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Abstract
In this paper, we use Suzuki-type contraction to prove three fixed point theorems for
generalized contractions in an ordered space equipped with two metrics; we obtain
some generalizations of the Kannan fixed point theorem. Our results on partially
ordered metric spaces generalize and extend some results of Ran and Reurings as
well as of Nieto and Rodríguez-López. To illustrate the effectiveness of our main result,
we give an application to matrix equations which involves monotone mappings.
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1 Introduction
It is well known that the Banach fixed point theorem plays a very important part in the
resolution of various problems in nonlinear analysis such as integral equations and various
nonlinear problems. It also has applications in various scientific disciplines. This theorem
knew intense generalizations by the introduction of various type of contractions. We cite
for example the generalizations obtained by Suzuki [20], Kikkawa and Suzuki [10], Mot
and Petrusel [15], Dorić and Lazović [6], Bose and Roychowdhury [2], Singh, and Swami,
Mishra, Chugh and Kamal [19].

2 Methods
Let (X, d) be a metric space and T be a self-mapping on X.

T is called a generalized Kannan mapping if there exists r ∈ [0, 1
2 [ such that

d(Tx, Ty) ≤ r max
{

d(x, Tx), d(y, Ty)
}

, for all x, y ∈ X.

T is called a Chatterjea mapping if there exists r ∈ [0, 1
2 [ such that

d(Tx, Ty) ≤ r max
{

d(x, Ty), d(y, Tx)
}

, for all x, y ∈ X.

Kannan [8] (resp. Chatterjea [5]) shows the following results: If (X, d) is a complete metric
space then every generalized Kannan (resp. Chatterjea) mapping) has a unique fixed point.
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Theorem 2.1 (Kikkawa and Suzuki [10]) Let T be a mapping on a complete metric space
(X, d) and φ be a non-increasing function from [0, 1[ onto ] 1

2 , 1] defined by

φ(r) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 ≤ r <
√

5–1
2 ,

1–r
r2 if

√
5–1
2 ≤ r < 1√

2 ,
1

1+r if 1√
2 ≤ r < 1.

Assume that there exists r ∈ [0, 1[ such that, for all x, y ∈ X,

φ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r max
{

d(x, Tx), d(y, Ty)
}

.

Then T has a unique fixed point x∗ and limn→+∞ Tnx = x∗ holds for every x ∈ X.

In 1981, Fisher presented some related fixed points theorems involving two mappings
on metrics spaces under some conditions on contractions.

Theorem 2.2 (Fischer [7]) Let (X, d) and (Y , δ) be two metric spaces such that (X, d) is
complete. Let T : X → Y and S : Y → X be two mappings such that, for all (x, y) ∈ X × Y ,

⎧
⎨

⎩
d(Sy, STx) ≤ c. max{d(x, Sy), δ(y, Tx), d(x, STx)},
δ(Tx, TSy) ≤ c. max{d(x, Sy), δ(y, Tx), δ(y, TSy)},

where c ∈ [0, 1[. Then there exists a unique pair (x∗, y∗) ∈ X × Y such that Tx∗ = y∗ and
Sy∗ = x∗. Consequently, STx∗ = x∗ and TSy∗ = y∗.

Some generalizations of this result have appeared in many different directions. For de-
tails, we refer to [1, 3, 4, 8] and [16].

Chaira and Marhrani proved the following result which generalized the theorem of Fis-
cher.

Theorem 2.3 ([4]) Let (X, d) and (Y , δ) be two metric spaces such that (X, d) is complete;
let T : X → Y and S : Y → X be two mappings satisfying the following condition:

For all x, y ∈ X, one of the conditions
1. d(x, STx) ≤ d(x, Sy),
2. δ(y, TSy) ≤ δ(y, Tx),

implies

⎧
⎨

⎩
δ(Tx, TSy) ≤ α(δ(x, Sy)). max{δ(y, TSy), d(x, STx), δ(x, Sy)},
d(Sy, STx) ≤ α(d(y, Tx)). max{δ(y, TSy), d(x, STx), d(y, Tx)},

where α : [0, +∞[ → [0, 1[ satisfies lim supt→t+
0
α(t) < 1, for all t0 ∈ [0, +∞[. Then there

exists a unique pair (x∗, y∗) ∈ X × Y such that Tx∗ = y∗ and Sy∗ = x∗. And consequently,
STx∗ = x∗ and TSy∗ = y∗.
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In this article, we give a generalization of these results in the framework of ordered space
equipped with two metrics by using the function ψr0 : [0, 1[ → ]0, 1] defined by

ψr0 (r) =

⎧
⎨

⎩
1 if 0 ≤ r < r0,

1 – r if r0 ≤ r < 1,

for any r0 ∈ ]0, 1[. Our results on partially ordered metric spaces generalize the Ran and
Reurings ([17]), Nieto and Rodríguez-López ([13]) fixed point theorems.

We also give an application to matrix equations to illustrate our results.
Let us recall some basic notions which will be used in our main discussions.

Definition 2.4 Let X be a nonempty set. Then (X, d,�) is called an ordered metric space
if:

(i) (X, d) is a metric space,
(ii) (X,�) is a partially ordered set.

Definition 2.5 ([18]) Let (X,�) be a partially ordered set. We say that:
(i) x, y ∈ X are comparable if x � y or y � x holds.

(ii) f : X −→ X is monotone nondecreasing if x, y ∈ X , x � y 	⇒ f (x) � f (y).

Definition 2.6 It is said that a partially ordered metric space X verifies the property (P)
if

(i) for any nondecreasing sequence (xn)n ⊂ X converging to x ∈ X , we have xn � x for
all n;

(ii) for any sequence (xn)n ⊂ X which converges to x and y ∈ X such that xn � y for all
integer n, we have x � y.

3 Main results
Theorem 3.1 Let (X,�) be a partially ordered set endowed with two metrics d and δ such
that (X, d) is complete satisfying the property (P) and r0 ∈ ]0, –1+

√
5

2 ]. Let T be a monotone
nondecreasing mapping on X. If there exists r ∈ [0, 1[ such that, for all x, y ∈ X comparable,
one of the conditions

(i) ψr0 (r)d(x, Tx) ≤ d(x, y),
(ii) ψr0 (r)δ(x, Tx) ≤ δ(x, y),

implies

⎧
⎨

⎩
d(Tx, Ty) ≤ r max{δ(x, Tx), d(y, Ty)},
δ(Tx, Ty) ≤ r max{δ(y, Ty), d(x, Tx)},

and if there exists x0 ∈ X such that x0 � Tx0, then there exists x∗ ∈ X such that Tx∗ = x∗

and

lim
n→+∞ d

(
Tnx0, x∗) = lim

n→+∞ δ
(
Tnx0, x∗) = 0.

Moreover, the fixed point is unique if the set of fixed points F (T) is totally ordered.
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Proof If T(x0) = x0 then the proof is finished. Assume that T(x0) �= x0.
Since x0 ≺ T(x0) and T is monotone nondecreasing, we obtain by induction that

x0 ≺ T(x0) � T2(x0) � · · · � Tn(x0) � Tn+1(x0) � · · ·

Put xn = Tn(x0) for all n ≥ 0. Since xn � xn+1 for all n ∈ N, and for any integer n, we have
ψr0 (r)d(xn, Txn) ≤ d(xn, xn+1), then

⎧
⎨

⎩
d(Txn, Txn+1) ≤ r max{δ(xn, Txn), d(xn+1, Txn+1)},
δ(Txn, Txn+1) ≤ r max{d(xn, Txn), δ(xn+1, Txn+1)},

hence
⎧
⎨

⎩
d(Txn, Txn+1) ≤ rδ(xn, xn+1),

δ(Txn, Txn+1) ≤ rd(xn, xn+1),

which implies

⎧
⎨

⎩
d(xn+1, xn+2) ≤ r max{d(xn, xn+1), δ(xn, xn+1)},
δ(xn+1, xn+2) ≤ r max{d(xn, xn+1), δ(xn, xn+1)},

⎧
⎨

⎩
d(xn+1, xn+2) ≤ rn+1 max{d(xo, x1), δ(xo, x1)},
δ(xn+1, xn+2) ≤ rn+1 max{δ(xo, x1), d(xo, x1)}.

Consequently, (xn)n≥0 is a Cauchy sequence in (X, d) and (X, δ). Then there exists an ele-
ment x∗ in X, such that limn→+∞ d(xn, x∗) = 0.

Since X satisfies the property (P) and xn → x∗, then xn � x∗ for all n ≥ 0. As T is a
monotone nondecreasing, we obtain

xn � Tx∗, for all n,

and by our assumption x∗ � Tx∗.
We assert that Tx∗ = x∗. Assume that this is not the case.
If there exists a nondecreasing function φ : N−→ N such that

d(xφ(n), Txφ(n)) > d
(
xφ(n), Tx∗)

and since limn d(xφ(n), Txφ(n)) = 0, we obtain limn d(xφ(n), Tx∗) = 0; this contradicts our hy-
pothesis. Then

d(xn, Txn) ≤ d
(
xn, Tx∗), for large integers n,

First case: r ∈ [0, r0[. Since xn � Tx∗ for all n, we have
⎧
⎨

⎩
d(xn+1, T2x∗) ≤ r max{δ(xn, xn+1), d(Tx∗, T2x∗)},
δ(xn+1, T2x∗) ≤ r max{d(xn, xn+1), δ(Tx∗, T2x∗)},
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and then

d
(
x∗, T2x∗) ≤ rd

(
Tx∗, T2x∗). (1)

On the other hand x∗ � Tx∗, then

⎧
⎨

⎩
d(Tx∗, T2x∗) ≤ r max{δ(x∗, Tx∗), d(Tx∗, T2x∗)},
δ(Tx∗, T2x∗) ≤ r max{d(x∗, Tx∗), δ(Tx∗, T2x∗)},

⎧
⎨

⎩
d(Tx∗, T2x∗) ≤ rδ(x∗, Tx∗),

δ(Tx∗, T2x∗) ≤ rd(x∗, Tx∗).

(2)

Assume that

d
(
Tx∗, T2x∗) > d

(
x∗, Tx∗) and δ

(
Tx∗, T2x∗) > δ

(
x∗, Tx∗).

If δ(x∗, Tx∗) ≤ d(x∗, Tx∗). We have

d
(
x∗, Tx∗) < d

(
T2x∗, Tx∗) ≤ rδ

(
x∗, Tx∗) ≤ d

(
x∗, Tx∗),

which is absurd. The same conclusion is obtained if d(x∗, Tx∗) ≤ δ(x∗, Tx∗). These consid-
erations imply that one of the inequalities

d
(
Tx∗, T2x∗) ≤ d

(
x∗, Tx∗) or δ

(
Tx∗, T2x∗) ≤ δ

(
x∗, Tx∗)

holds. For x = Tx∗ and y = x∗, we have

⎧
⎨

⎩
d(Tx∗, T2x∗) ≤ r max{δ(Tx∗, T2x∗), d(x∗, Tx∗)},
δ(Tx∗, T2x∗) ≤ r max{d(Tx∗, T2x∗), δ(x∗, Tx∗)}.

Using (2), we obtain

⎧
⎨

⎩
d(Tx∗, T2x∗) ≤ rd(x∗, Tx∗),

δ(Tx∗, T2x∗) ≤ rδ(x∗, Tx∗).

We deduce from these relations that

d
(
x∗, Tx∗) ≤ d

(
x∗, T2x∗) + d

(
T2x∗, Tx∗)} ≤ (

r2 + r
)
d
(
x∗, Tx∗).

Since r2 + r < 1, we conclude to a contradiction with our hypothesis Tx∗ �= x∗.
Second case: r ∈ [r0, 1[. Put A = {z ∈ X; z and xn are comparable,∀n ∈N}. A is nonempty,

since x0 and x∗ belongs to A.
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Let z ∈ A \ {x∗}, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀n ∈ N xn � x∗ ≺ z,

or

∀n ∈ N z � x0 � xn,

or

∃n0 ∈N xn0 � z ≺ xn0+1 � x∗,

(3)

and

ψr0 (r)d(xn, Txn) ≤ rd(xn, z), for large integers n,

therefore

d(xn+1, Tz) ≤ r max
{
δ(xn, xn+1), d(z, Tz)

}
,

which leads to

d
(
x∗, Tz

) ≤ rd(z, Tz). (4)

The inequality d(z, Tz) ≤ d(z, x∗) + d(x∗, Tz) ≤ d(z, x∗) + rd(z, Tz) implies

ψr0 (r)d(z, Tz) ≤ d
(
z, x∗).

By (3), z and x∗ are comparable. Then

d
(
Tz, Tx∗) ≤ r max

{
δ(z, Tz), d

(
x∗, Tx∗)}.

If (xn)n is a stationary sequence, we have x∗ = Tx∗ and if not, there exists a subsequence
(xφ(n))n, such that xφ(n) �= x∗, for all n. And consequently, for z = xφ(n), we have

d
(
Txφ(n), Tx∗) ≤ r max

{
δ(xφ(n), Txφ(n)), d

(
x∗, Tx∗)},

which leads to

d
(
x∗, Tx∗) ≤ rd

(
x∗, Tx∗).

These considerations permit us to conclude that x∗ = Tx∗. These conclusions contradict
the fact Tx∗ �= x∗.

And then we conclude that Tx∗ = x∗.
We have limn→+∞ δ(xn, x∗) = 0. If not, (δ(xn, x∗))n does not converge to 0, then

δ(xn, Txn) ≤ δ
(
xn, x∗), for large integers n,

since xn � x∗ for all n, consequently

δ
(
xn+1, x∗) = δ

(
xn+1, Tx∗) ≤ r max

{
d(xn, Txn), δ

(
x∗, Tx∗)} = rd(xn, Txn).

Thus, limn→+∞ δ(xn+1, x∗) = 0, which is a contradiction. Hence, limn→+∞ δ(xn, x∗) = 0.
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For uniqueness: Let z ∈ X such that Tz = z.
We have d(z, Tz) = 0 ≤ d(z, x∗), since F (T) is totally ordered,

d
(
z, x∗) = d

(
Tz, Tx∗) ≤ r max

{
δ(z, Tz), d

(
x∗, Tx∗)} = 0. �

Example 3.2 Let X = [0, 1]2. We define a partial order “�” in X as

(
x, x′) � (

y, y′) if and only if x ≥ y and x′ ≥ y′.

Define d and δ by

d
((

x, x′),
(
y, y′)) = |x – y| +

∣∣x′ – y′∣∣ and δ
((

x, x′),
(
y, y′)) = max

(|x – y|, ∣∣x′ – y′∣∣)

for all ((x, x′), (y, y′)) ∈ X2.
Thus (X, d,�) and (X, δ,�) are two ordered metrics spaces. And define T : X −→ X by

T
(
x, x′) =

(
x2

5
,

y2

5

)
.

We put r0 = –1+
√

5
2 and r = 1

4 . The map T is nondecreasing, and the space X satisfies the
property (P) for d and δ. For all comparable (x, x′), (y, y′) ∈ X such that (x, x′) � (y, y′), we
have

d
(
T

(
x, x′), T

(
y, y′)) = d

((
x2

5
,

x′2

5

)
,
(

y2

5
,

y′2

5

))

=
x2

5
–

y2

5
+

x′2

5
–

y′2

5

≤ x2

5
+

x′2

5

≤ 1
4

(
x –

x2

5

)
+

1
4

(
x′ –

x′2

5

)

≤ 1
4

d
((

x, x′), T
(
x, x′)).

Hence

d
(
T

(
x, x′), T

(
y, y′)) ≤ 1

4
max

{
d
((

x, x′), T
(
x, x′)), δ

((
y, y′), T

(
y, y′))}.

In the same way

δ
(
T

(
x, x′), T

(
y, y′)) ≤ 1

4
max

{
δ
((

x, x′), T
(
x, x′)), d

((
y, y′), T

(
y, y′))}.

Moreover, ( 1
2 , 1

2 ) � T( 1
2 , 1

2 ). Therefore, T satisfies the hypotheses of Theorem 3.1. Hence,
T has a unique fixed point x∗ = (0, 0).

If we assume, in the above theorem, that d = δ and α is a constant function, we obtain a
generalization of a Kannan-type contraction [9].
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Corollary 3.3 Let (X, d,�) be an ordered metric space such that (X, d) is complete and T
a nondecreasing mapping on (X,�). Assume that there exists r = 2α, where α ∈ [0, 1

2 [ such
that, for all comparable x, y ∈ X,

ψr0 (r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ α.d(x, Tx) + α.d(y, Ty)

where r0 ∈ ]0, –1+
√

5
2 ].

If there exists x0 ∈ X such that x0 � Tx0 and X satisfies the property (P) for d, then there
exists an element x∗ ∈ X such that Tx∗ = x∗ and limn→+∞ Tnx0 = x∗. Moreover, the fixed
point of T is unique if for all any pair {x, y} ⊂ X admits an upper bound or a lower bound.

Proof We remark that, for all comparable x, y ∈ X,

ψr0 (r)d(x, Tx) ≤ d(x, y) ⇒ d(Tx, Ty) ≤ r max
{

d(x, Tx), d(y, Ty)
}

.

By Theorem 3.1, we conclude that T has a fixed point.
For the uniqueness, we suppose that there exist two fixed points x, y ∈ X. From the hy-

pothesis on x and y there exists z in X such that z � x and z � y.
By the monotony of T ,

Tn(z) � Tn(x) = x,

for all n ≥ 0. Set zn = Tn(z), and we have

d(x, Tx) ≤ d(x, zn),

for all integer n. Then, for all n ≥ 0,

d(zn+1, x) ≤ αd(x, Tx) + αd(zn, zn+1)

≤ αd(zn, x) + αd(zn+1, x)

≤ α

1 – α
d(zn, x).

By induction, we show that

d(zn+1, x) ≤
(

α

1 – α

)n+1

d(z, x).

Since 0 ≤ α < 1
2 , we have 0 ≤ α

1–α
< 1. Hence,

lim
n→+∞ d(zn, x) = 0. (5)

In the same way we prove that

lim
n→+∞ d(zn, y) = 0. (6)
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By the triangle inequality,

d(x, y) ≤ d(x, zn) + d(y, zn), ∀n ∈N,

and by (5) and (6) we conclude that x = y. �

Note that, if X is not necessarily provided with a partial order, then we find the same
result as that of Theorem 3.1. with some modifications in the proof consisting basically of
avoiding the use of the order.

Theorem 3.4 Let d and δ be two metrics on X such that (X, d) is complete and r0 ∈
]0, –1+

√
5

2 ]. Let T be a self-mapping on X. If there exists r ∈ [0, 1[ such that, for all x, y ∈ X,
one of the conditions:

(i) ψr0 (r)d(x, Tx) ≤ d(x, y),
(ii) ψr0 (r)δ(x, Tx) ≤ δ(x, y),

implies
⎧
⎨

⎩
d(Tx, Ty) ≤ r max{δ(x, Tx), d(y, Ty)},
δ(Tx, Ty) ≤ r max{δ(y, Ty), d(x, Tx)},

then there exists an unique element x∗ ∈ X such that Tx∗ = x∗ and

lim
n→+∞ d

(
Tnx, x∗) = lim

n→+∞ δ
(
Tnx, x∗) = 0

holds for every x ∈ X.

Example 3.5 Let X = {(0, 0), (4, 0), (0, 4), (5, 0), (4, 5), (5, 4)} and define T by

T
(
x, x′) =

⎧
⎪⎪⎨

⎪⎪⎩

(x′, 0) if x ≤ x′ and (x, x′) ∈ X \ {(0, 4)},
(0, x′) if x > x′ and (x, x′) ∈ X \ {(0, 4)},
(0, 0) if (x, x′) = (0, 4).

Define d and δ by

d
((

x, x′),
(
y, y′)) = |x – y| +

∣∣x′ – y′∣∣ and δ
((

x, x′),
(
y, y′)) =

√
5

2
(|x – y| +

∣∣x′ – y′∣∣)

for all ((x, x′), (y, y′)) ∈ X2.
We put r0 = –1+

√
5

2 and r = 2√
5

. Let ((x, x′), (y, y′)) ∈ X2.
First case: ((x, x′), (y, y′)) /∈ {((4, 5), (5, 4)), ((5, 4), (4, 5))}, we have

⎧
⎨

⎩
d(T(x, x′), T(y, y′)) ≤ r max{δ((x, x′), T(x, x′)), d((y, y′), T(y, y′))},
δ(T(x, x′), T(y, y′)) ≤ r max{δ((y, y′), T(y, y′)), d((x, x′), T(x, x′))}.

Second case: (x, x′) = (4, 5) and (y, y′) = (5, 4). We have

ψr0 (r)d
((

x, x′), T
(
x, x′)) = 6

(
1 –

1√
5

)
and d

((
x, x′),

(
y, y′)) = 2,
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ψr0 (r)δ
((

x, x′), T
(
x, x′)) = 3(

√
5 – 1) and δ

((
x, x′),

(
y, y′)) =

√
5.

Note that

ψr0 (r)d
((

x, x′), T
(
x, x′)) > d

((
x, x′),

(
y, y′))

and

ψr0 (r)δ
((

x, x′), T
(
x, x′)) > δ

((
x, x′),

(
y, y′)).

Since d(T(x, x′), T(y, y′)) = 9 and δ(T(x, x′), T(y, y′)) = 9
√

5
2 ,

⎧
⎨

⎩
d(T(x, x′), T(y, y′)) > r max{δ((x, x′), T(x, x′)), d((y, y′), T(y, y′))},
δ(T(x, x′), T(y, y′)) > r max{δ((y, y′), T(y, y′)), d((x, x′), T(x, x′))}.

Similarly for (x, x′) = (5, 4) and (y, y′) = (4, 5).
Hence, T satisfies the hypotheses of Theorem 3.4 but we do not have

⎧
⎨

⎩
d(T(x, x′), T(y, y′)) ≤ r max{δ((x, x′), T(x, x′)), d((y, y′), T(y, y′))},
δ(T(x, x′), T(y, y′)) ≤ r max{δ((y, y′), T(y, y′)), d((x, x′), T(x, x′))},

for all (x, x′), (y, y′) ∈ X. Hence, T has a unique fixed point x∗ = (0, 0).

With the same arguments as in the proof of Theorem 3.1, we obtain the following.

Theorem 3.6 Let (X,�) be a partially ordered set endowed with two metrics d and δ such
that (X, d) is complete and r0 ∈ ]0, 2(

√
2 – 1)]. Let T be a nondecreasing mapping; and as-

sume that there exists r ∈ [0, 1[ such that, for all comparable x, y ∈ X, one of the conditions:
(i) ψr0 (r)d(x, Tx) ≤ d(x, y),

(ii) ψr0 (r)δ(x, Tx) ≤ δ(x, y),
implies

⎧
⎨

⎩
d(Tx, Ty) ≤ r max{ d(x,Ty)+δ(y,Tx)

2 , d(x, Tx)},
δ(Tx, Ty) ≤ r max{ δ(x,Ty)+d(y,Tx)

2 , δ(x, Tx)}.

If there exists x0 ∈ X such that x0 � Tx0 and X satisfies the property (P) for d, then there
exists an element x∗ ∈ X such that Tx∗ = x∗ and limn→+∞ d(Tnx0, x∗) = limn→+∞ δ(Tnx0,
x∗) = 0.

Proof First step. If T(x0) = x0, then the existence of a fixed point is proved. Suppose that
T(x0) �= x0. Following the lines of the proof of Theorem 2.3 we find that {xn} = {Tn(x0)} is
a convergent sequence in X. Indeed, by our assumption xn and xn+1 are comparable, for
every n = 0, 1, 2, . . . , for x = xn and y = xn+1, we have ψr0 (r)d(xn, Txn) ≤ d(xn, xn+1); then

d(xn+1, xn+2) ≤ r max

{
d(xn, xn+2)

2
, d(xn, xn+1)

}
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≤ r max

{
d(xn, xn+1) + d(xn+1, xn+2)

2
, d(xn, xn+1)

}

≤ r max
{

d(xn+1, xn+2), d(xn, xn+1)
}

and

δ(xn+1, xn+2) ≤ r max

{
δ(xn, xn+2)

2
, δ(xn, xn+1)

}

≤ r max{δ(xn, xn+1) + δ(xn+1, xn+2)
2

, δ(xn, xn+1)

≤ r max
{
δ(xn+1, xn+2), δ(xn, xn+1)

}

We deduce that

⎧
⎨

⎩
d(xn+1, xn+2) ≤ rd(xn, xn+1),

δ(xn+1, xn+2) ≤ rδ(xn, xn+1).

It follows that (xn)n≥0 is Cauchy sequence in (X, d) and (X, δ); therefore there exists an
element x∗ of X such that limn d(xn, x∗) = 0.

Second step. Assume that (δ(xn, x∗))n does not converge to 0. Since xn � x∗ for all n, and

δ(xn, Txn) ≤ δ
(
xn, x∗) for large integers n,

we obtain

⎧
⎨

⎩
d(xn+1, Tx∗) ≤ r max{ d(xn ,Tx∗)+δ(x∗ ,xn+1)

2 , d(xn, xn+1)},
δ(xn+1, Tx∗) ≤ r max{ δ(xn ,Tx∗)+d(x∗ ,xn+1)

2 , δ(xn, xn+1)}.

The latter inequality implies limn δ(xn, Tx∗) = 0; and then x∗ �= Tx∗.
It follows that d(xn, Txn) ≤ d(xn, Tx∗), for large integers n; since xn � Tx∗ for all n,

d
(
xn+1, T2x∗) ≤ r max

{
d(xn, T2x∗) + δ(Tx∗, xn+1)

2
, d(xn, xn+1)

}
,

which gives T2x∗ = x∗.
Otherwise for x = x∗ and y = Tx∗, we have x � y and δ(x∗, Tx∗) ≤ δ(x∗, Tx∗); which implies

d
(
Tx∗, T2x∗) ≤ r max

{
d(x∗, T2x∗)

2
, d

(
x∗, Tx∗)

}
.

Consequently, Tx∗ = x∗; this gives us a contradiction and permits us to conclude limn δ(xn,
x∗) = 0.

Third step. Assume that x∗ �= Tx∗. Since xn � Tx∗ and for large integers, we have

ψr0 (r)d(xn, Txn) ≤ d(xn, Txn) ≤ d
(
xn, Tx∗),
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which implies

⎧
⎨

⎩
d(xn+1, T2x∗) ≤ r max{ d(xn ,T2x∗)+δ(Tx∗ ,xn+1)

2 , d(xn, xn+1)},
δ(xn+1, T2x∗) ≤ r max{ δ(xn ,T2x∗)+d(Tx∗ ,xn+1)

2 , δ(xn, xn+1)},

thus,

⎧
⎨

⎩
d(x∗, T2x∗) ≤ r d(x∗ ,T2x∗)+δ(Tx∗ ,x∗)

2 ,

δ(x∗, T2x∗) ≤ r δ(x∗ ,T2x∗)+d(Tx∗ ,x∗)
2 ,

and then

d
(
x∗, T2x∗) ≤ r

2 – r
δ
(
Tx∗, x∗),

δ
(
x∗, T2x∗) ≤ r

2 – r
d
(
Tx∗, x∗).

(7)

For x = x∗ and y = Tx∗, we have

d
(
Tx∗, T2x∗) ≤ r max

{
d(x∗, T2x∗)

2
, d

(
x∗, Tx∗)

}

≤ r max

{
r

2(2 – r)
δ
(
x∗, Tx∗), d

(
x∗, Tx∗)

}
(8)

and

δ
(
Tx∗, T2x∗) ≤ r max

{
δ(x∗, T2x∗)

2
, δ

(
x∗, Tx∗)

}

≤ r max

{
r

2(2 – r)
d
(
x∗, Tx∗), δ

(
x∗, Tx∗)

}
. (9)

Assume that

d
(
Tx∗, T2x∗) > d

(
x∗, Tx∗) and δ

(
Tx∗, T2x∗) > δ

(
x∗, Tx∗).

If d(x∗, Tx∗) ≤ δ(x∗, Tx∗), the inequality (9) implies

δ
(
Tx∗, T2x∗) ≤ δ

(
x∗, Tx∗) < δ

(
Tx∗, T2x∗)

and if d(x∗, Tx∗) ≥ δ(x∗, Tx∗), the inequality (8) implies

d
(
Tx∗, T2x∗) < d

(
Tx∗, T2x∗).

These considerations permit us to conclude that one of the inequalities

d
(
Tx∗, T2x∗) ≤ d

(
x∗, Tx∗) or δ

(
Tx∗, T2x∗) ≤ δ

(
x∗, Tx∗)
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is satisfied. And consequently

⎧
⎨

⎩
d(Tx∗, T2x∗) ≤ r max{ δ(x∗ ,T2x∗)

2 , d(Tx∗, T2x∗)},
δ(Tx∗, T2x∗) ≤ r max{ d(x∗ ,T2x∗)

2 , δ(Tx∗, T2x∗)},

so
⎧
⎨

⎩
d(Tx∗, T2x∗) ≤ r

2δ(x∗, T2x∗),

δ(Tx∗, T2x∗) ≤ r
2 d(x∗, T2x∗).

Therefore by (7)

⎧
⎨

⎩
d(Tx∗, T2x∗) ≤ r2

2(2–r) d(x∗, Tx∗),

δ(Tx∗, T2x∗) ≤ r2

2(2–r)δ(x∗, Tx∗).

It follows that

d
(
x∗, Tx∗) ≤ d

(
x∗, T2x∗) + d

(
T2x∗, Tx∗)

≤ r
2 – r

δ
(
Tx∗, x∗) +

r2

2(2 – r)
d
(
x∗, Tx∗). (10)

Similarly, we have

δ
(
x∗, Tx∗) ≤ δ

(
x∗, T2x∗) + δ

(
T2x∗, Tx∗)

≤ r
2 – r

d
(
Tx∗, x∗) +

r2

2(2 – r)
δ
(
x∗, Tx∗). (11)

If δ(x∗, Tx∗) ≤ d(x∗, Tx∗), then (10) implies

d
(
Tx∗, x∗) ≤ r

2 – r

(
1 +

r
2

)
d
(
x∗, Tx∗).

Since r
2–r (1 + r

2 ) < 1, for all r ∈ [0, r0[, we obtain Tx∗ = x∗.
If d(x∗, Tx∗) ≤ δ(x∗, Tx∗), (11) implies

δ
(
Tx∗, x∗) ≤ r

2 – r

(
1 +

r
2

)
δ
(
x∗, Tx∗),

which gives Tx∗ = x∗. These conclusions contradict the fact Tx∗ �= x∗, if r ∈ [0, r0[.
Now assume r ∈ [r0, 1[ and let z ∈ A \ {x∗} where A = {z ∈ X/z and xn are comparable,

∀n ∈ N}. For large integers, we have ψr0 (r)d(Txn, xn) ≤ d(xn, z) and xn is comparable to z
for all n.

Thus
⎧
⎨

⎩
d(Txn, Tz) ≤ r max{ d(xn ,Tz)+δ(z,Txn)

2 , d(xn, Txn)},
δ(Txn, Tz) ≤ r max{ δ(xn ,Tz)+d(z,Txn)

2 , δ(xn, Txn)}}.
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In the limit case, we obtain

⎧
⎨

⎩
d(x∗, Tz) ≤ r d(x∗ ,Tz)+δ(z,x∗)

2 ,

δ(x∗, Tz) ≤ r δ(x∗ ,Tz)+d(z,x∗)
2 ,

and consequently

⎧
⎨

⎩
d(x∗, Tz) ≤ r

2–r δ(z, x∗),

δ(x∗, Tz) ≤ r
2–r d(z, x∗).

If δ(z, x∗) ≤ d(z, x∗), we have

d(z, Tz) ≤ d
(
z, x∗) + d

(
x∗, Tz

) ≤ 1
1 – r

2
d
(
z, x∗) ≤ 1

1 – r
d
(
z, x∗)

and if d(z, x∗) ≤ δ(z, x∗), we have

δ(z, Tz) ≤ δ
(
z, x∗) + δ

(
x∗, Tz

) ≤ 1
1 – r

δ
(
z, x∗).

Otherwise, one of the inequalities

ψr0 (r)d(z, Tz) ≤ d
(
z, x∗) or ψr0 (r)δ(z, Tz) ≤ δ

(
z, x∗)

is satisfied.
If (xn)n is a stationary sequence, we have x∗ = Tx∗ and if not, there exists a subsequence

(xφ(n))n, such that xφ(n) �= x∗, for all n. And consequently, for z = xφ(n), we have

d
(
Txφ(n), Tx∗) ≤ r max

{
d(xφ(n), Tx∗) + δ(x∗, Txφ(n))

2
, d(xφ(n), Txφ(n))

}
,

which leads to

d
(
x∗, Tx∗) ≤ r

d(x∗, Tx∗)
2

.

These considerations permit us to conclude that x∗ = Tx∗. These conclusions contradict
the fact Tx∗ �= x∗.

And then we conclude that Tx∗ = x∗. �

Proposition 3.7 Under the same conditions of Theorem 3.6, if for any pair {x, y} ⊂ X ad-
mits an upper bound or a lower bound, then T has a unique fixed point.

Proof Suppose that there exist two fixed points x, y ∈ X of T , from the hypothesis there
exists z in X such that x � z and y � z.

By the monotony of T ,

x = Tn(x) � Tn(z),
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for all n ≥ 0. Set zn = Tn(z), since

d(x, Tx) ≤ d(x, zn),

for all integer n, then

⎧
⎨

⎩
d(x, zn+1) ≤ r max{ d(x,zn+1)+δ(zn ,x)

2 , d(x, x)},
δ(x, zn+1) ≤ r max{ δ(x,zn+1)+d(zn ,x)

2 , δ(x, x)},

so
⎧
⎨

⎩
d(x, zn+1) ≤ r

2–r δ(x, zn),

δ(x, zn+1) ≤ r
2–r d(x, zn),

for all n ≥ 0. Therefore,

d(x, zn) ≤
(

r
2 – r

)2

d(zn–2, x)

≤
(

r
2 – r

)3

d(zn–3, x)

...

≤
(

r
2 – r

)n

Dn,n(z, x),

where

Dn,k(z, x) =

⎧
⎨

⎩
d(zn–k , x) if k is even and k ∈ N

∗,

δ(zn–k , x) if k is odd and k ∈N
∗.

Hence,

lim
n→+∞ d(zn, x) = 0. (12)

In the same way we prove that

lim
n→+∞ d(zn, y) = 0. (13)

By the triangle inequality,

d(x, y) ≤ d(x, zn) + d(y, zn) ∀n ∈N

and by (12) and (13) we conclude that x = y. �

Corollary 3.8 Let (X, d,�) be an ordered metric space such that (X, d) is complete, and T
a nondecreasing mapping on X and r0 ∈ [0, 2(

√
2 – 1)[. Assume that there exists r ∈ [0, 1[
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such that, for all (x, y) ∈ X2, ψr0 (r)d(x, Tx) ≤ d(x, y) implies

d(Tx, Ty) ≤ r max

{
d(x, Ty) + d(y, Tx)

2
, d(x, Tx)

}
.

If there exists x0 ∈ X such that x0 � Tx0 and X satisfies the property (P) for d, then there
exists an element x∗ ∈ X such that Tx∗ = x∗ and limn→+∞ Tnx0 = x∗. Moreover, the fixed
point of T is unique if for all any pair {x, y} ⊂ X admits an upper bound or a lower bound.

Theorem 3.9 Let (X,�) be a partially ordered set endowed with two metrics d and δ such
that (X, d) is complete. Let T be a monotone nondecreasing mapping; and assume that there
exists r ∈ [0, 1

2 [ such that, for all comparable x, y ∈ X, one of the following conditions:
(i) d(x, Tx) ≤ d(x, y),

(ii) δ(x, Tx) ≤ δ(x, y),
implies

⎧
⎨

⎩
d(Tx, Ty) ≤ r max{d(x, Ty), δ(y, Tx)},
δ(Tx, Ty) ≤ r max{δ(x, Ty), d(y, Tx)}.

If there exists x0 ∈ X such that x0 � Tx0 and X satisfies the property (P) for d, then there
exists x∗ ∈ X such that Tx∗ = x∗ and

lim
n→+∞ d

(
Tnx0, x∗) = lim

n→+∞ δ
(
Tnx0, x∗) = 0.

Moreover, the fixed point of T is unique if for all any pair {x, y} ⊂ X admits an upper bound
or a lower bound.

Proof Let x0 ∈ X, if T(x0) = x0, then the proof is finished. Suppose that

T(x0) �= x0.

First step. We define a sequence (xn)n by xn = Tnx0, for n ≥ 0. Following the same lines
of the proof of Theorem 3.1, the sequence (xn)n is monotone for the partial order �.

We have d(xn, Txn) ≤ d(xn, xn+1), then

⎧
⎨

⎩
d(Txn, Txn+1) ≤ r max{d(xn, Txn+1), δ(xn+1, Txn)},
δ(Txn, Txn+1) ≤ r max{δ(xn, Txn+1), d(xn+1, Txn)},

so
⎧
⎨

⎩
d(Txn, Txn+1) ≤ rd(xn, xn+2),

δ(Txn, Txn+1) ≤ rδ(xn, xn+2),

and then
⎧
⎨

⎩
d(xn+1, xn+2) ≤ r

1–r d(xn, xn+1),

δ(xn+1, xn+2) ≤ r
1–r δ(xn, xn+1).
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We have r
1–r ∈ [0, 1[, (xn)n≥0 is a Cauchy sequence for d and δ Then there exists x∗ in X

such that limn d(xn, x∗) = 0.
Second step. Assume that (δ(xn, x∗))n does not converge to 0. Then

δ(xn, Txn) ≤ δ
(
xn, x∗), for large integers n

since xn � x∗ for all n, which leads to
⎧
⎨

⎩
d(Txn, Tx∗) ≤ r max{d(xn, Tx∗), δ(x∗, Txn)},
δ(Txn, Tx∗) ≤ r max{δ(xn, Tx∗), d(x∗, Txn)}.

(14)

The second equation in (14) gives

⎧
⎨

⎩
lim supn→+∞ δ(xn+1, Tx∗) ≤ r lim supn→+∞ δ(xn, Tx∗),

lim infn→+∞ δ(xn+1, Tx∗) ≤ r lim infn→+∞ δ(xn, Tx∗),
(15)

we obtain lim supn→+∞ δ(xn, Tx∗) = lim infn→+∞ δ(xn, Tx∗) = 0; then limn→+∞ δ(xn, Tx∗) = 0
and Tx∗ �= x∗; hence d(xn, Txn) ≤ d(xn, Tx∗), for large integers. Since xn � Tx∗ for all n, it
follows that

d
(
xn+1, T2x∗) ≤ r max

{
d
(
xn, T2x∗), δ

(
xn+1, Tx∗)}

and then T2x∗ = x∗.
We put y = Tx∗. From the property (P) x∗ � Tx∗, and δ(x∗, Tx∗) ≤ δ(x∗, y) we have

d
(
Tx∗, T2x∗) ≤ rd

(
x∗, T2x∗).

Consequently Tx∗ = x∗. This contradiction shows that limn δ(xn, x∗) = 0.
Third step. Assume Tx∗ �= x∗. As above, we have

d(xn, Txn) ≤ d
(
xn, Tx∗), for large integers n,

and then
⎧
⎨

⎩
d(xn+1, T2x∗) ≤ r max{d(xn, T2x∗), δ(xn+1, Tx∗)},
δ(xn+1, T2x∗) ≤ r max{δ(xn, T2x∗), d(xn+1, Tx∗)}.

If n goes to infinity, we obtain

⎧
⎨

⎩
d(x∗, T2x∗) ≤ rδ(x∗, Tx∗),

δ(x∗, T2x∗) ≤ rd(x∗, Tx∗).

For y = Tx∗, we have δ(x∗, Tx∗) ≤ δ(x∗, y), so

⎧
⎨

⎩
d(Tx∗, T2x∗) ≤ rd(x∗, T2x∗),

δ(Tx∗, T2x∗) ≤ rδ(x∗, T2x∗).
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Assume that δ(x∗, Tx∗) ≤ d(x∗, Tx∗), we have

d
(
x∗, Tx∗) ≤ d

(
x∗, T2x∗) + d

(
T2x∗, Tx∗)

with
⎧
⎨

⎩
d(x∗, T2x∗) ≤ rδ(x∗, Tx∗) ≤ rd(x∗, Tx∗),

d(T2x∗, Tx∗) ≤ rd(x∗, T2x∗) ≤ r2d(x∗, Tx∗).

Then

d
(
x∗, Tx∗) ≤ d

(
x∗, T2x∗) + d

(
T2x∗, Tx∗) ≤ (

r + r2)d
(
x∗, Tx∗).

Since r2 + r < 1, we obtain d(x∗, Tx∗) = 0.
If δ(x∗, Tx∗) ≥ d(x∗, Tx∗); we permute d and δ, and we obtain δ(x∗, Tx∗) = 0. These con-

clusions contradict the fact Tx∗ �= x∗.
And then we conclude that Tx∗ = x∗.
For the uniqueness, we suppose that there exist two fixed points x, y ∈ X, from the hy-

pothesis, there exists z in X such that x � z and y � z.
By the monotony of T ,

x = Tn(x) � Tn(z),

for all n ≥ 0. Set zn = Tn(z), since

d(x, Tx) ≤ d(x, zn),

for all integer n, we have

⎧
⎨

⎩
d(x, zn+1) ≤ r max{d(x, zn+1), δ(zn, x)},
δ(x, zn+1) ≤ r max{δ(x, zn+1, d(zn, x)},

so
⎧
⎨

⎩
d(x, zn+1) ≤ rδ(zn, x),

δ(x, zn+1) ≤ rd(zn, x),

for all n ≥ 0. Therefore,

d(x, zn) ≤ r2d(zn–2, x)

≤ r3d(zn–3, x)

...

≤ rnDn,n(z, x),
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where

Dn,k(z, x) =

⎧
⎨

⎩
d(zn–k , x) if k is even and 2 ≤ k ≤ n,

δ(zn–k , x) if k is odd and 2 ≤ k ≤ n.

Hence,

lim
n→+∞ d(zn, x) = 0. (16)

In the same way we prove that

lim
n→+∞ d(zn, y) = 0. (17)

By the triangle inequality,

d(x, y) ≤ d(x, zn) + d(y, zn) ∀n ∈N,

and (16), (17) we conclude that x = y. �

Example 3.10 We consider the space X = [0, 1] ordered by “�” which is the reverse order
of the usual order between the reals (x � y ⇔ x ≥ y) and endowed with the usual metric d
and the metric defined by

δ(x, y) =

⎧
⎨

⎩
x + y if x �= y,

0 if x = y.

We define

T : X −→ X,

x �−→ sin(x3)
6

.

Set r = 4
9 . The map T is nondecreasing, X satisfies the property (P) and 1 � T(1).

For all x, y ∈ X such that x � y, we have r > 1
6 , then 6r–1

r–1 ≥ 1 and sin(y3) ≤ 6r–1
r–1 x, hence

d(Tx, Ty) =
sin(x3) – sin(y3)

6
≤ x – sin(y3)

6
≤ r

(
x –

sin(y3)
6

)

≤ r max
{

d(x, Ty), δ(y, Tx)
}

.

Since (1 – r) sin(y3) ≤ (1 – r)y ≤ (6r – 1)x,

δ(Tx, Ty) =
sin(x3) + sin(y3)

6
≤ x + sin(y3)

6
≤ r

(
x+

sin(y3)
6

)
≤ r max

{
δ(x, Ty), d(y, Tx)

}
.

Hence, T has a unique fixed point x∗ = 0.
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Corollary 3.11 Let (X, d,�) be an ordered metric space such that (X, d) is complete and T
a nondecreasing mapping on (X,�). If there exists r ∈ [0, 1

2 [ such that, for all comparable
x, y ∈ X,

d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r max
{

d(x, Ty), d(y, Tx)
}

.

If there exists x0 ∈ X such that x0 � Tx0 and X satisfies the property (P) for d, then there
exists an element x∗ ∈ X such that Tx∗ = x∗ and limn→+∞ Tnx0 = x∗. Moreover, the fixed
point of T is unique if for all any pair {x, y} ⊂ X admits an upper bound or a lower bound.

4 Application
Motivated by [11], in this section we apply Theorem 3.9 to study the existence and unique-
ness of solution for the following general nonlinear matrix equation:

Xq – A∗F(X)A = Q, q > 2, X ∈P(n), (18)

where Q is n × n positive define matrix, P(n) is the set of all n × n Hermitian positive-
definite matrices, A is n × n nonsingular matrix, A∗ is the Hermitian transpose of the
matrix A and F : E(n) → E(n) is a self-adjoint operator such that E(n) is a nonempty subset
of P(n). This type of matrix equation arises in control theory, ladder networks, dynamic
programming, stochastic filtering and statistics, etc. For M, N ∈P(n), the notation M ≺ N
means that N –M is positive definite. We equippedP(n) with the partial ordered “�” given
by

M � N ⇐⇒ M = N or M ≺ N .

We denote by ‖ · ‖ the spectral norm, i.e., ‖A‖ =
√

ρ(A∗A) = ‖A∗‖ where ρ(A∗A) is the
largest eigenvalue of A∗A.

Let r ∈N
∗, the function

δr : P(n) ×P(n) −→R+,

(A, B) �−→ ∥∥Ar – Br∥∥,

is a metric on P(n). In fact, it is easy to show that δ satisfies:
(i) symmetry, that is, δr(A, B) = δr(A, B), ∀A, B ∈P(n).

(ii) the triangle inequality, that is, δr(A, B) ≤ δr(A, Z) + δr(Z, B), ∀A, B, Z ∈P(n).
Moreover, δr satisfies the identity of indiscernibles, i.e., δr(A, B) = 0 ⇐⇒ A = B. Indeed, let
A, B ∈P(n), we have

δr(A, B) = 0 ⇐⇒ Ar = Br .

Let λ > 0 be an eigenvalue of A and X a vector in the eigenspace Eλ(A) associated with λ.
We have

A · X = λX 	⇒ Ar · X = λrX

⇐⇒ Br · X = λrX
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⇐⇒
((

1
λ

B
)r

– In

)
· X = 0

⇐⇒
r–1∏

k=1

(
1
λ

B – e(2i kπ
r )In

)(
1
λ

B – In

)
· X = 0.

Since all the eigenvalues of B are strictly positive, B – λe2i kπ
r In is an inversible matrix.

Hence,

(
1
λ

B – In

)
· X = 0 ⇐⇒ B · X = λX

⇐⇒ X ∈ Eλ(B).

Thus, Eλ(A) ⊂ Eλ(B). In the same way we have Eλ(B) ⊂ Eλ(A). Therefore,

Eλ(A) = Eλ(B),

and since A and B are diagonalizable, A = B.
In the sequel, we consider the space P(n) equipped by the metric δq and the Thompson

metric d : P(n) ×P(n) −→ R+ given by

d(A, B) = max
{
ln

(
W (A/B)

)
, ln

(
W (B/A)

)}
=

∥∥ln
(
A– 1

2 BA– 1
2
)∥∥

where W (A/B) = inf{λ > 0 : A ≤ λB} = λmax(B– 1
2 AB– 1

2 ). It is easy to verify that (P(n), d) is
a complete metric space (see [14]).

In the following lemmas, we give some elegant properties of the Thompson metric which
play an important role in the proof of our main result of this section.

Lemma 4.1 ([12]) Let d : P(n) × P(n) −→ R+ be a Thompson metric on the open con-
vex cone P(n), then, for any A, B ∈ P(n) and nonsingular matrix N , we have the following
conditions:

1. d(A, B) = d(A–1, B–1) = d(N∗AN , N∗BN), where A–1, B–1 are the inversion of matrices
A and B, respectively;

2. d(Ar , Br) ≤ rd(A, B), r ∈ [0, 1];
3. d(N∗ArN , N∗BrN) ≤ |r|d(A, B), r ∈ [–1, 1].

Lemma 4.2 ([12]) For any A, B, C, D ∈P(n),

d(A + C, B + D) ≤ max
{

d(A, B), d(C, D)
}

.

Especially, d(A + C, B + C) ≤ d(A, B).

Lemma 4.3 ([21]) For any A, B ∈P(n), if A � B, then Ar � Br for all r ∈ ]0, 1], and Br � Ar

for all r ∈ [–1, 0[.

Theorem 4.4 Let X0 ∈ P(n) and E(n) = {X ∈ P(n) : X0 � X}. If the operator F is nonde-
creasing and for all X, Y ∈ E(n) comparable, one of the assertions

(i) ‖ ln(X– 1
2 (Q + A∗F(X)A)

1
q X– 1

2 )‖ ≤ ‖ ln(X– 1
2 YX– 1

2 )‖,
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(ii) ‖Xq – Q – A∗F(X)A‖ ≤ ‖Xq – Y q‖,
implies the system

⎧
⎨

⎩
‖ ln(F(X)– 1

2 F(Y )F(X)– 1
2 )‖ ≤ ‖Y q – Q – A∗F(X)A)‖,

‖F(X) – F(Y )‖ ≤ 1
qρ(A∗A)‖ ln(Y – 1

2 (Q + A∗F(X)A)
1
q Y – 1

2 )‖,
(19)

and Xq
0 � Q, then the matrix equation (18) has a unique solution.

Proof E(n) is nonempty subset of P(n). We show that E(n) is closed for distance d. In fact,
let (Yk)k be a sequence of E(n) which converges to Y ∈ P(n). If the set {k ∈ N : Yk = X0}
is infinite, there exists a nondecreasing function φ : N −→ N such that Yφ(k) = X0, ∀k ∈ N,
then Y = X0 ∈ E(n). If not, Yk �= X0, for large integers k, then

Yk ∈P(n) + X0 for large integers k.

Since P(n) is closed for distance d, because (P(n), d) is a complete metric space, P(n) + X0

is closed. As Yk → Y , then Y ∈P(n) + X0. That is to say, Y ∈ E(n).
First step. Let T : E(n) −→ E(n) be a function given by

T(X) =
(
Q + A∗F(X)A

) 1
q , X ∈ E(n).

Since F is nondecreasing, T is well defined and conserves the partial ordering on E(n).
Indeed, let X ∈ E(n), we have

X0 � X ⇐⇒ Q + A∗F(X0)A � Q + A∗F(X)A. (20)

As Xq
0 � Q and A∗F(X0)A ∈ P(n), then Xq

0 � Q + A∗F(X0)A. By Lemma 4.3 and (20), we
have

X0 � (
Q + A∗F(X)A

) 1
q = T(X) ⇐⇒ T(X) ∈ E(n).

Let B, C ∈ E(n) such that B � C, we have (T(C))q – (T(B))q = A∗(F(C) – F(B))A, a positive
semidefinite matrix, (T(B))q � (T(C))q. Combining Lemma 4.3 and 0 ≤ 1

q < 1, then T(B) �
T(C).

Second step. From the hypothesis, we have Xq
0 � Q. Since A∗F(X0)A ∈P(n),

Q + A∗F(X0)A – Xq
0 ∈P(n) ⇐⇒ Xq

0 ≺ Q + A∗F(X0)A

	⇒ Xq
0 � Q + A∗F(X0)A.

Hence X0 � T(X0).
Next, we show that E(n) satisfies the property (P) for d, given in Definition 2.6. In fact,

for (i), let (Xk)k be a nondecreasing sequence of E(n) which converges to X ∈ E(n).
Fix m ∈N arbitrary. For all k > m,

Xm ≺ Xk ⇐⇒ Xk – Xm ∈P(n).
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Then P(n) + Xm is closed, since P(n) is closed for distance d. As Xk → X, then

X ∈P(n) + Xm ⇐⇒ X – Xm ∈P(n).

Thus

X – Xm ∈P(n) ⇐⇒ Xm ≺ X

	⇒ Xm � X, ∀m ∈N.

For (ii), let (Xk)k ⊂ E(n) and Y ∈ E(n) such that Xk → X and Xk � Y , for all integer k. Then
X � Y . Indeed, if Xk = Y for an infinity of the integer k, then there exists a nondecreasing
function ψ : N −→N such that Yψ(k) = Y , ∀k ∈N, so X = Y . If not, Xk �= Y , for large integers
k, then

Xk ≺ Y ⇐⇒ Y ∈P(n) + Xk

⇐⇒ ∃Ak ∈P(n) such that Y = Ak + Xk , for large integers k.

Since

d(Y , Ak + X) = d(Ak + Xk , Ak + X)

≤ d(Xk , X),

for large integers k, then d(Y , Ak + X) → 0. Since Ak + X ∈P(n) + X and Ak + X → Y . Thus,
Y ∈P(n) + X, consequently X � Y .

Third step. Let X, Y be two comparable elements in E(n). If we assume that

d
(
X, T(X)

) ≤ d(X, Y ) or δ
(
X, T(X)

) ≤ δ(X, Y ),

then one of the following assertions is verified:
(i) ‖ ln(X– 1

2 (Q + A∗F(X)A)
1
q X– 1

2 )‖ ≤ ‖ ln(X– 1
2 YX– 1

2 )‖,
(ii) ‖Xq – Q – A∗F(X)A‖ ≤ ‖Xq – Y q‖,

which implies

⎧
⎨

⎩
‖ ln(F(X)– 1

2 F(Y )F(X)– 1
2 )‖ ≤ ‖Y q – Q – A∗F(X)A)‖,

‖F(X) – F(Y )‖ ≤ 1
qρ(A∗A)‖ ln(Y – 1

2 (Q + A∗F(X)A)
1
q Y – 1

2 )‖.
(21)

Using Lemmas 4.1 and 4.2, we have

∥∥ln
(
F(X)– 1

2 F(Y )F(X)– 1
2
)∥∥ = d

(
F(X), F(Y )

)

= d
(
A∗F(X)A, A∗F(Y )A

)

≥ d
(
Q + A∗F(X)A, Q + A∗F(Y )A

)

≥ qd
(
T(X), T(Y )

)
. (22)
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And

∥∥Y q – Q – A∗F(X)A
∥∥ =

∥∥Y q – T(X)q∥∥

= δq
(
Y , T(X)

)
. (23)

Thus, by (21), (22) and (23)

d
(
T(X), T(Y )

) ≤ 1
q
δq

(
Y , T(X)

) ≤ 1
q

max
{

d
(
X, T(Y )

)
, δq

(
Y , T(X)

)}
.

On the other hand, we get

‖A‖2∥∥F(X) – F(Y )
∥∥ =

∥∥A∗∥∥∥∥F(X) – F(Y )
∥∥‖A‖

≥ ∥∥A∗F(X)A – A∗F(Y )A
∥∥

=
∥∥T(X)q – T(Y )q∥∥. (24)

Also

∥∥ln
(
Y – 1

2
(
Q + A∗F(X)A

) 1
q Y – 1

2
)∥∥ = d

(
Y , T(X)

)
, (25)

then, by (21), (24) and (25),

δq
(
T(X), T(Y )

) ≤ 1
q

d
(
Y , T(X)

) ≤ 1
q

max
{

d
(
Y , T(X)

)
, δq

(
X, T(Y )

)}
.

Therefore, there exists r = 1
q ∈ [0, 1

2 [ for all comparable elements X, Y ∈ E(n), one of the
conditions:

(i) d(X, T(X)) ≤ d(X, Y ),
(ii) δq(X, T(X)) ≤ δq(X, Y ),

implies

⎧
⎨

⎩
d(T(X), T(Y )) ≤ r max{d(X, T(Y )), δq(Y , T(X))},
δq(T(X), T(Y )) ≤ r max{δq(X, T(Y )), d(Y , T(X))},

Thus, according to Theorem 3.9, we can easily draw the conclusion that there exists X∗ ∈
E(n) such that T(X∗) = X∗.

According to the properties of P(n), we find that every pair {X, Y } ⊂ E(n) admits an
upper bound or a lower bound. In fact, let X, Y ∈ E(n), then there exists Z = X + Y ∈ E(n)
such that X � Z and Y � Z. Hence T has a unique fixed point.

Therefore, X∗ is the unique solution of the matrix equation (18). �

Example 4.5 We consider the space E(n) = {X ∈ P(n) : 1
2 In � X} equipped by the metric

δ3 and the Thompson metric d where In is the identity matrix. Consider the following
general nonlinear matrix equation:

X3 – A∗F(X)A = Q, X ∈P(n), (26)
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where Q = A = In and F : E(n) → E(n) is a mapping defined by

F(X) =

⎧
⎨

⎩

3
4 In, if 1

2 In ≺ X,
7

10 In, if X = 1
2 In.

(1) F is not a monotone nonexpansive mapping for the metric δ3 and the Thompson
metric d,

(2) F is monotone satisfies condition (19) for all X, Y ∈ E(n) comparable.
Setting X = 8

15 In, Y = 1
2 In, we obtain

d
(
F(X), F(Y )

)
= ln

(
15
14

)
> ln

(
16
15

)
= d(X, Y ).

However, F is not a nonexpansive mapping for the Thompson metric d. Setting X = 27
50 In,

Y = 1
2 In, we obtain

δ3
(
F(X), F(Y )

)
=

631
8000

>
2029

62,500
= δ3(X, Y ).

Then F is not a nonexpansive mapping for the metric δ3. Now, we show that F is monotone
satisfies condition (19). In fact, let X ∈ E(n) \ { 1

2 In} and Y = 1
2 In such that Y � X, we have

d
(
F(X), F(Y )

)
= d

(
3
4

In,
7

10
In

)
=

∥∥∥∥ln

(
14
15

In

)∥∥∥∥ = ln

(
15
14

)

and

δ3
(
Y ,

(
Q + A∗F(X)A

) 1
3
)

=
∥∥∥∥Y 3 – In –

3
4

In

∥∥∥∥ =
∥∥∥∥

1
8

In –
7
4

In

∥∥∥∥ =
13
8

.

Therefore

d
(
F(X), F(Y )

) ≤ δ3
(
Y ,

(
Q + A∗F(X)A

) 1
3
)
. (27)

In the same way, we have

∥∥F(X) – F(Y )
∥∥ =

∥∥∥∥
3
4

In –
7

10
In

∥∥∥∥ =
1

20

and

d
(
Y ,

(
Q + A∗F(X)A

) 1
3
)

= d
(

1
2

In,
(

7
4

In

) 1
3
)

=
∥∥∥∥ln

(
2 3

√
7
4

In

)∥∥∥∥ = ln

(
2 3

√
7
4

)
.

Then

∥∥F(X) – F(Y )
∥∥ ≤ 1

3
d
(
Y ,

(
Q + A∗F(X)A

) 1
3
)
. (28)
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Since F is monotone it satisfies (27) and (28) for all X, Y ∈ E(n) comparable and there
exists X0 = 1

2 In such that (X0)3 � Q, then all the conditions of Theorem 4.4 are satisfied.

Consequently, the matrix equation (26) has a unique solution X∗ = 3
√

7
4 In.
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