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Abstract
In this paper, fixed point results for a newly introduced Geraghty quasi-contraction
type mappings are proved in more general metric spaces called T -orbitally complete
dislocated quasi-metric spaces. Geraghty quasi-contraction type mappings
generalize, among others, Ciric’s quasi-contraction mappings and other Geraghty
quasi-contractive type mappings in the literature. Fixed point results are obtained
without imposing a continuity condition on the mapping, thereby further
generalizing some other related work in the literature. An example is given to show
the validity of results obtained.
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1 Introduction and preliminaries
Geraghty [1] generalized the Banach [2] contraction mapping in metric spaces by using
an auxiliary function instead of a constant.

Let F be the family of all functions β : [0,∞) → [0, 1) which satisfy the condition

lim
n→∞β(tn) = 1 implies lim

n→∞ tn = 0.

Using such a function, Geraghty [1] proved the following theorem.

Theorem 1.1 ([1]) Let (X, d) be a complete metric space and let T be a self-mapping on X.
Suppose that there exists β ∈ F such that, for all x, y ∈ X,

d(Tx, Ty) ≤ β
(
d(x, y)

)
d(x, y), (1)

then T has a unique fixed point x∗ ∈ X and {Tnx} converges to x∗ for all x ∈ X.

Since then, some authors have generalized and extended the Banach contraction prin-
ciple in diverse ways (see [3–7]).
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Many extensions of Banach contraction mapping have also been investigated using dif-
ferent forms of contractive conditions. Asadi [8] proved some fixed point results satisfying
certain contraction principles on a convex metric space. Özyurt [9] established fixed point
results for extended large contraction via (c)-comparison function in a complete metric
space while Özturk [10] introduced F-contraction and proved fixed point results for F-
contractive iterates in a metric space. Some interesting results using other contractive
conditions include [11–15].

In 2000, Hitzler [16] introduced a space known as dislocated metric space in which the
self distance of points is not necessarily zero and showed that the popular Banach contrac-
tion mapping is also valid in the space. Dislocated metric space has applications in seman-
tic analysis of logical programming, electronic engineering and in topology [16]. Zeyada
et al. [17] further generalized the concept of dislocated metric space and introduced the
idea of dislocated quasi-metric space. In this new notion, the symmetric property is also
omitted. Some other papers have been published containing fixed point results for self-
mappings with different contraction conditions in metric spaces and their generalizations
including dislocated metric spaces and dislocated quasi-metric spaces (see [17–26]).

Definition 1.2 ([17]) Let X be a non-empty set and let d : X × X →R
+ be a function such

that the following are satisfied:
(i) d(x, y) = d(y, x) = 0 implies that x = y;

(ii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .
Then d is called dislocated quasi-metric on X and the pair (X, d) is called a dislocated
quasi-metric space.

As an improvement of α-admissible maps introduced by Samet et al. [24] and Karapínar
et al. [26], Popescu [5] introduced the following concepts, which were used to prove the
existence and uniqueness of fixed point results in a complete metric space.

Definition 1.3 ([5]) Let T : X → X be a self-mapping and α : X × X → R
+ be a function.

Then T is said to be α-orbital admissible if α(x, Tx) ≥ 1 implies α(Tx, T2x) ≥ 1.

Definition 1.4 ([5]) Let T : X → X be a self-mapping and α : X × X → R
+ be a func-

tion. Then T is said to be triangular α-orbital admissible if T is α-orbital admissible and
α(x, y) ≥ 1, α(y, Ty) ≥ 1 imply α(x, Ty) ≥ 1.

Lemma 1.5 ([5]) Let T : X → X be a triangular α-orbital admissible mapping. Assume
that there exists x1 ∈ X such that α(x1, Tx1) ≥ 1. Define a sequence {xn} by xn+1 = Txn.
Then, we have α(xn, xm) ≥ 1 for all m, n ∈N with n < m.

The following definition by Ciric [25] on quasi-contraction mappings in metric spaces
are also true for dislocated quasi-metric spaces.

Definition 1.6 ([25]) Let T : X → X be a self-mapping on a metric space. For each x ∈ X
and for any positive whole number n,

OT (x, n) =
{

x, Tx, . . . , Tnx
}

and OT (x,∞) =
{

x, Tx, . . . , Tnx, . . .
}

.
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The set OT (x,∞) is called the orbit of T at x and the metric space X is called T-orbitally
complete if every Cauchy sequence in OT (x,∞) is convergent in X.

It is clear that every complete dislocated quasi-metric space is T-orbitally complete. But
the converse does not hold in general.

The purpose of this paper is to prove some fixed point results in dislocated quasi-metric
space using new concepts of Geraghty quasi-contraction type self-mappings that the au-
thors just introduced and proved fixed point results in the context of metric spaces [27].
The result is obtained by dropping the restriction of continuity and proving the existence
and uniqueness of fixed point in an orbitally complete (which is a relaxation of complete-
ness) dislocated quasi-metric space. This result generalizes many existing related work in
the literature [1–5, 16, 17, 22–27].

2 Main results
Let � denote the class of the functions φ : [0,∞) → [0,∞) which satisfy the following
conditions:

(i) φ is non-decreasing;
(ii) φ is continuous;

(iii) φ(t) = 0 ⇐⇒ t = 0.
First, we state the following new mapping introduced by the authors in [27].

Definition 2.1 Let (X, d) be a metric space and α : X × X → R
+ be a function. A self-

mapping T : X → X is called an α-φ-Geraghty quasi-contraction type mapping if there
exists β ∈ F such that, for all x, y ∈ X,

α(x, y)φ
(
d(Tx, Ty)

) ≤ β
(
φ
(
MT (x, y)

))
φ
(
MT (x, y)

)
, (2)

where MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Remark 2.2
(i) From inequality (2) above, if α(x, y) = 1, φ(t) = t and MT (x, y) = d(x, y), then we have

the Geraghty [1] contraction mapping defined on a metric space. In addition, if
β(t) = q; where q ∈ [0, 1), we have the Banach contraction mapping [2]. Inequality
(2) also generalizes, among others, those of Popescu [5], Karapínar [4, 28] and Cho
et al. [3].

(ii) Definition 2.1 is also true for a dislocated quasi-metric space since every metric
space is a dislocated quasi-metric space but the converse is not necessarily true. An
example, which is inspired by Rahman and Sarwar [22], is provided to buttress this
fact.

Example 2.3 Let X = R and d(x, y) = |x| for all x, y ∈ X. Let β(t) = 1
t for all t > 0. Then

β ∈ F . Let φ(t) = 2t and a mapping T : X → X be defined by

T(x) =

⎧
⎨

⎩

1
2+x , if x ∈ [0, 1],

1, if x > 1.
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Define a function α : X × X → [0,∞) by

α(x, y) =

⎧
⎨

⎩
1, if 0 ≤ x, y ≤ 1,

0, otherwise.

Then T is an α-φ-Geraghty quasi-contraction type mapping defined on a dislocated quasi-
metric space but not on a metric space.

Theorem 2.4 Let (X, d) be a T-orbitally complete dislocated quasi-metric space such that
T : X → X is a self-mapping. Suppose α : X × X →R

+ is a function satisfying the following
conditions:

(i) T is an α-φ-Geraghty quasi-contraction type mapping.
(ii) T is triangular α-orbital admissible mapping.

(iii) There exists x1 ∈ X such that α(x1, Tx1) ≥ 1.
Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof Let x1 ∈ X such that α(x1, Tx1) ≥ 1. Define a sequence {xi} by xi+1 = Tix, for 1 ≤
i ≤ n – 1. If xi = xi+1 for some 1 ≤ i ≤ n – 1, then obviously T has a fixed point. Conse-
quently, throughout the proof, we suppose that xi 
= xi+1 for all i ≥ 1. By Lemma 1.5, used
recursively, we have

α(xi, xi+1) ≥ 1 ∀i ≥ 1. (3)

By (2), for 1 ≤ j ≤ n we get

φ
(
d
(
Tix, Tjx

))
= φ

(
d
(
TTi–1x, TTj–1x

))

≤ α
(
Ti–1x, Tj–1x

)
φ
(
d
(
TTi–1x, TTj–1x

))

≤ β
(
φ
(
MT

(
Ti–1x, Tj–1x

)))
φ
(
MT

(
Ti–1x, Tj–1x

))
, (4)

where

φ
(
MT

(
Ti–1x, Tj–1x

))
= φ

(
max

{
d
(
Ti–1x, Tj–1x

)
, d

(
Ti–1x, Tix

)
, d

(
Tj–1x, Tjx

)
,

d
(
Ti–1x, Tjx

)
, d

(
Tj–1x, Tix

)})

≤ φ
(
δ
[
OT (x, n)

])
,

where δ[OT (x, n)] = max{d(Tix, Tjx) : 0 ≤ i ≤ j ≤ n}.
Note that, since the functions belonging to F are strictly smaller than one, inequality (2)

implies φ(d(Tix, Tjx)) ≤ φ(MT (Ti–1x, Tj–1x)) for all 0 ≤ i ≤ j ≤ n.
The case φ(MT (Ti–1x, Tj–1x)) = φ(d(Tix, Tjx)) is impossible. For

φ
(
d
(
Tix, Tjx

)) ≤ β
(
φ
(
MT

(
Ti–1x, Tj–1x

)))
φ
(
MT

(
Ti–1x, Tj–1x

))

≤ β
(
φ
(
d
(
Tix, Tjx

)))
φ
(
d
(
Tix, Tjx

))

< φ
(
d
(
Tix, Tjx

))
,
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is a contradiction. Thus, we conclude that φ(d(Tix, Tjx)) < φ(MT (Ti–1x, Tj–1x)) for all 0 ≤
i ≤ j ≤ n. Thus, the sequence {d(Tix, Tjx)} is positive and decreasing. Consequently, there
exists r ≥ 0 such that

lim
i,j→∞ d

(
Tix, Tjx

)
= r.

We claim that r = 0. Suppose, on the contrary, that r > 0. Then, from (4) we have

φ(d(Tix, Tjx))
φ(MT (Ti–1x, Tj–1x))

≤ β
(
φ
(
MT

(
Ti–1x, Tj–1x

)))
< 1,

lim
i,j→∞β

(
φ
(
MT

(
Ti–1x, Tj–1x

)))
= 1.

Since β ∈ F , by definition, it implies that

lim
i,j→∞φ

(
MT

(
Ti–1x, Tj–1x

))
= 0 (5)

and so

r = lim
i,j→∞

(
d
(
Tix, Tjx

))
= 0,

which is a contradiction.
Next, we show that the sequence {d(Tix, Tjx)} is Cauchy. On the contrary, suppose

ε = lim
m,n→∞ d

(
Tn–1x, Tm–1x

)
> 0, n ≥ m. (6)

Using the triangle inequality,

d
(
Tn–1x, Tm–1x

) ≤ d
(
Tn–1x, Tnx

)
+ d

(
Tnx, Tmx

)
+ d

(
Tmx, Tm–1x

)

implying

d
(
Tn–1x, Tm–1x

)
– d

(
Tn–1x, Tnx

)
– d

(
Tmx, Tm–1x

) ≤ d
(
Tnx, Tmx

)
.

Now, using φ, we have

φ
(
d
(
Tn–1x, Tm–1x

)
– d

(
Tn–1x, Tnx

)
– d

(
Tmx, Tm–1x

)) ≤ φ
(
d
(
Tnx, Tmx

))

≤ α(xn, xm)φ
(
d
(
Tn–1x,Tm–1x

)

≤ β
(
φ
(
MT

(
Tn–1x, Tm–1x

)))

× φ
(
MT

(
Tn–1x, Tm–1x

))
.

Taking the limits and using (6) we get

φ(ε) ≤ lim
m,n→∞β

(
φ
(
MT

(
Tn–1x, Tm–1x

)))
φ(ε),
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1 ≤ lim
m,n→∞β

(
φ
(
MT

(
Tn–1x, Tm–1x

)))
.

Therefore limm,n→∞ β(φ(MT (Tn–1x, Tm–1x))) = 1 and so limm,n→∞ φ(MT (Tn–1x, Tm–1x)) =
0. Thus limm,n→∞ d(Tn–1x, Tm–1x) = 0, which contradicts our assumption.

Thus, the sequence {d(Tix, Tjx)} is Cauchy. Since X is T-orbitally complete, there exists
x∗ ∈ X such that limn→∞ Tnx = x∗. To show that Tx∗ = x∗, suppose that

d
(
x∗, Tx∗) = lim

i→∞ d
(
Tix, Tx∗) > 0.

Now,

d
(
x∗, Tx∗) ≤ d

(
x∗, Tix

)
+ d

(
Tix, Tx∗)

implying

d
(
x∗, Tx∗) – d

(
x∗, Tix

) ≤ d
(
Tix, Tx∗).

Applying φ, we have

φ
(
d
(
x∗, Tx∗) – d

(
x∗, Tix

)) ≤ φ
(
d
(
Tix, Tx∗))

≤ α
(
Ti–1x, x∗)φ

(
d
(
TTi–1x, Tx∗))

≤ β
(
φ
(
MT

(
Ti–1x, x∗)))φ

(
MT

(
Ti–1x, x∗)),

where MT (Ti–1x, x∗) = max{d(Ti–1x, x∗), d(x∗, Tx∗), d(Ti–1x, Tix), d(x∗, Tix), d(Ti–1x, Tx∗)}.
Taking limits as i tends to infinity gives

lim
i→∞φ

(
d
(
x∗, Tx∗)) ≤ lim

i→∞β
(
φ
(
MT

(
Ti–1x, x∗))) lim

i→∞φ
(
d
(
x∗, Tx∗)).

Also

1 ≤ lim
i→∞β

(
φ
(
MT

(
Ti–1x, x∗))).

So, by the definition of β ∈ F , we get

lim
i→∞β

(
φ
(
MT

(
Ti–1x, x∗))) = 1 → lim

i→∞φ
(
MT

(
Ti–1x, x∗)) = 0

→ φ
(
d
(
x∗, Tx∗)) = 0

→ d
(
x∗, Tx∗) = 0,

a contradiction. Thus, we obtain d(x∗, Tx∗) = 0. Similarly, d(Tx∗, x∗) = 0. That is, x∗ = Tx∗

and the fixed point of T is x∗. �

To ensure the uniqueness of a fixed point, consider the following hypothesis:
(J): For all x 
= y ∈ Fix(T) there exists w ∈ X such that α(x, w) ≥ 1, α(y, w) ≥ 1 and

α(w, Tw) ≥ 1.
Fix(T) denotes the set of fixed points of T .
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Theorem 2.5 Adding condition (J) to the conditions of Theorem 2.4, we find that x∗ is a
unique fixed point of T .

Proof From the proof of Theorem 2.4, x∗ is a fixed point of T . Assume that x∗
1 and x∗

2 are
distinct fixed points of T . By (J), there exists w ∈ X such that α(x∗

1, w) ≥ 1, α(x∗
2, w) ≥ 1 and

α(w, Tw) ≥ 1. By condition (ii) in Theorem 2.4, α(x∗
1, Tnw) ≥ 1 and α(x∗

2, Tnw) ≥ 1 for all
n ≥ 1. So

φ
(
d
(
x∗

1, Tn+1w
)) ≤ α

(
x∗

1, Tnw
)
φ
(
d
(
Tx∗

1, Tn+1w
))

≤ β
(
φ
(
MT

(
x∗

1, Tnw
)))

φ
(
MT

(
x∗

1, Tnw
))

for all n ≥ 1, where

MT
(
x∗

1, Tnw
)

= max
{

d
(
x∗

1, Tnw
)
, d

(
Tnw, Tn+1w

)
, d

(
x∗

1, Tx∗
1
)
, d

(
Tx∗

1, Tnw
)
,

d
(
x∗

1, Tn+1w
)}

= max
{

d
(
x∗

1, Tnw
)
, d

(
Tnw, Tn+1w

)
, d

(
x∗

1, Tn+1w
)
, d

(
x∗

1, Tnw
)}

.

We deduce, by Theorem 2.4, that the sequence {Tnw} converges to a fixed point z. As
n → ∞ in the above inequality, we obtain limn→∞ MT (x∗

1, Tnw) = d(x∗
1, z). If x∗

1 
= z, then

φ(d(x∗
1, Tn+1w))

φ(MT (x∗
1, Tnw))

≤ β(φ
((

MT
(
x∗

1, Tnw
)))

< 1

and as n → ∞, limn→∞ β(φ(MT (x∗
1, Tnw))) = 1 implies that limn→∞ φ(MT (x∗

1, Tnw)) = 0.
Thus d(x∗

1, z) = 0, a contradiction. Therefore, x∗
1 = z. Similarly, x∗

2 = z. Thus x∗
1 = x∗

2, a con-
tradiction and hence the fixed point of T is unique. �

In inequality (2) taking φ(t) = t, an α-Geraghty quasi-contraction type mapping is ob-
tained and Theorem 2.4 reduces to the following.

Corollary 2.6 Let (X, d) be a T-orbitally complete dislocated quasi-metric space such that
T : X → X is a self-mapping. Suppose α : X × X →R

+ is a function satisfying the following
conditions:

(i) T is an α-Geraghty quasi-contraction type mapping.
(ii) T is triangular α-orbital admissible mapping.

(iii) There exists x1 ∈ X such that α(x1, Tx1) ≥ 1.
Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Remark 2.7
(i) Suppose the α-φ-Geraghty quasi-contraction type mapping is defined on a metric

space, then Theorem 2.4 reduces to the result obtained by the authors in [27].
(ii) Moreover, suppose continuity condition is imposed on the mapping T , if defined

on a complete metric space, which is a stronger restriction than orbital
completeness, φ(t) = t and MT (x, y) = {d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)

2 } the
result in Popescu [5] is obtained.
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(iii) The results in Karapinar [4, 28] and Cho et al. [3] are also corollaries to our result.
Therefore, Theorem 2.4 is an improvement and a generalization of other related
work and hence an addition to the library of mappings in the literature.

The following examples validate Theorem 2.4.

Example 2.8 Let X = [0,∞) and d(x, y) = x for all x, y ∈ X. Let β(t) = 1
1+t for all t > 0. Then

β ∈ F . Let φ(t) = 2t and a mapping T : X → X be defined by

T(x) =

⎧
⎨

⎩

1
3 x, if x ∈ [0, 1],

2x, if x > 1.

Define a function α : X × X → [0,∞) by

α(x, y) =

⎧
⎨

⎩
1, if 0 ≤ x, y ≤ 1,

0, otherwise.

One can easily see that X is a dislocated quasi-metric space but not a metric space. Also,
the self-mapping T is not continuous at x = 1.

Condition (iii) of Theorem 2.4 is satisfied with x1 = 1.
For condition (ii), let x, y be such that α(x, y) ≥ 1. Then, x, y ∈ [0, 1], and Tx, Ty ∈ [0, 1].

Moreover, α(y, Ty) = α(x, Tx) = 1 and α(Tx, T2x) = 1. Thus, T is triangular α-orbital ad-
missible. Therefore, (ii) is satisfied.

Finally, we prove that condition (i) is satisfied. If 0 ≤ x, y ≤ 1, then α(x, y) = 1 and

β
(
φ
(
MT (x, y)

))
φ
(
MT (x, y)

)
– α(x, y)φ

(
d(Tx, Ty)

)
= β

(
φ
(
MT (x, y)

))
φ
(
MT (x, y)

)

– φ
(
d(Tx, Ty)

)

=
2MT (x, y)

1 + 2MT (x, y)
– 2Tx

≥ 0.

Therefore, α(x, y)φ(d(Tx, Ty)) ≤ β(φ(MT (x, y)))φ(MT (x, y)) for 0 ≤ x, y ≤ 1.
If x ∈ [0, 1], y > 1, or x, y > 1 then, obviously, α(x, y) = 0 and we have

α(x, y)φ
(
d(Tx, Ty)

) ≤ β
(
φ
(
MT (x, y)

))
φ
(
MT (x, y)

)
.

Therefore, all assumptions of Theorem 2.4 and Theorem 2.5 are satisfied, and hence T has
a unique fixed point x∗ = 0.

Example 2.9 Consider the set X = {{0} ∪ { 1
n : n ∈ N} ∪ N} and a dislocated quasi-metric

d(x, y) = |x – y| + x, ∀x, y ∈ X. Let φ(t) = t
2 and β(t) = 1

t ∀t > 0, then β ∈ F . Define the
mapping T : X → X by

T(x) =

⎧
⎨

⎩

1
x , if x ≥ 1,

x, otherwise.

Also define the function α : X × X →R
+ by α(x, y) = 1 ∀x, y ∈ X.
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X is also a dislocated quasi-metric space but neither a metric space nor a dislocated
metric space and the self-mapping T is not continuous.

Condition (iii) of Theorem 2.4 is also satisfied with x1 = 1.
Obviously, condition (ii) is satisfied. Let x, y be such that α(x, y) ≥ 1. Then x, y ∈ X and

Tx, Ty ∈ X. Moreover, α(y, Ty) = α(x, Tx) = 1 and α(Tx, T2x) = 1. Thus, T is triangular α-
orbital admissible and (ii) is satisfied.

Finally, we prove that condition (i) is satisfied. For ∀x, y ∈ X, α(x, y) = 1 and

β
(
φ
(
MT (x, y)

))
φ
(
MT (x, y)

)
– α(x, y)φ

(
d(Tx, Ty)

)
= β

(
φ
(
MT (x, y)

))
φ
(
MT (x, y)

)

–
d(Tx, Ty)

2

= β

(
MT (x, y)

2

)(
MT (x, y)

2

)

–
|Tx – Ty| + Tx

2

=
(

2
MT (x, y)

)(
MT (x, y)

2

)

–
|Tx – Ty| + Tx

2

=
2 – (|Tx – Ty| + Tx)

2
≥ 0.

Therefore, α(x, y)φ(d(Tx, Ty)) ≤ β(φ(MT (x, y)))φ(MT (x, y)), ∀x, y ∈ X.
Therefore, all assumptions of Theorem 2.4, Theorem 2.5 are satisfied, and hence T has

a unique fixed point at x∗ = 1.
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