ym :m∈{0}∪N)∈OX,T (y0)

∀s,l∈N{[S(P(xs+r, yl+r))]8 < ε}.

In view of this, we see that
⎧
⎨

⎩

∀ε>1∃η>1∃r∈N∀x0,y0∈X∀(xm :m∈{0}∪N)∈OX,T (x0)∀(ym :m∈{0}∪N)∈OX,T (y0)

∀s,l∈N{S(P(xs, yl)) < ε · η ⇒ [S(P(xs+r , yl+r))]8 < ε}.

Part 3. (X, T) is a left and right P-closed in each point w0 ∈ X. Indeed, for each w0 ∈ X
and for each dynamic process (wm : m ∈ {0}∪N) ∈OX,T (w0), the subsequences (ym = wm+1 :
m ∈ N) and (xm = wm : m ∈ N) of (wm : m ∈ {0} ∪ N) satisfy ∀m∈N{ym ∈ T(xm)}. Moreover,
in view of Cases A–E, we get 1/2 ∈ U = LIML–P

(wm :m∈{0}∪N) ⊂ LIML–P
(xm :m∈N) ∩ LIML–P

(ym :m∈N) and
1/2 ∈ V = LIMR–P

(wm :m∈{0}∪N) ⊂ LIMR–P
(xm :m∈N) ∩ LIMR–P

(ym :m∈N). Observe also that 1/2 ∈ T(1/2) =
{1/2} = EndX(T).

Part 4. P is separating on X. Indeed, for each x, y ∈ X such that x �= y, we have P(x, y) > 0
or P(y, x) > 0. This means, by Definition 2.1(D), that P is separating on X.

Part 5. P vanishes on the diagonal. Indeed, for each x ∈ X, P(x, x) = 0.
Claim 1. By Parts 1–5, for J = P, q = 1, (X, T) and for arbitrary S{1}-family S{1} = {S},

hypotheses (a)–(d) and statements (A), (B) and (C) of Theorem 9.1 hold. We have: (i)
EndX(T) = {1/2}. (ii) For each w0 ∈ X, every dynamic process (wm : m ∈ {0}∪N) ∈OX,T (w0)
is left and right P-convergent to 1/2.

Example 11.2 Let X = (0; 1) and let P : X × X → [0; +∞) be given by (11.1) for X = (0; 1).
Suppose also that (X, T) is a set-valued dynamic system defined by

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(x/3 + 1/3; 1/2) ∪ (1/2; –x/3 + 2/3) for x ∈ (0; 1/2),

(0; 1) for x = 1/2,

(–x/3 + 2/3; 1/2) ∪ (1/2; x/3 + 1/3) for x ∈ (1/2; 1).

(11.5)

Part 1. For J = P, for M = X, for each S{1}-family S{1} = {S}, and for (X, T) the hypotheses
(a)–(d) of Theorem 9.2 hold. Indeed, hypothesis (a) holds since, by Remark 3.1(a), P ∈
J

L
(X,P) ∩ J

R
(X,P).
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Next, we see that (X, T) is left and right P-admissible in each point w0 ∈ X. In fact, from
(11.5), for m ∈N, we get

T [m](X – {1/2})

=

( m∑

i=1

1/3m; 1/2

)

∪
(

1/2; 1 –
m∑

i=1

1/3m

)

=
((

1 – 1/3m)
/2; 1/2

) ∪ (
1/2; 1 –

(
1 – 1/3m)

/2
)
,

T [m]({1/2}) = (0; 1). (11.6)

By applying (11.1) and (11.5)–(11.6), we consider the situations I and II:
I. If w0 ∈ (0; 1/2)∪ (1/2; 1) and (wm : m ∈ {0}∪N) ∈OX,T (w0), then we see that ∀m∈N{wm ∈

((1 – 1/3m)/2; 1/2) ∪ (1/2; 1 – (1 – 1/3m)/2)} and Cases A–C hold:
Case A. If w0 ∈ (0; 1/2) ∪ (1/2; 1) and ∃m0∈N∀m≥m0{wm ∈ ((1 – 1/3m)/2; 1/2)}, then

limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn, wm) = 0, [1/2; 1) = LIML–P
(wm :m∈{0}∪N) and

{1/2} = LIMR–P
(wm :m∈{0}∪N).

Case B. If w0 ∈ (0; 1/2) ∪ (1/2; 1) and ∃m0∈N∀m≥m0{wm ∈ (1/2; 1 – (1 – 1/3m)/2)}, then
limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn, wm) = 0, {1/2} = LIML–P

(wm :m∈{0}∪N) and
(0; 1/2] = LIMR–P

(wm :m∈{0}∪N).
Case C. If w0 ∈ (0; 1/2) ∪ (1/2; 1) and ∀m0∈N∃m1>m0∃m2>m0{wm1 ∈ ((1 – 1/3m1 )/2; 1/2) and

wm2 ∈ (1/2; 1 – (1 – 1/3m2 )/2)}, then limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn,
wm) = 0, {1/2} = LIML–P

(wm :m∈{0}∪N) and {1/2} = LIMR–P
(wm :m∈{0}∪N).

II. If w0 = 1/2 and (wm : m ∈ {0} ∪N) ∈OX,T (w0), then we see that ∀m∈N{wm ∈ (0; 1)} and
Cases D and E hold:

Case D. If w0 = 1/2 and ∀m∈N{wm = 1/2}, then limm→∞ supn>m P(wm, wn) =
limm→∞ supn>m P(wn, wm) = 0, [1/2; 1) = LIML–P

(wm :m∈{0}∪N) and (0; 1/2] = LIMR–P
(wm :m∈{0}∪N).

Case E. If w0 = 1/2 and ∃m0∈N∀m∈{1,...,m0}{wm = 1/2} and wm0+1 ∈ (0; 1/2) ∪ (1/2; 1), then
automatically ∀m>m0{wm ∈ ((1 – 1/3m)/2; 1/2) ∪ (1/2; 1 – (1 – 1/3m)/2)} and from this we
deduce that then Cases A–C hold.

Therefore, by Definition 5.1, hypothesis (b) follows from Cases A–E.
Finally, let us observe that (X, T), J = P, and arbitrary S{1}-family S{1} = {S} satisfy (9.16).

Indeed, by (11.1), (11.5)–(11.6) and Cases A–E, we note that

⎧
⎨

⎩

∀ε>0∃r∈N∀x0∈M=X∀(xm :m∈{0}∪N)∈OX,T (x0)∀s,l∈N{8 · P(xs+r , xl+r)

≤ 8 · (xs+r – xl+r)4 ≤ 8 · (1/34r)(1/3l – 1/3s)4/24 < ε}.

Consequently, using Definition 8.1, we obtain

∀ε>1∃r∈N∀x0∈M=X∀(xm :m∈{0}∪N)∈OX,T (x0)∀s,l∈N
{[

S
(
P
(
xs+r , xl+r))]8 < ε

}
.

In view of this, we see that

⎧
⎨

⎩

∀ε>1∃η>1∃r∈N∀x0∈M=X∀(xm :m∈{0}∪N)∈OX,T (x0)

∀s,l∈N{S(P(xs, xl)) < ε · η ⇒ [S(p(xs+r, xl+r))]8 < ε}.
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Part 2. (X, T) is a left and right P-closed in each point w0 ∈ X. Indeed, for each w0 ∈ X
and for each dynamic process (wm : m ∈ {0}∪N) ∈OX,T (w0), the subsequences (ym = wm+1 :
m ∈ N) and (xm = wm : m ∈ N) of (wm : m ∈ {0} ∪ N) satisfy ∀m∈N{ym ∈ T(xm)}. Moreover,
in view of Cases A–E, we get 1/2 ∈ U = LIML–P

(wm :m∈{0}∪N) ⊂ LIML–P
(xm :m∈N) ∩ LIML–P

(ym :m∈N) and
1/2 ∈ V = LIMR–P

(wm :m∈{0}∪N) ⊂ LIMR–P
(xm :m∈N) ∩ LIMR–P

(ym :m∈N). Observe also that 1/2 ∈ T(1/2) =
(0; 1).

Claim 1. By Parts 1 and 2, for J = P, q = 1, M = X, and for arbitrary S{1}-family S{1} = {S},
hypotheses (a)–(d) and statements (A) and (B) of Theorem 9.2 hold. We have: (i) FixX(T) =
{1/2} and T(1/2) = X. (ii) For each w0 ∈ M = X, every dynamic process (wm : m ∈ {0} ∪
N) ∈OX,T (w0) is left and right P-convergent to 1/2.

Remark 11.1 We observe that in the cases of left and right we do not apply Theorems 9.1
to (X, T) from Example 11.2. In fact, assume in (9.1) that (xm : m ∈ {0} ∪N) ∈OX,T (x0) and
(ym : m ∈ {0} ∪ N) ∈OX,T (y0) are such that xm = ym = 1/2 for m ∈ {0, 1, . . . , r – 1} but, e.g.,
xr = 1/4 and yr = 3/4 or xr = 3/4 and yr = 1/4. Then from (9.1) we see that for each ε > 1
and η > 1 there exists r ∈ N such that S(P(1/2, 1/2)) = S(0) = 1 < ε · η ⇒ [S(P(xr , yr))]8 =
[S((3/4 – 1/4)4)]8 = [S((1/2)4)]8 < ε. However, since [S((1/2)4)]8 > 1, this is impossible for
each ε such that 1 < ε < [S((1/2)4)]8.

Example 11.3 Let X = [0; 1]. Let P : X × X → [0; +∞] be given by (11.1) for X = [0; 1].
Suppose also that (X, T) is a set-valued dynamic system defined by

T(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} for x = 0,

(0; x/2) for x ∈ (0; 1/2),

(0; 1) for x = 1/2,

(x/2 + 1/2; 1) for x ∈ (1/2; 1),

{1} for x = 1.

(11.7)

Part 1. For J = P, M = X, q = 1 and (X, T) given by (11.7), harking back to the discussion
of Example 11.2, we may easily verify the hypotheses of Theorem 9.2. Indeed, by (11.1) and
Definitions 5.1 and 2.3, hypothesis (b) of Theorem 9.2 holds, since:

Case A. If w0 = 0, then ∀m∈N{wm = 0} and limm→∞ supn>m P(wm, wn) =
limm→∞ supn>m P(wn, wm) = 0. Moreover, X = [0; 1] = LIML–P

(wm :m∈{0}∪N) and {0} =
LIMR–P

(wm :m∈{0}∪N).
Case B. If w0 ∈ (0; 1/2), then ∀m∈N{wm ∈ (0; w0/2m) and this implies that

limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn, wm) = 0. Moreover, (0; 1] =
LIML–P

(wm :m∈{0}∪N) and {0} = LIMR–P
(wm :m∈{0}∪N).

Case C. If w0 = 1/2 and ∃m0∈N∀m∈{1,...,m0}{wm = 1/2} and wm0+1 ∈ (0; 1/2), then
∀m∈N{wm0+1+m ∈ (0; wm0+1/2m) and limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn,
wm) = 0. Moreover, (0; 1] = LIML–P

(wm :m∈{0}∪N) and {0} = LIMR–P
(wm :m∈{0}∪N).

Case D. If w0 = 1/2 and ∀m∈N{wm = 1/2}, then limm→∞ supn>m P(wm, wn) =
limm→∞ supn>m P(wn, wm) = 0. Moreover, [1/2; 1] = LIML–P

(wm :m∈{0}∪N) and [0; 1/2] =
LIMR–P

(wm :m∈{0}∪N).
Case E. If w0 = 1/2 and ∃m0∈N∀m∈{1,...,m0}{wm = 1/2} and wm0+1 ∈ (1/2; 1), then

∀m∈N{wm0+1+m ∈ (1 – (1 – wm0+1)/2m; 1). This implies that limm→∞ supn>m P(wm, wn) =
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limm→∞ supn>m P(wn, wm) = 0. Moreover, {1} = LIML–P
(wm :m∈{0}∪N) and [0; 1) =

LIMR–P
(wm :m∈{0}∪N).

Case F. If w0 ∈ (1/2; 1), then ∀m∈N{wm ∈ (1–(1–w0)/2m; 1) and also limm→∞ supn>m P(wm,
wn) = limm→∞ supn>m P(wn, wm) = 0. Moreover, {1} = LIML–P

(wm :m∈{0}∪N) and [0; 1) =
LIMR–P

(wm :m∈{0}∪N).
Case G. If w0 = 1, then ∀m∈N{wm = 1} and limm→∞ supn>m P(wm, wn) =

limm→∞ supn>m P(wn, wm) = 0. Moreover, {1} = LIML–P
(wm :m∈{0}∪N) and [0; 1] =

LIMR–P
(wm :m∈{0}∪N).

From Cases A–G it follows also that (9.16) holds for M = X and that (X, T) is left and
right P-closed in each point w0 ∈ M = X.

Claim 1. For J = P, M = X and q = 1 the hypotheses and statements of Theorem 9.2 hold.
We have: (i) FixX(T) = {0, 1/2, 1} and EndX(T) = {0, 1}. (ii) For each w0 ∈ X, every dynamic
process (wm : m ∈ {0}∪N) ∈OX,T (w0) satisfies 1 ∈ LIML–P

(wm :m∈{0}∪N) and 0 ∈ LIMR–P
(wm :m∈{0}∪N).

Example 11.4 Let X = (0; 4) and define (X, T) by

T(x) =

⎧
⎪⎪⎨

⎪⎪⎩

7/2 if x ∈ (0; 2],

(1/2)(x – 3) + 3 if x ∈ (2; 3],

1/2 if x ∈ (3; 4).

(11.8)

For A = {1/2} ∪ (5/2; 3] ∪ {7/2} ⊂ X, we set

P(u, v) =

⎧
⎨

⎩

0 if u = v or A ∩ {u, v} = {u, v},
1 if u �= v and A ∩ {u, v} �= {u, v},

(11.9)

where u, v ∈ X. We see that C = 1. Observe that:
Part 1. If J = P, then (X, T) is left and right P-admissible on X. Indeed, first we note that,

for m ∈N,

T [2m](x) =

⎧
⎪⎪⎨

⎪⎪⎩

1/2 if x ∈ (0; 2],

(1/22m)(x – 3) + 3 if x ∈ (2; 3],

7/2 if x ∈ (3; 4),

(11.10)

and, for m ∈ {0} ∪N,

T [2m+1](x) =

⎧
⎪⎪⎨

⎪⎪⎩

7/2 if x ∈ (0; 2],

(1/22m+1)(x – 3) + 3 if x ∈ (2; 3],

1/2 if x ∈ (3; 4).

(11.11)

Using (11.10) and (11.11) we, therefore, have

T [m](X) ⊂ A. (11.12)
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Next, (11.9) and (11.12) imply that, for each w0 ∈ X, a sequence (wm = T [m](w0) : m ∈ {0}∪
N) satisfies limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn, wm) = 0 and

∀w∈A

{
lim

m→∞ P
(
w, wm)

= lim
m→∞ P

(
wm, w

)
= 0

}
. (11.13)

Part 2. If J = P, then hypothesis (d) of Theorem 9.3 holds. Indeed, by (11.9) and (11.11), for
each S{1}-family S{1} = {S} we have ∀ε>1∃η>1∃r∈N∀x,y∈X∀s,l∈N{S[P(T [s](x), T [l](y))] < ε · η ⇒
S[P(T [s+r](x), T [l+r](y))] = 1 < ε}.

Part 3. (X, T [2]) is left and right P-closed on X. Indeed, if w0 ∈ X is arbitrary and fixed,
then (wm = T [m](w0) : m ∈ {0} ∪ N) is a left and right P-converging sequence to each
point of A (see (11.13)), any two subsequences (ym : m ∈ N) and (xm : m ∈ N) of (wm =
T [m](w0) : m ∈ {0} ∪ N) satisfying ∀m∈N{ym = T [2](xm)} are left and right P-converging to
each point of A, and FixX(T [2]) = {w = T [2](w) : w ∈ {1/2, 3, 7/2}} ⊂ A = LIML–P

(wm :m∈{0}∪N) =
LIMR–P

(wm :m∈{0}∪N). In virtue of Definition 7.2, (X, T [2]) is left and right P-closed on X.
Part 4. (X, T) is a left and right J = P-closed on X. Indeed, let w0 ∈ X be arbitrary and

fixed and let q = 1. Observe that sequence (wm = T [m](w0) : m ∈ {0} ∪ N) satisfies {3} =
FixX(T) ⊂ A = LIML–P

(wm :m∈{0}∪N)} = LIMR–P
(wm :m∈{0}∪N), subsequences (ym = wm+1 : m ∈ N) and

(xm = wm : m ∈N) of (wm = T [m](w0) : m ∈ {0} ∪N) are left and right P-converging to each
point of A, and ∀m∈N{ym = T(xm)}.

Part 5. P is not separating on X. Indeed, by (11.11), for each x, y ∈ X such that x �= y and
A ∩ {x, y} = {x, y}, we have ∀t∈(0;∞){P(x, y) = P(y, x) = 0}.

Claim 1. By Parts 1–3 and 5, for J = P and q = 2, the statements (A) and (B) of Theo-
rem 9.3 hold. We have: (i) FixX(T [2]) = {1/2, 3, 7/2} �= ∅. (ii) For each w0 ∈ X, a sequence
(wm = T [m](w0) : m ∈ {0} ∪ {0} ∪ N) is left and right P-convergent to each w ∈ FixX(T [2]).
(iii) ∀w∈FixX (T [2]){P(w, w) = P(w, T(w)) = P(T(w), w) = 0}.

Claim 2. By Parts 1, 2, 4 and 5, for J = P and q = 1, the statements (A) and (B) of The-
orem 9.3 hold. We have: (i) FixX(T) = {3} �= ∅. (ii) For each w0 ∈ X, a sequence (wm =
T [m](w0) : m ∈ {0} ∪N) is left and right P-convergent to 3. (iii) P(3, 3) = 0.

Example 11.5 Let X = (2; 4) and P : X × X → [0; +∞] be given by (11.1); thus C = 8. Sup-
pose also that (X, T) is a single-valued dynamic system defined by

T(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

πm for x = πm+1, m ∈ {0} ∪N},
ωm for x = ωm+1, m ∈ {0} ∪N},
3 for x = π0 = ω0 = 3,

3 for x ∈ Θ ,

(11.14)

where Π = {πm = 4 – 1/2m : m ∈ {0} ∪ N}, Ω = {ωm = 2 + 1/2m : m ∈ {0} ∪ N}, Θ =
(2; 4)\[Π ∪ Ω].

Let us observe that:
Part 1. For J = P, for each S{1}-family S{1} = {S}, and for dynamic system (X, T) the hy-

potheses (a)–(c) of Theorem 9.3 hold. Indeed, hypothesis (a) holds since, by Remark 3.1(a),
P ∈ J

L
(X,P) ∩J

R
(X,P). Next, we see that dynamic system (X, T) is admissible on X. In fact, using

(11.14) we find

∀m∈N∀x∈Θ

{
T [m](πm) = T [m](π0) = T [m](ωm) = T [m](ω0) = T [m](x) = 3

}
. (11.15)
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Next, by (11.14) and (11.15), for each w0 ∈ X, sequence (wm = T [m](w0) : m ∈ {0}∪N) satis-
fies limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn, wm) = 0 and LIML–P

(wm :m∈{0}∪N) = [3; 4)
and LIMR–P

(wm :m∈{0}∪N) = (2; 3], which means, by Definition 5.2, that hypothesis (b) holds.
Finally, let us observe that (X, T), J = P, and arbitrary S{1}-family S{1} = {S} satisfy

hypothesis (d). Indeed, by (11.14) and (11.15), we note that ∃r∈N∀x,y∈X∀s,l∈N{P(T [s+r](x),
T [l+r](y) = P(3, 3) = 0}. Consequently, we obtain ∀ε>1∃η>1∃r∈N∀x,y∈X∀s,l∈N{S(P(T [s](x),
T [l](y))) < ε · η ⇒ [S(P(T [s+r](x), T [l+r](y)))]8 = [S(0)]8 = 1 < ε}.

Part 2. (X, T) is a left and right P-closed on X. Indeed, for each w0 ∈ X, the subse-
quences (ym = wm+1 : m ∈N) and (xm = wm : m ∈N) of (wm = T [m](w0) : m ∈ {0}∪N) satisfy
∀m∈N{ym = T(xm)} and also FixX(T) = {3}.

Part 3. P is separating on X (see Part 4 of Example 11.1).
Claim 1. By Parts 1–3, for J = P, for arbitrary S{1}-family, and for q = 1, hypotheses (a)–

(c) and statements (A)–(C) of Theorem 9.3 hold. We have: (i) Fix(T) = {3}. (ii) For each
w0 ∈ X, sequence (wm = T [m](w0) : m ∈ {0} ∪ N) is left and right P-convergent to 3. (iii)
P(3, 3) = 0.

Example 11.6 Let X = [2; 4] and let P : X × X → [0; +∞] be of the form (11.1); thus C =
8. Let Π = {πm = 3 – 1/2m : m ∈ {0} ∪ N}, Ω = {ωm = 3 + 1/2m : m ∈ {0} ∪ N} and Θ =
[2; 4]\[Π ∪ Ω] and let (X, T) be defined by

T(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

πm for x = πm+1, m ∈ {0} ∪N},
2 for x = π0 = 2,

ωm for x = ωm+1, m ∈ {0} ∪N},
4 for x = ω0 = 4,

3 for x ∈ Θ .

(11.16)

Let us observe that:
Part 1. For J = P, for each S{1}-family S{1} = {S}, for M = X and for dynamic system (X, T)

the hypotheses (a)–(d) of Theorem 9.4 hold.
Indeed, hypothesis (a) holds since, by Remark 3.1(a), P ∈ J

L
(X,P) ∩ J

R
(X,P).

Next, we see that dynamic system (X, T) is admissible on M = X. In fact, by (11.16), ob-
serve that ∀m∈N{T [m](πm) = T [m](π0) = 2}, ∀m∈N{T [m](ωm) = T [m](ω0) = 4}, and
∀x∈Θ∀m∈N{T [m](x) = 3}. From this, using (11.1), we see that, for each w0 ∈ M = X, sequence
(wm = T [m](w0) : m ∈ {0} ∪ N) satisfies limm→∞ supn>m P(wm, wn) = limm→∞ supn>m P(wn,
wm) = 0. Furthermore, from (11.16) it follows that

LIML–P
(wm :m∈{0}∪N) =

⎧
⎪⎪⎨

⎪⎪⎩

[2; 4] for w0 ∈ Π ,

{4} for w0 ∈ Ω ,

[3; 4] for x ∈ w0 ∈ Θ ,

and

LIMR–P
(wm :m∈{0}∪N) =

⎧
⎪⎪⎨

⎪⎪⎩

{2} for w0 ∈ Π ,

[2; 4] for w0 ∈ Ω ,

[2; 3] for w0 ∈ Θ .
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Therefore, hypothesis (b) holds.
Finally, let us observe that (X, T), J = P, and arbitrary S{1}-family S{1} = {S} satisfy (d).

In fact, since ∀m∈{0}∪N∀s,l≥m{P(T [s](πm), T [l](πm)) = P(2, 2) = 0}, ∀m∈{0}∪N∀s,l≥m{P(T [s](ωm),
T [l](ωm)) = P(4, 4) = 0} and also ∀x∈Ω∀s,l≥0{P(T [s](x), T [l](x)) = P(3, 3) = 0}, thus we have
∀ε>1∃η>1∃r∈N∀w0∈M=X∀s,l∈N{S(P(T [s](w0), T [l](w0))) < ε · η ⇒ [S(P(T [s+r](w0), T [l+r](w0)))]8 =
[S(0)]8 = 1 < ε}.

Part 2. (X, T) is a left and right P-closed on X. Indeed, for each w0 ∈ X, the subse-
quences (ym = wm+1 : m ∈N) and (xm = wm : m ∈N) of (wm = T [m](w0) : m ∈ {0}∪N) satisfy
∀m∈N{ym = T(xm)}. Moreover, FixX(T) = {2, 3, 4}.

Part 3. P is separating on X. See Example 11.1 (Part 4).
Claim 1. By Parts 1–3, for J = P and q = 1, hypotheses (a)–(c) and statements (A) and (B)

of Theorem 9.4 hold. We have: (i) Fix(T) = {2, 3, 4}. (ii) If w0 ∈ M = X, then the sequence
(wm = T [m](w0) : m ∈ {0} ∪N) is left and right P-convergent to 2 when w0 ∈ Π , to 4 when
w0 ∈ Ω , and to 3 when w0 ∈ Θ . (iii) P(2, 2) = P(3, 3) = P(4, 4) = 0.

12 Convergence, existence and uniqueness results for functional equations of
Bellman type

In this section, before proceeding further, let us make the following assumptions and no-
tation:

I. X denotes a nonempty set, B(X) denotes the set of all bounded real-valued maps on
X, (B(X),‖ · ‖) is a normed space with norm

‖h‖ = sup
{∣
∣h(x)

∣
∣ : x ∈ X

}
, h ∈ B(X)

and (B(X), P) is a metric space with metric P : B(X) × B(X) → [0;∞) defined by

P(h, k) = ‖h – k‖, h, k ∈ B(X).

Definition 12.1 Let (B(X), P) be a metric space defined above.
(A) The distance J : B(X) × B(X) → [0;∞) is said to be a left distance generated by P if

the following two conditions hold:
(A.1) ∀h,u,k∈B(X){J(h, k) ≤ J(h, u) + J(u, k)}.
(A.2) For any sequences (hm : m ∈N) and (km : m ∈N) in B(X) with the properties

limm→∞ supn>m J(hm, hn) = 0 and limm→∞ J(km, hm) = 0 we have
limm→∞ P(km, hm) = 0.

(B) The distance J : B(X) × B(X) → [0;∞) is said to be a right distance generated by P if
the following two conditions hold:
(B.1) ∀h,u,k∈B(X){J(h, k) ≤ J(h, u) + J(u, k)}.
(B.2) For any sequences (hm : m ∈ N) and (km : m ∈ N) in B(X) with the properties

limm→∞ supn>m J(hn, hm) = 0 and limm→∞ J(hm, km) = 0 we have
limm→∞ P(hm, km) = 0.

(C) Denote by J
L
(B(X),P) (respectively, JR

(B(X),P)) the family of all left (respectively, right)
distances J generated by P.

Remark 12.1 The following holds: P ∈ J
L
(B(X),P) ∩ J

R
(B(X),P). Here J and P are triangular dis-

tances. For details, see Definitions 2.1 and 3.1.
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II. Y denotes a nonempty set.
III. We are concerned here with the study of the functional equation of Bellman type of

the form

h(x) = sup
y∈Y

{
f (x, y) + G

(
x, y, h

(
ξ (x, y)

))}
, x ∈ X, (12.1)

where f : X × Y → R and G : X × Y ×R → R are given bounded maps, ξ : X × Y → X is
a given map, and h ∈ B(X) is an unknown map to be determined.

IV. Put

H =
{

h ∈ B(X) : h(x) = sup
y∈Y

{
f (x, y) + G

(
x, y, h

(
ξ (x, y)

))}
, x ∈ X

}
;

the set of all solutions h ∈ B(X) of Eq. (12.1).
V. The operator B of Bellman type is of the form

(Bh)(x) = sup
y∈Y

{
f (x, y) + G

(
x, y, h

(
ξ (x, y)

))}
, h ∈ B(X), x ∈ X. (12.2)

Here, we define the dynamic system (B(X),B) as follows: For h ∈ B(X) let Bh = k, where
k(x) = supy∈Y {f (x, y) + G(x, y, h(ξ (x, y)))}, x ∈ X. Clearly k is bounded, since f and G are
bounded and so k ∈ B(X). Therefore, B : B(X) → B(X).

VI. The operators B[m+1] : B(X) → B(X), m ∈ {0} ∪N, are defined by

(
B[m+1]h

)
(x) = sup

y∈D

{
f (x, y) + G

(
x, y,

(
B[m]h

)(
ξ (x, y)

))}
(12.3)

for all h ∈ B(X) and x ∈ X.
VII. Any fixed point of (B(X),B) is a solution of Eq. (12.1). Moreover, any periodic point

of dynamic system (B(X),B), i.e., any point of the set

PerB(X)(B) =
{

h ∈ B(X) : h = B[q]h for some q ∈N
}

,

is a solution of (12.1).
VIII. Recalling that f and G are bounded, we conclude that, for each h0 ∈ B(X), the

sequence of iterations

(
hm = B[m]h0 : m ∈ {0} ∪N

) ⊂ B(X) (12.4)

starting at h0 ∈ B(X) is well defined. Here B[0] = IB(X)-identity on B(X).
Moreover, with the above assumptions and notation, we also record the following two

definitions needed in the sequel.

Definition 12.2 Let (B(X), P) be a metric space defined above.
(A) Let J ∈ J

L
(B(X),P); thus, in particular, let J = P. Let h0 ∈ B(X). (B(X),B) is said to be a

left J-admissible in h0 if, in the case when the sequence (B[m]h0 : m ∈ {0} ∪N) is left
J-sequence in B(X) (i.e. satisfies the condition limm→∞ supn>m J(B[m]h0,B[n]h0) = 0),
then the sequence (B[m]h0 : m ∈ {0} ∪N) is left J-convergent in B(X) (i.e. has the
property ∅ �= LIML–J

(B[m]h0:{0}∪N) = {k ∈ B(X) : limm→∞ J(k,B[m]h0) = 0}).
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(B) Let J ∈ J
R
(B(X),P); thus, in particular, let J = P. Let h0 ∈ B(X). (B(X),B) is said to be a

right J-admissible in h0 if, in the case when the sequence (B[m]h0 : m ∈ {0} ∪N) is
right J-sequence in B(X) (i.e. satisfies the condition
limm→∞ supn>m J(B[n]h0,B[m]h0) = 0), then the sequence (B[m]h0 : m ∈ {0} ∪N) is
right J-convergent in B(X) (i.e. has the property
∅ �= LIMR–J

(B[m]h0:{0}∪N) = {k ∈ B(X) : limm→∞ J(B[m]h0, k) = 0}).
(C) Let M ∈ 2B(X). (B(X),B) is said to be a left (respectively, right) J-admissible on M iff

J ∈ J
L
(B(X),P) (respectively, J ∈ J

R
(B(X),P)) and (B(X),B) is a left (respectively, right)

J-admissible in each h0 ∈ M.

Definition 12.3 Let (B(X), P) be a metric space defined above and let q ∈N.
(A) Let J ∈ J

L
(B(X),P); thus, in particular, let J = P. Let h0 ∈ B(X). (B(X),B[q]) is said to be a

left J-closed in h0 if, in the case when the sequence (B[m]h0 : m ∈ {0} ∪N) is left
J-convergent in B(X), i.e. ∅ �= U = LIML–J

(B[m]h0:{0}∪N), and contains two right
J-converging in B(X) subsequences (km : m ∈N) and (wm : m ∈ N) (i.e., in particular,
LIMR–J

(B[m]h0:{0}∪N) ⊂ LIMR–J
(km :m∈N) ∩ LIMR–J

(wm :m∈N)) satisfying ∀m∈N{km = B[q]wm}, then
we have ∃u∈U{u = B[q]u}.

(B) Let J ∈ J
R
(B(X),P); thus, in particular, let J = P. Let h0 ∈ B(X). (B(X),B[q]) is said to be a

right J-closed in h0 if, in the case when the sequence (B[m]h0 : m ∈ {0} ∪N) is right
J-convergent in B(X), i.e. ∅ �= V = LIMR–J

(B[m]h0:{0}∪N), and contains two right
J-converging in B(X) subsequences (km : m ∈N) and (wm : m ∈ N) (i.e., in particular,
LIMR–J

(B[m]h0:{0}∪N) ⊂ LIMR–J
(km :m∈N) ∩ LIMR–J

(wm :m∈N)) satisfying ∀m∈N{km = B[q]km}, then
we have ∃v∈V {v = B[q]v}.

(C) Let M ∈ 2B(X). (B(X),B) is said to be a left (respectively, right) J-closed on M iff
J ∈ J

L
(B(X),P) (respectively, J ∈ J

R
(B(X),P)) and (B(X),B) is a left (respectively, right)

J-closed in each h0 ∈ M.

The general theory concerning existence and uniqueness of solutions of functional equa-
tions of Bellman type is currently a very active field, rooted in optimization, dynamic pro-
gramming, computer programming, invariant imbedding, and applications in engineering
and physical sciences. Concerning these existence and uniqueness problems, most of the
work requires assumptions that X and Y are Banach spaces and that the operator B is
continuous. For these topics see, e.g., [6–8].

Here we will concentrate on convergence, existence and uniqueness problems concern-
ing fixed and periodic points of operator B defined by (12.2). Thus we will study the struc-
ture of set H of solutions of the functional Eq. (12.1) of Bellman type in more general
setting.

We have the following analogues of Theorems 9.3 and 9.4.

Theorem 12.1 Assume that I–VIII are satisfied. Suppose also that:
(a) J ∈ J

L
(B(X),P) (respectively, J ∈ J

R
(B(X),P)).

(b) (B(X),B) is left (respectively, right) J-admissible on B(X).
(c) S = {S} is an S-family.
(d) S-family {S}, (B(X),B) and J ∈ J

L
(B(X),P) (respectively, J ∈ J

R
(B(X),P)) satisfy

⎧
⎨

⎩

∀ε>1∃η>1∃r∈N∀h,k∈B(X)∀s,l∈N{S(J(B[s]h,B[l]k))

< ε · η ⇒ S(J(B[s+r]h,B[l+r]k)) < ε}.



Włodarczyk Fixed Point Theory and Applications          (2020) 2020:6 Page 35 of 54

Then the following hold:
(A) Convergence property. For each h0 ∈ B(X), we have

∅ �= LIML–J
(B[m]h0:m∈{0}∪N) ⊂ LIML–P

(B[m]h0:m∈{0}∪N) where J ∈ J
L
(B(X),P)

(respectively,

∅ �= LIMR–J
(B[m]h0:m∈{0}∪N) ⊂ LIMR–P

(B[m]h0:m∈{0}∪N) where J ∈ J
R
(B(X),P)).

(B) Existence of solutions and convergence property. If there exists q ∈N such that the
single-valued dynamic system (B(X),B[q]) is left (respectively, right) J-closed on B(X),
then

∅ �= FixB(X)
(
B[q]) ⊂H.

Moreover, for each h0 ∈ B(X), there exists u ∈ FixB(X)(B[q]) (respectively,
v ∈ FixB(X)(B[q])) such that

u ∈ LIML–J
(B[m]h0:m∈{0}∪N) ⊂ LIML–P

(B[m]h0:m∈{0}∪N)

and

∀n∈{1,2,...,q}
{

J
(
u,B[n](u)

)
= J

(
B[n](u), u

)
= 0

}
where J ∈ J

L
(B(X),P)

(respectively,

v ∈ LIMR–J
(B[m]h0:m∈{0}∪N) ⊂ LIMR–P

(B[m]h0:m∈{0}∪N)

and

∀n∈{1,2,...,q}
{

J
(
v,B[n](v)

)
= J

(
B[n](v), v

)
= 0

}
where J ∈ J

R
(B(X),P)).

(C) Existence of unique solutions and convergence property. If (B(X),B) is left
(respectively, right) J-closed on B(X) then

∃h∈B(X)
{
H = FixB(X)(B) = {h}}.

Moreover, for each h0 ∈ B(X),

h ∈ LIML–J
(B[m]h0:m∈{0}∪N) ⊂ LIML–P

(B[m]h0:m∈{0}∪N) and J(h, h) = 0

where J ∈ J
L
(B(X),P) (respectively,

h ∈ LIMR–J
(B[m]h0:m∈{0}∪N) ⊂ LIMR–P

(B[m]h0:m∈{0}∪N) and J(h, h) = 0,

where J ∈ J
R
(B(X),P)).
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Theorem 12.2 Assume that I–VIII are satisfied. Suppose also that:
(a) J ∈ J

L
(B(X),P) (respectively, J ∈ J

R
(B(X),P)).

(b) There exists M ∈ 2B(X) such that (B(X),B) is left (respectively, right) J-admissible
on M.

(c) S = {S} is an S-family.
(d) S-family S = {S}, (B(X),B), M and J ∈ J

L
(B(X),P) (respectively, J ∈ J

R
(B(X),P)) satisfy

⎧
⎨

⎩

∀ε>1∃η>1∃r∈N∀h0∈M∀s,l∈N{S(J(B[s]h0,B[l]h0))

< ε · η ⇒ S(J(B[s+r]h0,B[l+r]h0)) < ε}.

Then the following hold:
(A) Convergence property. If h0 ∈ M, then

∅ �= LIML–J
(B[m]h0:m∈{0}∪N) ⊂ LIML–P

(B[m]h0:m∈{0}∪N) where J ∈ J
L
(B(X),P)

(respectively,

∅ �= LIMR–J
(B[m]h0:m∈{0}∪N) ⊂ LIMR–P

(B[m]h0:m∈{0}∪N) where J ∈ J
R
(B(X),P)).

(B) Existence of solutions and convergence property. If there exist q ∈N and h0 ∈ M
such that the single-valued dynamic system (B(X),B[q]) is left (respectively, right)
J-closed in h0, then

∅ �= FixB(X)
(
B[q]) ⊂H.

Moreover, there exists u ∈ FixB(X)(B[q]) (respectively, v ∈ FixB(X)(B[q])) such that

u ∈ LIML–J
(B[m]h0:m∈{0}∪N) ⊂ LIML–P

(B[m]h0:m∈{0}∪N)

and

∀n∈{1,2,...,q}
{

J
(
u,B[n](u)

)
= J

(
B[n](u), u

)
= 0

}

where J ∈ J
L
(B(X),P) (respectively,

v ∈ LIMR–J
(B[m]h0:m∈{0}∪N) ⊂ LIMR–P

(B[m]h0:m∈{0}∪N)

and

∀n∈{1,2,...,q}
{

J
(
v,B[n](v)

)
= J

(
B[n](v), v

)
= 0

}

where J ∈ J
R
(B(X),P)).

The following results are special cases of the above theorems.
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Theorem 12.3 Assume that I–VIII are satisfied. Suppose also that:
(a) (B(X),B) is P-admissible on B(X).
(b) S = {S} is an S-family.
(c) S-family S = {S} and (B(X),B) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ε>1∃η>1∃r∈N∀h,k∈B(X)∀s,l∈N
{S(supx,t∈X,y∈Y |G(x, y, (B[s]h)(t))

– G(x, y, (B[l]k)(t))|) < ε · η
⇒ S(supx,t∈X,y∈Y |G(x, y, (B[s+r]h)(t))

– G(x, y, (B[l+r]k)(t))|) < ε}.

(12.5)

Then the following hold:
(A) Convergence property. For each h0 ∈ B(X), there exists h ∈ B(X) such that a

sequence (hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent to h.
(B) Existence of solutions and convergence property. If there exists q ∈N such that the

dynamic system (B(X),B[q]) is P-closed on B(X), then:
(B1) ∅ �= FixB(X)(B[q]) ⊂H.
(B2) For each h0 ∈ B(X), there exists h ∈ FixB(X)(B[q]) such that the sequence

(hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent to h.
(C) Existence of unique solution and convergence property. If the dynamic system

(B(X),B) is P-closed on B(X), then:
(C1) There exists h ∈ B(X) such that H = FixB(X)(B) = {h}.
(C2) For each h0 ∈ B(X), the sequence (hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent

to h.

Theorem 12.4 Assume that I–VIII are satisfied. Suppose also that:
(a) There exists M ∈ 2B(X) such that (B(X),B) is P-admissible on M.
(b) S = {S} is an S-family.
(c) S-family S = {S}, M and (B(X),B) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ε>1∃η>1∃r∈N∀h0∈M∀s,l∈N
{S(supx,t∈X,y∈Y |G(x, y, (B[s]h0)(t))

– G(x, y, (B[l]h0)(t))|) < ε · η
⇒ S(supx,t∈X,y∈Y |G(x, y, (B[s+r]h0)(t))

– G(x, y, (B[l+r]h0)(t))|) < ε}.

(12.6)

Then the following hold:
(A) Convergence property. For each h0 ∈ M, there exists h ∈ B(X) such that a sequence

(hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent to h.
(B) Existence of solutions and convergence property. If there exists h0 ∈ M such that the

dynamic system (B(X),B) is P-closed in h0, then:
(B1) ∅ �= FixB(X)(B) ⊂H.
(B2) There exists h ∈ FixB(X)(B) such that the sequence (hm = B[m]h0 : m ∈ {0} ∪N)

is P-convergent to h.
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Remark 12.2 We record some observations concerning the implications of Theorems
12.1–12.4.

(i) If (B(X), P) is P-complete, then (B(X),B) is P-admissible on each M ∈ 2B(X) (see
also Sect. 6).

(ii) If there exist q ∈N and h0 ∈ B(X) such that the dynamic system (B(X),B[q]) is
P-continuous in h0, then (B(X),B[q]) is P-closed in h0.

(iii) Here X and Y are nonempty sets. In the literature, X and Y are Banach spaces or
complete metric spaces. We see that Theorems 12.1–12.4 are new even when X
and Y are these spaces.

Proof of Theorem 12.3 We first note that P is symmetric on B(X) and (B(X), P) is not nec-
essarily P-sequentially complete (see Sect. 6).

We prove that (12.5) implies

∀ε>1∃η>1∃r∈N∀h,k∈B(X)∀s,l∈N
{

S
[
P
(
B[s+1]h,B[l+1]k

)]
< ε · η

�⇒ S
[
P
(
B[s+r+1]h,B[l+r+1]k

)]
< ε

}
. (12.7)

To establish this, let x ∈ X and h, k ∈ B(X) be arbitrary and fixed. Then, for arbitrary μ > 0,
in view of (12.3), there exist y1, y2 ∈ Y such that

(
B[s+1]h

)
(x) < f (x, y1) + G(x, y1,

(
B[s]h

)(
ξ (x, y1)

)
+ μ, (12.8)

(
B[l+1]k

)
(x) < f (x, y2) + G(x, y2,

(
B[l]k

)(
ξ (x, y2)

)
+ μ. (12.9)

Observe also that (12.3) implies

(
B[l+1]k

)
(x) ≥ f (x, y1) + G(x, y1,

(
B[l]k

)(
ξ (x, y1)

)
, (12.10)

(
B[s+1]h

)
(x) ≥ f (x, y2) + G(x, y2,

(
B[s]h

)(
ξ (x, y2)

)
. (12.11)

Restating (12.8)–(12.11) as

(
B[s+1]h

)
(x) –

(
B[l+1]k

)
(x)

< G(x, y1,
(
B[s]h

)(
ξ (x, y1)

)
– G(x, y1,

(
B[l]k

)(
ξ (x, y1)

)
+ μ

≤ ∣
∣G(x, y1,

(
B[s]h

)(
ξ (x, y1)

)
– G(x, y1,

(
B[l]k

)(
ξ (x, y1)

)∣
∣ + μ

and

(
B[l+1]k

)
(x) –

(
B[s+1]h

)
(x)

< G(x, y2,
(
B[l]k

)(
ξ (x, y2)

)
– G(x, y2,

(
B[s]h

)(
ξ (x, y2)

)
+ μ

or

(
B[s+1]h

)
(x) –

(
B[l+1]k

)
(x)

> G(x, y2,
(
B[s]h

)(
ξ (x, y2)

)
– G(x, y2,

(
B[l]k

)(
ξ (x, y2)

)
– μ
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≥ –
∣
∣G(x, y2,

(
B[s]h

)(
ξ (x, y2)

)
– G(x, y2,

(
B[l]k

)(
ξ (x, y2)

)∣
∣ – μ,

we see that they imply

∣
∣
(
B[s+1]h

)
(x) –

(
B[l+1]k

)
(x)

∣
∣

< max
{∣
∣G(x, y1,

(
B[s]h

)(
ξ (x, y1)

)
– G(x, y1,

(
B[l]k

)(
ξ (x, y1)

)∣
∣,

∣
∣G(x, y2,

(
B[s]h

)(
ξ (x, y2)

)
– G(x, y2,

(
B[l]k

)(
ξ (x, y2)

)∣
∣
}

+ μ

≤ sup
y∈Y

∣
∣G(x, y,

(
B[s]h

)(
ξ (x, y)

)
– G(x, y,

(
B[l]k

)(
ξ (x, y)

)∣
∣ + μ.

Recalling that μ > 0 is arbitrary, we conclude |(B[s+1]h)(x) – (B[l+1]k)(x)| ≤ supy∈Y |G(x, y,
(B[s]h)(ξ (x, y)) – G(x, y, (B[l]k)(ξ (x, y))| and in view of (12.1) and (12.3) this implies

P
(
B[s+1]h,B[l+1]k

)

= sup
x∈X

∣
∣
(
B[s+1]h

)
(x) –

(
B[l+1]k

)
(x)

∣
∣

= sup
x∈X

∣
∣
(
B[s+1]h

)
(x) –

(
B[l+1]k

)
(x)

∣
∣

≤ sup
x∈X,y∈Y

∣
∣G

(
x, y,

(
B[s]h

)(
ξ (x, y)

))
– G

(
x, y,

(
B[l]k

)(
ξ (x, y)

))∣
∣

≤ sup
x,t∈X,y∈Y

∣
∣G

(
x, y,

(
B[s]h

)
(t)

)
– G

(
x, y,

(
B[l]k

)
(t)

)∣
∣. (12.12)

A similar computation shows that

P
(
B[s+r+1]h,B[l+r+1]k

)

= sup
x∈X

∣
∣
(
B[s+r+1]h

)
(x) –

(
B[l+r+1]k

)
(x)

∣
∣

≤ sup
x∈X,y∈Y

∣
∣G

(
x, y,

(
B[s+r]h

)(
ξ (x, y)

))
– G

(
x, y,

(
B[l+r]k

)(
ξ (x, y)

))∣
∣

≤ sup
x.t∈X,y∈Y

∣
∣G

(
x, y,

(
B[s+r]h

)
(t)

)
– G

(
x, y,

(
B[l+r]k

)
(t)

)∣
∣. (12.13)

Therefore, using (12.12), (12.13) and (12.5), we find (12.7).
Therefore, the contractive condition (12.7) holds and also it remains to see that P is sepa-

rating on B(X) (see Sects. 2 and 3). From this, using (12.7), the statements of Theorem 12.3
are now immediate consequences of Theorem 9.3 when J = P = P. �

Proof of Theorem 12.4 We deduce from (12.6) that

∀ε>1∃η>1∃r∈N∀h0∈M∀s,l∈N
{

S
[
P
(
B[s+1]h0,B[l+1]h0)]

< ε · η �⇒ S
[
P
(
B[s+r+1]h0,B[l+r+1]h0)] < ε

}
. (12.14)

Next, using (12.14) and a similar argument as in the proofs of Theorems 9.4 and 12.3, we
have the assertions. �
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13 Discount maps δ and convergence, existence and uniqueness results for
variable δ-discounted equations of Bellman type

Here let us make the following assumptions and notation:
I. Assume that a discount map δ : R →R is such that δ(D) is a bounded set for each

bounded set D ⊂R and that there exists a continuous map γ : [0;∞) → [0;∞) satisfying

∀t1,t2∈[0;∞)
{

t1 < t2 �⇒ γ (t1) ≤ γ (t2)
}

, (13.1)

∀t∈[0;∞)

{
lim

n→∞γ [n](t) = 0
}

(13.2)

and, for each bounded set D ⊂R,

∀τ1,τ2∈D
{∣
∣δ(τ2) – δ(τ1)

∣
∣ ≤ γ

(|τ2 – τ1|
)}

. (13.3)

II. X and A are nonempty sets.
III. B(X) is the set of all bounded real-valued maps on X, (B(X),‖ · ‖) is a normed space

with norm ‖h‖ = sup{|h(x)| : x ∈ X}, h ∈ B(X), and (B(X), P) is a metric space with metric
P : B(X) × B(X) → [0;∞) defined by

P(h, k) = ‖h – k‖, h, k ∈ B(X). (13.4)

IV. Assume now that Ψ : X → 2A, f : X × A → X and that the map u : X × A → R is
bounded. The variable δ-discounted equation of Bellman type studied in this section is of
the form

h(x) = sup
a∈Ψ (x)

{
u(x, a) + δ

(
h
(
f (x, a)

))}
, x ∈ X, (13.5)

where h ∈ B(X) is an unknown map to be determined.
V. The operator B of Bellman type is of the form

(Bh)(x) = sup
a∈Ψ (x)

{
u(x, a) + δ

(
h
(
f (x, a)

))}
, x ∈ X, h ∈ B(X). (13.6)

Here the dynamic system (B(X),B) is defined as follows: For h ∈ B(X) we define Bh = k,
where k(x) = supa∈Ψ (x){u(x, a) + δ(h(f (x, a)))}, x ∈ X. Clearly k is bounded, since u and δ are
bounded and so k ∈ B(X). Therefore, B : B(X) → B(X).

VI. The operators B[m+1] : B(X) → B(X), m ∈ {0} ∪N, are defined by

(
B[m+1]h

)
(x) = sup

a∈Ψ (x)

{
u(x, a) + δ

[(
B[m]h

)(
f (x, a)

)]}
(13.7)

for all h ∈ B(X) and x ∈ X.
VII. Recalling that u and δ are bounded, we conclude that, for each h0 ∈ B(X), the se-

quence of iterations (hm = B[m]h0 : m ∈ {0}∪N) ⊂B(X) starting at h0 ∈ B(X) is well defined.
Here B[0] = IB(X)—the identity on B(X).
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VIII. Any fixed point of (B(X),B) is a solution of Eq. (13.5). Moreover, any periodic point
of (B(X),B), i.e., any point of the set

PerB(X)(B) =
{

h ∈ B(X) : h = B[q]h for some q ∈N
}

,

is a solution of (13.5).
IX. Put

Hδ =
{

h ∈ B(X) : h(x) = sup
a∈Ψ (x)

{
u(x, a) + δ

(
h
(
f (x, a)

))}
, x ∈ X

}
;

the set of all solutions h ∈ B(X) of Eq. (13.5).
We turn to some examples of maps δ and γ satisfying (13.1)–(13.3).

Example 13.1 We note that if δ : R→ R is defined by

δ(τ ) = |τ |/[a + b|τ |], τ ∈R,

where a ∈ [1;∞) and b ∈ (0;∞), then δ(D) is a bounded set for each bounded set D ⊂ R.
Moreover, for each τ1, τ2 ∈R, we have

∣
∣δ(τ2) – δ(τ1)

∣
∣ =

a||τ2| – |τ1||
a2 + ab(|τ2| + |τ1|) + b2|τ2τ1|

≤ a|τ2 – τ1|
a2 + ab(|τ2| + |τ1|) =

|τ2 – τ1|
a + b(|τ2| + |τ1|) ≤ |τ2 – τ1|

a + b|τ2 – τ1| .

Now we note that if γ (t) = t/[a + bt], t ∈ [0;∞), then γ is strictly increasing since
∀t∈[0;∞){γ ′(t) = a/(a + bt)2 > 0}, ∀τ1,τ2∈R{|δ(τ2) – δ(τ1)| ≤ γ (|τ2 – τ1|)} and
∀t∈[0;∞){limn→∞ γ [n](t) = limn→∞ t/[an + b(an–1 + an–2 + · · · + a + 1)t] = 0}.

Example 13.2 Let δ : R →R be defined by

δ(τ ) =
|τ | + b ln(1 + |τ |)

a + |τ | + b ln(1 + |τ |) , τ ∈R,

where b ∈ (0;∞) and 1 + b < a. We see that δ(D) is a bounded set for each bounded set
D ⊂R and, for each τ1, τ2 ∈ R, we have

∣
∣δ(τ2) – δ(τ1)

∣
∣ =

|a(|τ2| – |τ1|) + ab ln 1+|τ2|
1+|τ1| |

[a + |τ2| + b ln(1 + |τ2|)][a + |τ1| + b ln(1 + |τ1|)]

≤ a||τ2| – |τ1|| + ab ln(1 + |τ2|–|τ1|
1+|τ1| )

a2 + a(|τ2| + |τ1|) + ab ln[(1 + |τ2|)(1 + |τ1|)]
≤ ||τ2| – |τ1|| + b ln(1 + ||τ2| – |τ1||)

a + (|τ2| + |τ1|) + b ln(1 + |τ2| + |τ1|)
≤ |τ2 – τ1| + b ln(1 + |τ2 – τ1|)

a + |τ2 – τ1| + b ln(1 + |τ2 – τ1|) .

We claim that if γ is defined by

γ (t) =
t + b ln(1 + t)

a + t + b ln(1 + t)
, t ∈ [0;∞),
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then ∀τ1,τ2∈R{|δ(τ2) – δ(τ1)| ≤ γ (|τ2 – τ1|)} and γ is strictly increasing since

∀t∈[0;∞)

{

γ ′(t) =
(

1 +
b

1 + t

)
a

[a + t + b ln(1 + t)]2 > 0
}

.

Furthermore, ∀t∈[0;∞){limn→∞ γ [n](t) = 0} is evident. Here we rely on the fact that γ (t) ≤
(1 + b)t/a for t ∈ [0;∞), and, consequently, ∀n∈N∀t∈[0;∞){0 ≤ γ [n](t) ≤ [(1 + b)/a]nt}.

We begin with the following auxiliary result concerning crucial properties of operators
(13.7).

Theorem 13.1 Assume that I–IX are satisfied. Then (B(X),B) and each S-family S = {S}
satisfy

⎧
⎨

⎩

∀ε>1∃η>1∃r∈N∀h,k∈B(X)∀s,l∈N{S[P(B[s+1]h,B[l+1]k)] < ε · η
�⇒ S[P(B[s+r+1]h,B[l+r+1]k)] < ε}.

(13.8)

In particular,

⎧
⎨

⎩

∀ε>1∃η>1∃r∈N∀M∈2B(X)∀h0∈M∀s,l∈N{S[P(B[s+1]h0,B[l+1]h0)]

< ε · η �⇒ S[P(B[s+r+1]h0,B[l+r+1]h0)] < ε}.
(13.9)

Proof First we prove that

∀s,l,r∈N∀h,k∈B(X)
{

P
(
B[s+r+1]h,B[l+r+1]k

)

≤ γ [r][P
(
B[s]h,B[l]k

)]}
. (13.10)

To establish this, let x ∈ X, h, k ∈ B(X) and s, l, r ∈ N be arbitrary and fixed. Then, for
arbitrary μ > 0, in view of (13.7), there exist a1, a2 ∈ Ψ (x) such that

(
B[s+1]h

)
(x) < u(x, a1) + δ

[(
B[s]h

)
(
(
f (x, a1)

)]
+ μ, (13.11)

(
B[l+1]k

)
(x) < u(x, a2) + δ

[(
B[l]k

)
(
(
f (x, a2)

)]
+ μ. (13.12)

Observe also that (13.5) implies

(
B[l+1]k

)
(x) ≥ u(x, a1) + δ

[(
B[l]k

)
(
(
f (x, a1)

)]
, (13.13)

(
B[s+1]h

)
(x) ≥ u(x, a2) + δ

[(
B[s]h

)
(
(
f (x, a2)

)]
. (13.14)

Restating (13.11) and (13.13) as

(
B[s+1]h

)
(x) –

(
B[l+1]k

)
(x)

< δ
[(
B[s]h

)
(
(
f (x, a1)

)]
– δ

[(
B[l]k

)
(
(
f (x, a1)

)]
+ μ

≤ ∣
∣δ

[(
B[s]h

)
(
(
f (x, a1)

)]
– δ

[(
B[l]k

)
(
(
f (x, a1)

)]∣
∣ + μ
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and (13.12) and (13.14) as

(
B[l+1]k

)
(x) –

(
B[s+1]h

)
(x)

< δ
[(
B[l]k

)
(
(
f (x, a2)

)]
– δ

[(
B[s]h

)
(
(
f (x, a2)

)]
+ μ

or

(
B[s+1]h

)
(x) –

(
B[l+1]k

)
(x)

> δ
[(
B[s]h

)
(
(
f (x, a2)

)]
– δ

[(
B[l]k

)
(
(
f (x, a2)

)]
– μ

≥ –
∣
∣δ

[(
B[s]h

)
(
(
f (x, a2)

)]
– δ

[(
B[l]k

)
(
(
f (x, a2)

)]∣
∣ – μ,

we see that they imply

∣
∣
(
B[s+1]h

)
(x) –

(
B[l+1]k

)
(x)

∣
∣

< max
{∣
∣δ

[(
B[s]h

)
(
(
f (x, a1)

)]
– δ

[(
B[l]k

)
(
(
f (x, a1)

)]∣
∣,

∣
∣δ

[(
B[s]h

)
(
(
f (x, a2)

)]
– δ

[(
B[l]k

)
(
(
f (x, a2)

)]∣
∣
}

+ μ

≤ sup
a∈Ψ (x)

∣
∣δ

[(
B[s]h

)
(
(
f (x, a)

)]
– δ

[(
B[l]k

)
(
(
f (x, a)

)]∣
∣ + μ.

Recalling that μ > 0 is arbitrary and Ψ : X → 2A and g : X × A → X, we conclude
|(B[s+1]h)(x) – (B[l+1]k)(x)| ≤ supt∈X |δ[(B[s]h)(t)] – δ[(B[l]k)(t)]| ≤ supt∈X γ (|(B[s]h)(t) –
(B[l]k)(t)|) ≤ supt∈X γ (|(B[s]h)(t) – (B[l]k)(t)|) ≤ γ (supt∈X |(B[s]h)(t) – (B[l]k)(t)|) =
γ [p(B[s]h,B[l]k)] and this implies P(B[s+1]h,B[l+1]k) = supx∈X |(B[s+1]h)(x) – (B[l+1]k)(x)| ≤
γ [P(B[s]h,B[l]k)]. A similar computation shows that P(B[s+r+1]h,B[l+r+1]k) =
supx∈X |(B[s+r+1]h)(x) – (B[l+r+1]k)(x)| ≤ γ [P(B[s+r]h,B[l+r]k)] ≤ γ [r][P(B[s]h,B[l]k)]. There-
fore, (13.10) holds.

Now we prove that if S-family S = {S} is arbitrary and fixed, then S = {S} and operators
B[m+1] : B(X) → B(X), m ∈ {0} ∪N, defined by (13.7) satisfy

∀ε>1∃η>1∃r∈N∀h,k∈B(X)∀s,l∈N
{

S
[
P
(
B[s+1]h,B[l+1]k

)]

< ε · η �⇒ S
[
P
(
B[s+r+1]h,B[l+r+1]k

)]
< ε

}
. (13.15)

Indeed, observe that P(B[s]h,B[l]k) is bounded for each s, l ∈ N and h, k ∈ B(X). Thus, it is
clear that

lim
r→∞γ [r](P

[
B[s]h,B[l]k

])
= 0 (13.16)

and consequence of (13.10) and (13.16) is

lim
r→∞ P

[
B[s+r+1]h,B[l+r+1]k

]
= 0. (13.17)

Next we deduce from (13.17) that

∀ε>0∃η>0∃r∈N∀h,k∈B(X)∀s,l∈N
{

P
[
B[s+1]h,B[l+1]k

]

< ε + η �⇒ P
[
B[s+r+1]h,B[l+r+1]k

]
< ε

}
. (13.18)
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Finally, using S-family S = {S} and property (13.17), the contractive condition (13.9) may
then be constructed by modification of condition (13.18). �

In the sequel, we need the following definitions.

Definition 13.1 Let (B(X), P) be a metric space with metric P defined by (13.4).
(A) Let h0 ∈ B(X). (B(X),B) is said to be a P-admissible in h0 if, in the case when the

sequence (B[m]h0 : m ∈ {0} ∪N) is P-sequence in B(X) (i.e. satisfies the condition
limm→∞ supn>m P(B[m]h0,B[n]h0) = 0), then the sequence (B[m]h0 : m ∈ {0} ∪N) is
P-convergent in B(X) (i.e. has the property ∃k∈B(X){limm→∞ P(B[m]h0, k) = 0}).

(B) Let M ∈ 2B(X). (B(X),B) is said to be a P-admissible on M if (B(X),B) is
P-admissible in each h0 ∈ M.

Definition 13.2 Let (B(X), P) be a metric space with metric p defined by (13.4) and let
q ∈N.

(A) Let h0 ∈ B(X). (B(X),B[q]) is said to be a P-closed in h0 if, in the case when the
sequence (B[m]h0 : m ∈ {0} ∪N) is P-converging in B(X) and contains two
P-convergent in B(X) subsequences (um : m ∈N) and (vm : m ∈N) satisfying
∀m∈N{um = B[q]vm}, then there exists h ∈ B(X) such that h = B[q]h.

(B) Let M ∈ 2B(X). (B(X),B[q]) is said to be a P-closed on M if (B(X),B[q]) is P-closed in
each h0 ∈ M.

Now, we prove the following two results.

Theorem 13.2 Assume that I–IX are satisfied and suppose that the dynamic system
(B(X),B) is P-admissible on B(X). Then the following hold:

(A) Convergence property. For each h0 ∈ B(X), there exists h ∈ B(X) such that a
sequence (hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent to h.

(B) Existence of solutions and convergence property. If there exists q ∈N such that the
dynamic system (B(X),B[q]) is P-closed on B(X), then:
(B1) ∅ �= FixB(X)(B[q]) ⊂Hδ .
(B2) For each h0 ∈ B(X), there exists h ∈ FixB(X)(B[q]) such that the sequence

(hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent to h.
(C) Existence of unique solution and convergence property. If the dynamic system

(B(X),B) is P-closed on B(X), then:
(C1) There exists h ∈ B(X) such that Hδ = FixB(X)(B) = {h}.
(C2) For each h0 ∈ B(X), the sequence (hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent

to h.

Theorem 13.3 Assume that I–IX are satisfied and suppose that there exists M ∈ 2B(X) such
that the dynamic system (B(X),B) is P-admissible on M.

Then the following hold:
(A) Convergence property. For each h0 ∈ M, there exists h ∈ B(X) such that a sequence

(hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent to h.
(B) Existence of solutions and convergence property. If there exist q ∈N and h0 ∈ M

such that the dynamic system (B(X),B[q]) is P-closed in h0, then:
(B1) ∅ �= FixB(X)(B[q]) ⊂Hδ .
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(B2) There exists h ∈ FixB(X)(B[q]) such that the sequence
(hm = B[m]h0 : m ∈ {0} ∪N) is P-convergent to h.

Proof of Theorem 13.2 Therefore, (B(X), P) is a metric space, single-valued dynamic sys-
tem (B(X),B) is J = P = P-admissible on B(X), contractive condition (13.8) holds (see
Theorem 13.1), and P = P is separating on B(X) (since P is metric). Consequently, the
statements of Theorem 13.2 are now immediate consequences of Theorem 9.3. �

Proof of Theorems 13.3 The statements of Theorem 13.3 are consequences of contractive
condition (13.9) of Theorem 13.1 and Theorem 9.4. �

Remark 13.1 Let us observe here that X and A are nonempty sets. In the literature, dis-
count maps δ and variable δ-discounted Bellman equations are studied in the case when
X is a complete metric space, A is a metric space, B(X) is the set of all continuous bounded
real-valued maps on X, (B(X), P) is a complete metric space, u and f are continuous, Ψ (x)
is a compact set for each x ∈ X, and the dynamic system (B(X),B), B : B(X) → B(X), is a
continuous generalized Matkowski contraction (see, e.g., [14, 26, 34]).

14 Convergence, existence and uniqueness results for integral equations of
Volterra type in locally convex spaces

First, we record two definitions needed in the sequel.

Definition 14.1 Let E be a vector space over R, and let A be an index set.
(A) The map P : E → [0;∞) is called a seminorm on E if:

(i) ∀u∈E∀λ∈R{P(λu) = |λ| · P(u)} (homogeneity). So, in particular, P(0) = 0.
(ii) ∀u,v∈E{P(u + v) ≤ P(u) + P(v)} (triangle inequality).

(B) A topological vector space (E,T ), such that there is a family PA = {Pα : α ∈A} of
continuous seminorms Pα : E → [0;∞), α ∈A, on E and T is a locally convex
topology on E generated by the family PA, is called a locally convex space and is
denoted by (E,PA).

(C) The family PA = {Pα : α ∈A} of seminorms Pα : E → [0;∞), α ∈A, on E is called
separating if ∀u∈E{u �= 0 ⇒ ∃α0∈A{Pα0 (u) > 0}}.

(D) If the family PA = {Pα : α ∈A} is separating on E, then T is a Hausdorff locally
convex topology on E and (E,PA) is called a Hausdorff locally convex space.

Definition 14.2 (see [17]) Let X be a (nonempty) set, and let A be an index set.
(A) The distance D : X2 → [0;∞) is called a pseudometric (or the gauge) on X if:

(i) ∀u∈X{D(u, u) = 0}. It is not required that D(u, v) = 0 implies u = v.
(ii) ∀u,v∈X{D(u, v) = D(v, u)} (symmetry).

(iii) ∀u,v,w∈X{D(u, v) ≤ D(u, w) + D(w, v)} (triangle inequality).
(B) Each family DA = {Dα : α ∈A} of pseudometrics Dα : X2 → [0;∞), α ∈A, on X is

called a gauge on X .
(C) The gauge DA = {Dα : α ∈A} on X is called separating if

∀u,w∈E{u �= w ⇒ ∃α0∈A{Dα0 (u, w) > 0}}.
(D) Let the family DA = {Dα : α ∈A} be gauge on X . The topology T (DA) having as a

subbase the family B(DA) = {B(u, Dα , εα) : u ∈ X, εα > 0,α ∈A} of all balls
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B(u, Dα , εα) = {v ∈ X : Dα(u, v) < εα} with u ∈ X , εα > 0, and α ∈A is called topology
induced by DA on X .

(E) A topological space (X,T ) such that there is a gauge DA on X with T = T (DA) is
called a gauge space and is denoted by (X,DA).

(F) If the family DA = {Dα : α ∈A} is separating on X , then the topology T (DA) is
Hausdorff and (X,DA) is called a Hausdorff gauge space.

Before proceeding, let us make the following assumptions and notations:
I. (E,PA) is a Hausdorff sequentially complete locally convex space.
II. The integral equation of Volterra type studied in this section is given in the form

y(t) = f (t) +
∫

I(t)
K

(
t, τ , y

(
h(τ )

))
dτ , t ∈ I, (14.1)

where I = [0; 1]n and I(t) = {τ = (τ1, . . . , τn) ∈R
n : 0 ≤ τi ≤ ti, i = 1, . . . , n} for t = (t1, . . . , tn) ∈

I . Here: f : I → E is continuous (that is, f ∈ C(I, E)), h : I → I is continuous (that is, h ∈
C(I, I)) and K : I × I × E → E is continuous and bounded (that is, K ∈ CB(I × I × E, E));
the maps f , h and K are given maps; y ∈ C(I, E) is an unknown map to be determined; and,
for each t ∈ I ,

∫
I(t) K(t, τ , y(h(τ ))) dτ denote the Riemann integral on I(t). For a Riemann

integral in locally convex space, see e.g. [20, Appendix 1].
III. The operator V of Volterra type is defined by

(Vy)(t) = f (t) +
∫

I(t)
K(t, τ , y

(
h(τ )

)
dτ , (14.2)

t ∈ I , y ∈ C(I, E). Here we define the dynamic system (C(I, E),V) as follows: For y ∈ C(I, E)
we define Vy = x, where x(t) = f (t) +

∫
I(t) K(t, τ , y(h(τ )) dτ , t ∈ I . Clearly x ∈ C(I, E). There-

fore, V : C(I, E) → C(I, E).
IV. The operators V [m+1] : C(I, E) → C(I, E), m ∈ {0} ∪N, are defined by

(
V [m+1]y

)
(t) = f (t) +

∫

I(t)
K

(
t, τ ,

(
V [m]y

)(
h(τ )

))
dτ , (14.3)

t ∈ I , y ∈ C(I, E).
V. For each y0 ∈ C(I, E) and for (V [m+1] : m ∈ {0} ∪N) defined by (14.3), the sequence of

iterations

(
ym = V [m]y0 : m ∈ {0} ∪N

) ⊂C(I, E)

starting at y0 ∈ C(I, E) is well defined. Here V [0] = IC(I,E)—the identity on C(I, E).
VI. Any fixed point of dynamic system (C(I, E),V) is a solution of Eq. (14.1). Moreover,

any periodic point of (C(I, E),V), i.e., any point of the set

PerC(I,E)(V) =
{

h ∈ C(I, E) : y = V [q]y for some q ∈N
}

,

is a solution of (14.1).
VII. Put

Y =
{

y ∈ C(I, E) : y(t) = f (t) +
∫

I(t)
K

(
t, τ , y

(
h(τ )

))
dτ , t ∈ I

}

;
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the set of all solutions y ∈ C(I, E) of Eq. (14.1).
VIII. (C(I, E),DA) is a gauge space with gauge DA = {Dα : α ∈A} defined by

∀α∈A∀x,y∈C(I,E)

{
Dα(x, y) = max

t∈I
Pα

[
x(t) – y(t)

]}
. (14.4)

We need the following two definitions.

Definition 14.3 Let (E,PA) be a Hausdorff locally convex space and let (C(I, E),DA) be a
gauge space with gauge DA = {Dα : α ∈A} defined by (14.4).

(A) Let JA ∈ J
L
(C(I,E),DA); thus, in particular, let JA = DA. We say that the single-valued

dynamic system (C(I, E),V) is left JA-admissible in y0 ∈ C(I, E) if, in the case when
the sequence (V [m]y0 : m ∈ {0} ∪N) is left JA-sequence in C(I, E) (i.e.,
∀α∈A{limm→∞ supn>m Jα(V [m]y0,V [n]y0) = 0}), then the sequence
(V [m]y0 : m ∈ {0} ∪N) is left JA-convergent in C(I, E) (i.e., there exists u ∈ C(I, E)
such that ∀α∈A{limm→∞ Jα(u,V [m]y0) = 0}).

(B) Let JA ∈ J
R
(C(I,E),DA); thus, in particular, let JA = DA. We say that the single-valued

dynamic system (C(I, E),V) is right JA-admissible in y0 ∈ C(I, E) if, in the case
when the sequence (V [m]y0 : m ∈ {0} ∪N) is right JA-sequence in C(I, E) (i.e.,
∀α∈A{limm→∞ supn>m Jα(V [n]y0,V [m]y0, ) = 0}), then the sequence
(V [m]y0 : m ∈ {0} ∪N) is right JA-convergent in C(I, E) (i.e., there exists v ∈ C(I, E)
such that ∀α∈A{limm→∞ Jα(V [m]y0, v) = 0}).

(C) Let M ∈ 2C(I,E). (C(I, E),V) is said to be a left (respectively, right) JA-admissible on
M if JA ∈ J

L
(C(I,E),DA) (respectively, JA ∈ J

R
(C(I,E),DA)) and (C(I, E),V) is a left

(respectively, right) JA-admissible in each y0 ∈ M.

Definition 14.4 Let (E,PA) be a locally convex space and let (C(I, E),DA) be a gauge space
with gauge DA = {Dα : α ∈A} defined by (14.4) and let q ∈ N.

(A) Let y0 ∈ C(I, E). Let JA ∈ J
L
(C(I,E),DA); thus, in particular, let JA = DA.We say that

the single-valued dynamic system (C(I, E),V [q]) is left JA-closed in y0 if, in the case
when the sequence (V [m]y0 : m ∈ {0} ∪N) is left JA-convergent in C(I, E), i.e.
U = LIML–JA

(V [m]y0:{0}∪N) �= ∅, and contains two left JA-converging in C(I, E)
subsequences (km : m ∈N) and (wm : m ∈ N) satisfying ∀m∈N{km = V [q]wm}, then
there exists u ∈ U such that u = V [q]u.

(B) Let y0 ∈ C(I, E). Let JA ∈ J
R
(C(I,E),DA); thus, in particular, let JA = DA.We say that

the single-valued dynamic system (C(I, E),V [q]) is right JA-closed in y0 if, in the
case when the sequence (V [m]y0 : m ∈ {0} ∪N) is right JA-convergent in C(I, E), i.e.
V = LIMR–JA

(V [m]y0:{0}∪N) �= ∅, and contains two right JA-converging in C(I, E)
subsequences (km : m ∈N) and (wm : m ∈ N) satisfying ∀m∈N{km = V [q]wm}, then
there exists v ∈ V such that v = V [q]v.

(C) Let M ∈ 2C(I,E). We say that (C(I, E),V [q]) is left (respectively, right) JA-closed on M
if JA ∈ J

L
(C(I,E),DA) (respectively, JA ∈ J

R
(C(I,E),DA)) and (C(I, E),V [q]) is a left

(respectively, right) JA-closed in each y0 ∈ M.

Remark 14.1 The following hold: (a) DA ∈ J
L
(C(I,E),DA) ∩ J

R
(C(I,E),DA). (b) Jα , Dα , and Pα ,

α ∈A, are triangular distances. (c) (E,PA) and (C(I, E),DA) are triangular spaces.
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The fundamental papers of Volterra concerning integral equations were initiated by Ref.
[50]. These papers and papers of many researchers in this field provide new perspectives
on the investigations and new ideas and techniques together with the different areas in
which the topic of solutions of integral equations has had its influence. In particular, the
theory of Volterra integral equations in abstract settings (e.g., in Banach spaces, Fréchet
spaces, and locally convex spaces) has received increasing attention.

In this section we will concentrate on convergence, existence and uniqueness problems
concerning solutions of Eq. (14.1) of Volterra type. More precisely, we have the analogues
of Theorems 9.3 and 9.4. They take the following forms.

Theorem 14.1 Let (E,PA) be a Hausdorff sequentially complete locally convex space with
the topology defined by the family PA = {Pα : α ∈ A} of continuous seminorms on E. Let
(C(I, E),DA) be a gauge space with the gauge DA = {Dα : α ∈A} defined by (14.4). Suppose
also that:

(a) JA ∈ J
L
(C(I,E),DA) (respectively, JA ∈ J

R
(C(I,E),DA)).

(b) (C(I, E),V) is left (respectively, right) JA-admissible on C(I, E).
(c) SA = {Sα : α ∈A} is an SA-family.
(d) The SA-family SA = {Sα : α ∈A}, (C(I, E),V) and JA = {Jα : α ∈A} ∈ J

L
(C(I,E),DA)

(respectively, JA = {Jα : α ∈A} ∈ J
R
(C(I,E),DA)) satisfy

⎧
⎨

⎩

∀α∈A∀ε>1∃η>1∃r∈N∀x,y∈C(I,E)∀s,l∈N{Sα(Jα(V [s]x,V [l]y))

< ε · η ⇒ Sα(Jα(V [s+r]x,V [l+r]y)) < ε}.

Then the following hold:
(A) Convergence property. For each y0 ∈ C(I, E), we have

∅ �= LIML–JA
(V [m]y0:m∈{0}∪N) ⊂ LIML–DA

(V [m]y0:m∈{0}∪N)

where JA ∈ J
L
(C(I,E),DA) (respectively,

∅ �= LIMR–JA
(V [m]y0:m∈{0}∪N) ⊂ LIMR–DA

(V [m]y0:m∈{0}∪N)

where JA ∈ J
R
(C(I,E),DA)).

(B) Existence of solutions and convergence property. If there exists q ∈N such that
(C(I, E),V [q]) is left (respectively, right) JA-closed on C(I, E), then

∅ �= FixC(I,E)
(
V [q]) ⊂ Y .

Moreover, for each y0 ∈ C(I, E), there exists u ∈ FixC(I,E)(V [q]) (respectively,
v ∈ FixC(I,E)(V [q])) such that

u ∈ LIML–JA
(V [m]y0:m∈{0}∪N) ⊂ LIML–DA

(V [m]y0:m∈{0}∪N)

and

∀α∈A∀n∈{1,2,...,q}
{

Jα
(
u,V [n]u

)
= Jα

(
V [n]u, u

)
= 0

}
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where JA ∈ J
L
(C(I,E),DA) (respectively,

v ∈ LIMR–JA
(V [m]y0:m∈{0}∪N) ⊂ LIMR–DA

(V [m]y0:m∈{0}∪N)

and

∀α∈A∀n∈{1,2,...,q}
{

Jα
(
v,V [n]v

)
= Jα

(
V [n]v, v

)
= 0

}

where JA ∈ J
R
(C(I,E),DA)).

(C) Existence of unique solution and convergence property. If (C(I, E),V) is DA-closed
on C(I, E), then there exists y ∈ C(I, E) such that

Y = FixC(I,E)(V) = {y}.

Moreover, for each y0 ∈ C(I, E),

y ∈ LIML–JA
(V [m]y0:m∈{0}∪N) ⊂ LIML–DA

(V [m]y0:m∈{0}∪N)

and ∀α∈A{Jα(y, y) = 0} where JA ∈ J
L
(C(I,E),DA) (respectively,

y ∈ LIMR–JA
(V [m]y0:m∈{0}∪N) ⊂ LIMR–DA

(V [m]y0:m∈{0}∪N)

and ∀α∈A{Jα(y, y) = 0} where JA ∈ J
R
(C(I,E),DA)).

Theorem 14.2 Let (E,PA) be a Hausdorff sequentially complete locally convex space with
the topology defined by the family PA = {Pα : α ∈ A} of continuous seminorms on E. Let
(C(I, E),DA) be a gauge space with the gauge DA = {Dα : α ∈A} defined by (14.4). Suppose
also that:

(a) JA ∈ J
L
(C(I,E),DA) (respectively, JA ∈ J

R
(C(I,E),DA)).

(b) There exists M ∈ 2C(I,E) such that (C(I, E),V) is left (respectively, right)
JA-admissible on M.

(c) SA = {Sα : α ∈A} is an SA-family.
(d) The SA-family SA = {Sα : α ∈A}, (C(I, E),V), M and JA = {Jα : α ∈A} ∈ J

L
(C(I,E),DA)

(respectively, JA = {Jα : α ∈A} ∈ J
R
(C(I,E),DA)) satisfy

⎧
⎨

⎩

∀α∈A∀ε>1∃η>1∃r∈N∀y0∈M∀s,l∈N{Sα(Jα(V [s]y0,V [l]y0))

< ε · η ⇒ Sα(Jα(V [s+r]y0,V [l+r]y0)) < ε}.

Then the following hold:
(A) Convergence of property. For each point y0 ∈ M, we have

∅ �= LIML–JA
(V [m]y0:m∈{0}∪N) ⊂ LIML–DA

(V [m]y0:m∈{0}∪N)

where JA ∈ J
L
(C(I,E),DA) (respectively,

∅ �= LIMR–JA
(V [m]y0:m∈{0}∪N) ⊂ LIMR–DA

(V [m]y0:m∈{0}∪N)
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where JA ∈ J
R
(C(I,E),DA)).

(B) Existence of solutions and convergence property. If there exist q ∈N and y0 ∈ M
such that the single-valued dynamic system (C(I, E),V [q]) is left (respectively, right)
JA-closed in y0, then

∅ �= FixC(I,E)
(
V [q]) ⊂ Y .

Moreover, there exists u ∈ Y (respectively, v ∈ Y) such that

u ∈ LIML–JA
(V [m]y0:m∈{0}∪N) ⊂ LIML–DA

(V [m]y0:m∈{0}∪N)

and

∀α∈A∀n∈{1,2,...,q}
{

Jα
(
u,V [n](u)

)
= Jα

(
V [n](u), u

)
= 0

}

where JA ∈ J
L
(C(I,E),DA) (respectively,

v ∈ LIMR–JA
(V [m]y0:m∈{0}∪N) ⊂ LIMR–DA

(V [m]y0:m∈{0}∪N)

and

∀α∈A∀n∈{1,2,...,q}
{

Jα
(
v,V [n](v)

)
= Jα

(
V [n](v), v

)
= 0

}

where JA ∈ J
R
(C(I,E),DA)).

Now, we formulate and prove the following special cases of Theorems 14.1 and 14.2.

Theorem 14.3 Let (E,PA) be a Hausdorff sequentially complete locally convex space with
the topology defined by the family PA = {Pα : α ∈ A} of continuous seminorms on E. Let
(C(I, E),DA) be a gauge space with the gauge DA = {Dα : α ∈A} defined by (14.4). Suppose
also that:

(a) SA = {Sα : α ∈A} is an SA-family.
(b) The SA-family SA = {Sα : α ∈A} and (C(I, E),V) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀α∈A∀ε>1∃η>1∃r∈N∀x,y∈C(I,E)∀s,l∈N
{Sα(supt,τ ,μ∈I Pα[K(t, τ , (V [s]x)(μ))

– K(t, τ , (V [l]y)(μ))]) < ε · η
⇒ Sα(supt,τ ,μ∈I Pα[K(t, τ , (V [s+r]x)(μ))

– K(t, τ , (V [l+r]y)(μ))]) < ε}.

(14.5)

Then the following hold:
(A) Convergence property. For each y0 ∈ C(I, E), there exists y ∈ C(I, E) such that a

sequence (ym = V [m]y0 : m ∈ {0} ∪N) is DA-convergent to y.
(B) Existence of solutions and convergence property. If there exists q ∈N such that

(C(I, E),V [q]) is DA-closed on C(I, E), then:
(B1) ∅ �= FixC(I,E)(V [q]) ⊂ Y .
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(B2) For each y0 ∈ C(I, E), there exists y ∈ FixC(I,E)(V [q]) such that sequence
(ym = V [m]y0 : m ∈ {0} ∪N) is DA-convergent to y.

(C) Existence of unique solution and convergence property. If (C(I, E),V) is DA-closed
on C(I, E), then:
(C1) There exists y ∈ C(I, E) such that Y = FixC(I,E)(V) = {y}.
(C2) For each y0 ∈ C(I, E), the sequence (ym = V [m]y0 : m ∈ {0} ∪N) is

DA-convergent to y.

Theorem 14.4 Let (E,PA) be a Hausdorff sequentially complete locally convex space with
the topology defined by the family PA = {Pα : α ∈ A} of continuous seminorms on E. Let
(C(I, E),DA) be a gauge space with the gauge DA = {Dα : α ∈A} defined by (14.4). Suppose
also that:

(a) SA = {Sα : α ∈A} is an SA-family.
(b) The SA-family SA = {Sα : α ∈A}, M ∈ 2C(I,E) and (C(I, E),V) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀α∈A∀ε>1∃η>1∃r∈N∀y0∈M∀s,l∈N
{Sα(supt,τ ,μ∈I Pα[K(t, τ , (V [s]y0)(μ))

– K(t, τ , (V [l]y0)(μ))]) < ε · η
⇒ Sα(supt,τ ,μ∈I Pα[K(t, τ , (V [s+r]y0)(μ))

– K(t, τ , (V [l+r]y0)(μ))]) < ε}.

(14.6)

Then the following hold:
(A) Convergence property. For each y0 ∈ M, there exists y ∈ C(I, E) such that a sequence

(ym = V [m]y0 : m ∈ {0} ∪N) is DA-convergent to y.
(B) Existence of solutions and convergence property. If there exist q ∈N and y0 ∈ M

such that the dynamic system (C(I, E),V [q]) is DA-closed in y0, then:
(B1) ∅ �= FixC(I,E)(V [q]) ⊂ Y .
(B2) There exists y ∈ FixC(I,E)(V [q]) such that a sequence (ym = V [m]y0 : m ∈ {0} ∪N)

is DA-convergent to y and

∀α∈A∀n∈{1,2,...,q}
{

Dα

(
y,V [n](y)

)
= 0

}
.

Proof of Theorem 14.3 We first note that (C(I, E),PA), PA = DA, C = {Cα}α∈A, ∀α∈A{Cα =
1}, is a triangular space and that assumptions of Theorem 14.3 can be rerun with the fol-
lowing modifications: DA is symmetric on C(I, E), DA = {Dα : α ∈ A} is separating on
C(I, E) since PA = {Pα : α ∈ A} is separating on C(I, E), the space (C(I, E),DA) is DA-
sequentially complete since the space (E,PA) is PA-sequentially complete, and a single-
valued dynamic system (C(I, E),V) defined by (14.2) is JA = PA = DA-admissible on each
M ∈ 2C(I,E) since the space (C(I, E),DA) is DA-sequentially complete.

We prove that (14.5) implies

∀α∈A∀ε>1∃η>1∃r∈N∀x,y∈C(I,E)∀s,l∈N
{

Sα

(
Dα

[
V [s+1]x,V [l+1]y

])
< ε · η

�⇒ Sα

(
Dα

[
V [s+r+1]x,V [l+r+1]y

])
< ε

}
. (14.7)



Włodarczyk Fixed Point Theory and Applications          (2020) 2020:6 Page 52 of 54

To establish this, let α ∈ A, t ∈ I and x, y ∈ C(I, E) be arbitrary and fixed. Then, in view of
(14.1)–(14.4),

Pα

[(
V [s+1]x

)
(t) –

(
V [l+1]y

)
(t)

]

= Pα

{∫

I(t)

[
K

(
t, τ ,

(
V [s]x

)(
h(τ )

))
– K

(
t, τ ,

(
V [l]y

)(
h(τ )

))]
dτ

}

≤
∫

I(t)
Pα

{
K

(
t, τ ,

(
V [s]x

)(
h(τ )

))
– K

(
t, τ ,

(
V [l]y

)(
h(τ )

))}
dτ

≤ sup
t,τ∈I

Pα

{
K

(
t, τ ,

(
V [s]x

)(
h(τ )

))
– K

(
t, τ ,

(
V [l]y

)(
h(τ )

))}

≤ sup
t,τ ,μ∈I

Pα

{
K

(
t, τ ,

(
V [s]x

)
(μ)

)
– K

(
t, τ ,

(
V [l]y

)
(μ)

)}
.

Consequently, we have Dα[V [s+1]x,V [l+1]y] = supt∈I Pα[(V [s+1]x)(t) – (V [l+1]y)(t)] ≤
supt,τ ,μ∈I Pα[K(t, τ , (V [s]x)(μ)) – K(t, τ , (V [l]y)(μ))] which, by (14.5), implies Sα(Dα[V [s+1]x,
V [l+1]y]) ≤ Sα(supt,τ ,μ∈I Pα[K(t, τ , (V [s]x)(μ)) – K(t, τ , (V [l]y)(μ))]) < ε · η. Similarly, in
view of (14.5), we find Sα(Dα[V [s+r+1]x,V [l+r+1]y]) ≤ Sα(supt,τ ,μ∈I Pα[K(t, τ , (V [s+r]x)(μ)) –
K(t, τ , (V [l+r]y)(μ))]) < ε. Therefore, in view of (14.5), (14.7) holds.

The statements of Theorem 14.3 are now immediate consequences of Theorem 9.3. �

Proof of Theorem 14.4 Using (14.3), (14.4) and (14.6) we obtain

∀α∈A∀ε>1∃η>1∃r∈N∀y0∈C(I,E)∀s,l∈N
{

Sα

(
Dα

[
V [s+1]y0,V [l+1]y0]) < ε · η

�⇒ Sα

(
Dα

[
V [s+r+1]y0,V [l+r+1]y0]) < ε

}
.

Next, using a similar argument as in the proofs of Theorems 9.4 and 14.3, we have the
assertions. �
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