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Abstract
In this paper, we consider the class of monotone ρ-nonexpansive semigroups and
give existence and convergence results for common fixed points. First, we prove that
the set of common fixed points is nonempty in uniformly convex modular spaces and
modular spaces. Then we introduce an iteration algorithm to approximate a common
fixed point for the same class of semigroups.
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1 Introduction
We prove the existence and convergence to a common fixed point of monotone ρ-
nonexpansive semigroups in modular spaces. Recall that a family S = {Tt : t ≥ 0} is called
a semigroup on a subset C of a modular space Xρ if

(i) T0(x) = x for all x ∈ C.
(ii) Ts+t = Ts ◦ Tt for all positive s, t.

The theory of semigroups is very interesting in mathematics and applications. As a situa-
tion, in the theory of dynamical systems the space Xρ on which the semigroup S is defined
represents the states space, and the mapping

R+ × C −→ C,

(t, s) �−→ Tt(x)

represents the evolution function of the dynamical system (see [9, 11]).
The problem of the existence of common fixed points for semigroup is still in its infancy.

Kozlowski [9] has demonstrated the existence of common fixed points for semigroups
of monotone contractions and monotone ρ-nonexpansive mappings in Banach spaces.
Afterward, Bashar et al. [3] generalized Kozlowski’s work in Banach spaces. In the case of
monotone nonexpansive semigroups, they proved the following theorem.
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Theorem 1.1 ([3]) Let (X,‖ · ‖) be a Banach space uniformly convex in every direction. Let
C be a weakly compact convex nonempty subset of X , and let S = {Tt : t ≥ 0} be a monotone
nonexpansive semigroup defined on C. Assume that there exists x0 ∈ C such that x0 ≤ Tt(x0)
(resp., Tt(x0) ≤ x0) for all t ≥ 0. Then there exists a common fixed point z ∈ Fix(S) such that
x0 ≤ z (resp., z ≥ x0).

Under the frame of modular function spaces, Kozlowski [7] has shown that the set of
common fixed points of any ρ-nonexpansive semigroups, acting on a ρ-closed convex
and ρ-bounded subset of a uniformly convex modular function space Lρ , is nonempty
ρ-closed and convex (see Theorem 6.5 in [8]).

For finding a common fixed point of a nonexpansive mapping, Halpern [5] has intro-
duced in Hilbert spaces H the following explicit iteration scheme for elements u ∈ H and
x0 ∈ H :

xn+1 = αnu + (1 – αn)T(xn) for all n ≥ 0, (1)

where (αn)n is a sequence in (0, 1). Subsequently, many mathematicians paid their atten-
tion to studying the convergence of Halpern iteration for semigroups of various nonlinear
mappings in different spaces and under different conditions.

2 Methods
In 2002, Xu [15] showed, under certain assumptions on semigroups, the strong conver-
gence of the modified Halpern iteration given by

xn+1 = αnu + (1 – αn)Ttn (xn) (2)

for all tn > 0 (see also Wangkeeree et al. [14] for the asymptotically nonexpansive semi-
groups, Yao et al. [16] for the nonexpansive semigroups, and Song et al. [12] for ρ-
nonexpansive semigroups in Hilbert spaces).

Motivated by the results cited, we begin by generalizing Theorem 1.1 for the monotone
ρ-nonexpansive semigroups in uniformly convex and uniformly convex in every direction
modular spaces. Next, we define a new iteration algorithm for monotone ρ-nonexpansive
semigroups as follows:

⎧
⎨

⎩

xn+1 = (1 – αn)Ttn (xn) + αnTtn (yn),

yn = (1 – βn)xn + βnTtn (xn),

where the sequences (tn)n ⊂R+ and (αn)n, (βn)n ⊂ (0, 1) satisfy some conditions. This pro-
cess generalizes the work of [2]. Later, we show under some assumptions that the sequence
(xn)n ρ-converges to a common fixed point of a monotone ρ-nonexpansive semigroup.

3 Results and discussion
Throughout this work, X stands for a real vector space.

Definition 3.1 ([1]) A function ρ : X −→ [0, +∞] is called a modular if the following
holds:
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(1) ρ(x) = 0 if and only if x = 0;
(2) ρ(–x) = ρ(x);
(3) ρ(αx + (1 – α)y) ≤ ρ(x) + ρ(y) for all α ∈ [0, 1] and x, y ∈ X .

If (3) is replaced by

ρ
(
αx + (1 – α)y

) ≤ αρ(x) + (1 – α)ρ(y)

for all α ∈ [0, 1] and x, y ∈ X, then ρ is called a convex modular.
A modular ρ defines the corresponding modular space, that is, the vector space

Xρ =
{

x ∈ X : lim
λ→0

ρ(λx) = 0
}

.

Let ρ be a convex modular. Then the modular space Xρ is equipped with a norm called
the Luxemburg norm, defined by

‖x‖ρ = inf

{

λ > 0 : ρ
(

x
λ

)

≤ 1
}

.

We now give the basic definitions.

Definition 3.2 ([1]) Let ρ be a modular defined on a vector space X.
(1) We say that a sequence (xn)n∈N ⊂ Xρ is ρ-convergent to x ∈ Xρ if and only if

ρ(xn – x) converges to 0 as n goes to infinity. Note that the limit is unique.
(2) A sequence (xn)n ⊂ Xρ is called ρ-Cauchy if ρ(xn – xm) −→ 0 as n, m −→ +∞.
(3) We say that Xρ is ρ-complete if any ρ-Cauchy sequence is ρ-convergent.
(4) A subset C of Xρ is said ρ-closed if the ρ-limit of a ρ-convergent sequence of C

always belongs to C.
(5) A subset C of Xρ is said to be ρ-bounded if

δρ(C) = sup
{
ρ(x – y) : x, y ∈ C

}
< ∞.

(6) A subset K of Xρ is said to be ρ-compact if any sequence (xn)n of C has a
subsequence that ρ-converges to a point x ∈ C.

(7) We say that ρ satisfies the Fatou property if

ρ(x – y) ≤ lim
n→+∞ρ(x – yn)

for any x whenever (yn)n ρ-converges to y in Xρ .

Note that the ρ-convergence does not imply the ρ-Cauchy condition. Also, xn
ρ−→ x

does not imply in general that λxn
ρ−→ λx for every λ > 1.

An important property associated with a modular, which plays a powerful role in mod-
ular spaces, is the �2-condition and the �2-type condition.

Definition 3.3 ([1, 10]) Let ρ be a modular defined on a vector space X. We say that ρ

satisfies
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(i) the �2-condition if ρ(2xn) −→ 0 whenever ρ(xn) −→ 0 as n → +∞;
(ii) the �2-type condition, if there exists K > 0 such that ρ(2x) ≤ Kρ(x).

Definition 3.4 Let ρ be a modular, and let C be a nonempty subset of the modular space
Xρ . A mapping T : C −→ C is said to be

(a) monotone if T(x) ≤ T(y) for all x, y ∈ C such that x ≤ y;
(b) monotone ρ-nonexpansive if T is monotone such that

ρ
(
T(x) – T(y)

) ≤ ρ(x – y)

for all x, y ∈ Xρ such that x ≤ y.

Recall that T : C −→ C is said to be ρ-continuous if (T(xn))n ρ-converges to T(x) when-
ever (xn)n ρ-converges to x. It is not true that a monotone ρ-nonexpansive mapping is
ρ-continuous since this result is not true in general when ρ is a norm.

We further assume that ρ is a convex modular.

Definition 3.5 ([1]) Let ρ be a modular, and let r > 0 and ε > 0. Define, for i ∈ {1, 2},

Di(r, ε) =
{

(x, y) ∈ Xρ × Xρ : ρ(x) ≤ r,ρ(y) ≤ r,ρ
(

x – y
i

)

≥ rε
}

.

If Di(r, ε) �= ∅, then let

δi(r, ε) = inf

{

1 –
1
r
ρ

(
x + y

2

)

: (x, y) ∈ Di

}

.

If Di(r, ε) = ∅, then we set δi(r, ε) = 1.
(i) We say that ρ satisfies uniform convexity (UCi) if for all r > 0 and ε > 0, we have

δi(r, ε) > 0.
(ii) We say that ρ satisfies unique uniform convexity (UUCi) if for all s ≥ 0 and ε > 0,

there exists η(s, ε) > 0 such that

δi(r, ε) > η(s, ε) for r > s.

(iii) We say that ρ is strictly convex (SC) if for all x, y ∈ Xρ such that ρ(x) = ρ(y) and

ρ

(
x + y

2

)

=
ρ(x) + ρ(y)

2
,

we have x = y.

The following proposition characterizes the relationship between the above notions.

Proposition 3.6 ([1])
(a) (UUCi) implies (UCi) for i = 1, 2;
(b) δ1(r, ε) ≤ δ2(r, ε) for r > 0 and ε > 0;
(c) (UC1) implies (UC2);
(d) (UC2) implies (SC);
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(e) (UUC1) implies (UUC2).

In the following definition, we introduce the uniform convexity in every direction
(UCED) of a modular.

Definition 3.7 Let ρ be a modular. We say that ρ is uniformly convex in every direction
(UCED) if for any r > 0 and nonzero z ∈ Xρ , we have

δ(r, z) = inf

{

1 –
1
r
ρ

(

x +
z
2

)

: ρ(x) ≤ r,ρ(x + z) ≤ r
}

> 0.

We say that ρ satisfies unique uniform convexity in every direction (UUCED) if there exists
η(s, z) > 0 for s ≥ 0 and nonzero z ∈ Xρ such that

δ(r, z) > η(s, z) for r > s.

Proposition 3.8
(a) (UCi) (resp., (UUCi)) implies (UCED) (resp., (UUCED)) for i = 1, 2;
(b) (UUCED) implies (UCED);
(c) (UCED) implies (SC).

Proof It is quite easy to show (a) and (b). To prove (c), let x, y ∈ Xρ be such that x �= y.
First, if ρ(x) �= ρ(y), then there is nothing to prove. Otherwise, we assume that ρ(x) =

ρ(y) = r > 0 and consider z = y – x(�= 0). Hence ρ(x + z) = ρ(y) = r. Since ρ is (UCED),
δ(r, z) > 0, which implies

1 –
1
r
ρ

(

x +
z
2

)

≥ δ(r, z) > 0.

Thus

ρ

(
x + y

2

)

= ρ

(

x +
y – x

2

)

≤ (
1 – δ(r, z)

)
r < r,

that is, ρ( x+y
2 ) < r = ρ(x)+ρ(y)

2 �

The following property plays a similar role as the reflexivity in Banach spaces for mod-
ular spaces.

Definition 3.9 ([10]) Let ρ be a modular. We say that the modular space Xρ satisfies prop-
erty (R) if for every decreasing sequence (Cn)n∈N of nonempty ρ-closed convex and ρ-
bounded subsets of Xρ , we have

⋂

n∈N
Cn �= ∅.

Lemma 3.10 ([1]) Let ρ be a convex modular satisfying the Fatou property. Assume that
Xρ is ρ-complete and ρ is (UUC2). Then Xρ satisfies property (R).
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Proposition 3.11 ([1]) Let ρ be a convex modular. Assume that Xρ is ρ-complete and ρ

is (UUC2). Let C be a ρ-closed convex and ρ-bounded nonempty subset of Xρ . Let (Ci)i∈I

be a family of ρ-closed convex nonempty subsets of C such that ∩
i∈F

Ci is nonempty for any
finite subset F of I . Then

⋂

i∈I

Ci �= ∅.

The ρ-type function is a powerful technical tool to prove the existence of a fixed point.

Definition 3.12 ([6]) Let (xn)n be a sequence in Xρ , and let K be a nonempty subset of
Xρ .

The function τ : K −→ [0,∞] defined by

τ (x) = lim sup
n→∞

ρ(xn – x)

is called a ρ-type function.

The next definition is an adaptation of the definition of ρ-type functions to a one-
parameter family of mappings.

Definition 3.13 ([6]) Let C ⊂ Xρ be convex ρ-bounded. A function τ : C −→R+ is called
a ρ-type function (or shortly a type) if there exists a one-parameter family {Tt : t ≥ 0} of
elements of a nonempty subset K of Xρ such that for all x ∈ K ,

τ (y) = lim sup
t→∞

ρ
(
Tt(x) – y

)

for all y ∈ K .

A sequence (cn)n ⊂ K is called a minimizing sequence of τ if

lim
n→+∞ τ (cn) = inf

x∈K
τ (x).

Note that the ρ-type function τ is convex since ρ is convex.
Recall the definition of the uniform continuity of a modular.

Definition 3.14 A modular ρ is said to be uniformly continuous if for any ε > 0 and R > 0,
there exists η > 0 such that

∣
∣ρ(y) – ρ(x + y)

∣
∣ ≤ ε

whenever ρ(x) ≤ η and ρ(y) ≤ R.

The following lemma plays an important role in the proof of the next fixed point theo-
rem. To prove it, we use the ideas of the proof of Lemma 3.5 in [3].
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Lemma 3.15 Let ρ be a convex modular uniformly continuous and (UUCED). Assume
that the modular space Xρ satisfies property (R). Let C be a ρ-closed ρ-bounded convex
nonempty subset of Xρ . Let K be a nonempty ρ-closed convex subset of C. Let (xk)k∈N be a
sequence in C and consider the ρ-type function τ : K −→ [0, +∞] defined by

τ (y) = lim sup
k→+∞

ρ(xk – y). (3)

Then τ has a unique minimum point in K .

A subset P ⊂ Xρ is called a pointed ρ-closed convex cone if P is a nonempty ρ-closed
subset of Xρ satisfying the following properties:

(i) P + P ⊂ P,
(ii) λP ⊂ P for all λ ∈R+,

(iii) P ∩ (–P) = {0}.
Using P, we define an ordering on Xρ by

x ≤ y if and only if y – x ∈ P.

We further suppose that the modular space Xρ is equipped with the partial order defined
by P.

3.1 Common fixed point results for a monotone ρ-nonexpansive semigroup
Before we state our main results, let us recall the definition of a monotone ρ-Lipschitz
semigroup.

Definition 3.16 Let C be a nonempty subset of a modular space Xρ . A one-parameter
family S = {Tt : t ≥ 0} of mappings from C into C is said to be a monotone semigroup on
C if it satisfies the following conditions:

(i) T0(x) = x for all x ∈ C,
(ii) Ts+t = Ts ◦ Tt for all s, t ≥ 0,

(iii) Tt is monotone for all t ≥ 0, that is, Ttx ≤ Tty for all x, y ∈ C such that x ≤ y.

Definition 3.17 A semigroup S is said to be a monotone ρ-Lipschitz semigroup if S is
monotone and there exists k ≥ 0 such that

ρ
(
Tt(x) – Tt(y)

) ≤ kρ(x – y)

for all x, y ∈ C such that x ≤ y and all t ≥ 0.

If k < 1, then S is said to be a monotone ρ-contraction semigroup. If k = 1, then S is said
to be a monotone ρ-nonexpansive semigroup. The set of all common fixed points of S is
defined by

Fix(S) =
{

x ∈ C : Tt(x) = x for all t ≥ 0
}

=
⋂

t≥0

Fix(Tt).

The following lemma generalizes the minimizing sequence property for type functions
generated by a sequence to the case of type functions defined by a one-parameter family
{ht : t ≥ 0}. To prove it, we use the ideas of the proof of Lemma 7.11 of [6].
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Lemma 3.18 Let ρ be a convex modular satisfying the Fatou property and (UUC1), and
let Xρ be a ρ-complete modular space. Let C be a nonempty ρ-closed convex subset of Xρ .
Let S be a monotone ρ-nonexpansive semigroup on C. Fix x0 ∈ C and consider the function
ϕ : C −→ R+ given by

ϕ(y) = lim sup
t→+∞

ρ
(
Tt(x0) – y

)
= inf

s≥0
sup
t≥s

ρ
(
Tt(x0) – y

)
.

Then every minimizing sequence of ϕ ρ-converges to the same limit.

Theorem 3.19 Let ρ be a convex modular satisfying the Fatou property and (UUC1). Let
C be a nonempty ρ-closed convex ρ-bounded subset of a ρ-complete modular space Xρ . Let
S = {Tt : t ≥ 0} be a monotone ρ-nonexpansive semigroup such that Tt is ρ-continuous for
any t ≥ 0. Assume that there exists x0 ∈ C such that x0 ≤ Tt(x0) (resp., Tt(x0) ≤ x0) for all
t ≥ 0. Then there exists a common fixed point z ∈ Fix(S) such that x0 ≤ z (resp., z ≤ x0).

Proof Without loss of generality, we assume that x0 ≤ Ttx0 for all t > 0. By the definition
of the partial order and Proposition 3.11 we have that

K =
⋂

t≥0

[
Tt(x0),→) ∩ C

is nonempty. In fact, using Proposition 3.11, it suffices to prove that

⋂

t∈F

[
Tt(x0),→) ∩ C

is nonempty for any finite subset F = {t0, . . . , tn} of R+, where ti are arbitrarily chosen in
R+.

Let x = Tt0+···+tn (x0) ∈ C. Since S is a monotone semigroup and x0 ≤ Tt(x0) for all t ≥ 0,
we have Ts(x0) ≤ Ts+t(x0) for all s, t ≥ 0. Hence

Tti (x0) ≤ x

for all i ∈ {1, . . . , n}, that is, x ∈ [Tti (x0),→) ∩ C. Thus
⋂

ti∈F [Tti (x0),→) ∩ C is nonempty
for all n ≥ 0. Moreover, K is ρ-closed convex.

Furthermore, K is invariant by S . Indeed, let x ∈ K and t, s ≥ 0. If t ≥ s, then t – s ≥ 0.
Hence Tt–s(x0) ≤ x implies Tt(x0) ≤ Ts(x). If t < s, then ε = s – t > 0. Since x0 ≤ x, we have

x0 ≤ Tε(x0) ≤ Tε(x) �⇒ Tt(x0) ≤ Tt+ε(x) = Ts(x).

Thus Tt(x0) ≤ Ts(x) for all t, s ≥ 0. Then Ts(x) ∈ K for all s ≥ 0. Therefore S(K) ⊂ K .
Consider the function ϕ : K −→ [0, +∞[ defined by

ϕ(y) = lim sup
t→+∞

ρ
(
Tt(x0) – y

)
= inf

s≥0
sup
t≥s

ρ
(
Tt(x0) – y

)
.

Since K is ρ-bounded, ϕ0 = infy∈C ϕ(y) < ∞. Thus for any n ≥ 1, there exists zn ∈ K such
that

ϕ0 ≤ ϕ(zn) ≤ ϕ0 +
1
n

.
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Then (zn)n is a minimizing sequence of ϕ and ρ-converges to z ∈ K by Lemma 3.18. To
prove that z ∈ Fix(S), it suffices to show that (Tt(zn))n is also a minimizing sequence of ϕ

for any t ≥ 0.
Fix s, η ≥ 0, and let t ≥ s + η and y ∈ K . Then Tt–s(x0) ≤ y. As S is a monotone ρ-

nonexpansive semigroup, we have

ρ
(
Ts

(
Tt–s(x0)

)
– Ts(y)

)
= ρ

(
Tt(x0) – Ts(y)

)

≤ ρ
(
Tt–s(x0) – y

)

≤ sup
t̄≥η

ρ
(
Tt̄(x0) – y

)
.

Hence

sup
t≥η

ρ
(
Tt(x0) – Ts(z)

) ≤ sup
t≥s+η

ρ
(
Tt(x0) – Ts(z)

) ≤ sup
t̄≥η

ρ
(
Tt̄(x0) – z

)
.

Taking the infη≥0 in the previous inequality, we get

inf
η≥0

sup
t≥η

ρ
(
Tt(x0) – Ts(z)

) ≤ inf
η≥0

sup
t̄≥η

ρ
(
Tt̄(x0) – z

)
,

which implies

ϕ
(
Ts(y)

) ≤ inf
η≥0

sup
t̄≥η

ρ
(
Tt̄(x0) – y

)
.

Since η is arbitrary positive, we have

ϕ
(
Ts(y)

) ≤ ϕ(y)

for any s ≥ 0. Therefore (Ts(zn))n is also a minimizing sequence of ϕ for all s ≥ 0.
By Lemma 3.18 we get that (Ts(zn))n ρ-converges to z for all s ≥ 0. Since Ts is ρ-

continuous for all s ≥ 0, (Ts(zn))n ρ-converges to Ts(z) for all s ≥ 0. By the uniqueness
of the limit we conclude that z = Ts(z) for all s ≥ 0. Then z is a common fixed point of the
semigroup S . �

Example 3.20 Let (pn)n≥1 be a sequence of real numbers such that 1 ≤ pn < ∞ for all n ≥ 1.
Consider the vector space

�(pn) =

{

(xn)n ∈ R
N

∗
:

+∞∑

n=1

1
pn

|λxn|pn < ∞ for some λ > 0

}

,

where the modular ρ is given by ρ((xn)n) =
∑+∞

n=0
1

pn
|xn|pn for all (xn)n ∈ �(pn). Suppose that

1 < p– = infn≥1 pn ≤ pn ≤ supn≥1 pn = p+ < ∞ for all n ≥ 1.
According to [13], the modular ρ is convex and satisfies (UUC1), and the space �(pn)

under the Luxemburg norm ‖ · ‖ρ endowed by the modular ρ is a Banach space. More-
over, ρ satisfies the �2-type condition. In fact, let (xn)n ∈ �(pn). Since pn ≤ p+, we have
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∑q
n=1

2pn
pn

|xn|pn ≤ ∑q
n=1

2p+

pn
|xn|pn for all q ∈N

∗. Taking limn→∞, we have

ρ(2x) =
+∞∑

n=1

2pn

pn
|xn|pn ≤ 2p+

+∞∑

n=1

1
pn

|xn|pn = 2p+
ρ(x).

Recall that if ρ satisfies the �2-type condition, then ‖ · ‖ρ convergence is equivalent to
ρ-convergence (see [6]). Thus �(pn) is a ρ-complete modular space. Moreover, ρ satisfies
the Fatou property.

Consider the partial ordering � defined by

(xn)n � (yn)n ⇐⇒ xn ≤ yn, ∀n ≥ 1,

for all (xn)n and (yn)n in �(pn).
Let C = Bρ(0, r) be the ρ-closed ball of �(pn) centered at 0 with radius r > 1; it is ρ-

bounded. Let the family S = {Tt : t ≥ 0} of mappings be given by

Tt : C −→ C,

(xn)n �−→ Tt
(
(xn)n

)
=

(
e–tx1, e–2tx2, . . .

)

for all t ≥ 0. It easy to verify that S is a monotone ρ-nonexpansive semigroup and Tt is
ρ-continuous for all t ≥ 0. As an example, we consider pn = 4n2

n2+1 for n ≥ 1. We have p– = 2
and p+ = 4. Let x0 = (x0

n)n≥1 = ( 1
2n )n≥1. We have x0 ∈ C and Tt(x0) � x0 for all t ≥ 0. Then

by Theorem 3.19 there exists a common fixed point z = 0 such that z � x0.

The next lemma is a generalization of Lemma 3.15 for ρ-type functions defined by a
given one-parameter family of mappings.

Lemma 3.21 Let ρ be a convex modular uniformly continuous and (UUCED), and let
Xρ be a modular space satisfying property (R). Let C be a nonempty ρ-closed convex ρ-
bounded subset of Xρ , let S be a monotone ρ-nonexpansive semigroup on C, and let K be
a ρ-closed convex subset of C. Fix x0 ∈ C and consider the function ϕ : C −→ R+ given by

ϕ(y) = lim sup
t→+∞

ρ
(
Tt(x0) – y

)
= inf

s≥0
sup
t≥s

ρ
(
Tt(x0) – y

)
.

Then there exists a unique z ∈ K such that ϕ(z) = infy∈K ϕ(y).

Proof Fix x0 ∈ C. Since C is ρ-bounded, ϕ0 = infy∈K ϕ(y) < ∞. First, assume that ϕ0 > 0. Let
ε > 0. There exists y ∈ K such that ϕ(y) ≤ ϕ0 + ε. Then, for ε = 1

n with n ≥ 1, there exists
yn ∈ K such that ϕ(yn) ≤ ϕ0 + 1

n .
For any n ≥ 1, set

Kn =
{

y ∈ K : ϕ(y) ≤ ϕ0 +
1
n

}

.

(Kn)n is a sequence of nonempty ρ-closed convex and ρ-bounded subsets. Indeed, for all
n ≥ 1, Kn is ρ-closed since ϕ is a ρ-lower semicontinuous function. In fact, let (yn)n in K
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ρ-converge to y ∈ K . Then

ϕ(y) ≤ lim inf
n→+∞ ϕ(yn).

Indeed, fix ε > 0 and R = diamρ(C) > 0. Using the uniform continuity of ρ , there exists η > 0
such that

∣
∣ρ(y) – ρ(x + y)

∣
∣ ≤ ε (4)

whenever ρ(x) ≤ η and ρ(y) ≤ R. Since (yn)n ρ-converges to y, there exists n0 > 0 such that

ρ(yn – y) ≤ η

for any n ≥ n0. Moreover, for s ≥ 0, let t ≥ s. As x0 ∈ C, then Tt(x0) ∈ C. Thus ρ(Tt(x0) –
y) ≤ R. Therefore by (4)

∣
∣ρ

(
Tt(x0) – y

)
– ρ

(
Tt(x0) – y + y – yn

)∣
∣ ≤ ε

for any n ≥ n0 and t ≥ s. Hence

∣
∣ρ

(
Tt(x0) – y

)
– ρ

(
Tt(x0) – yn

)∣
∣ ≤ ε

for any n ≥ n0 and t ≥ s. In particular,

ρ
(
Tt(x0) – y

) ≤ ρ
(
Tt(x0) – yn

)
+ ε

for any n ≥ n0 and t ≥ s. This implies

sup
t≥s

ρ
(
Tt(x0) – y

) ≤ sup
t≥s

ρ
(
Tt(x0) – yn

)
+ ε

for any n ≥ n0. Since s ≥ 0 is arbitrary, we have

ϕ(y) = inf
s≥0

sup
t≥s

ρ
(
Tt(x0) – y

) ≤ inf
s≥0

sup
t≥s

ρ
(
Tt(x0) – yn

)
+ ε = ϕ(yn) + ε

for any n ≥ n0. Hence

ϕ(y) ≤ lim inf
n→+∞ ϕ(yn) + ε

for any ε > 0. Consequently, ϕ(y) ≤ lim infn→+∞ ϕ(yn), that is, ϕ is ρ-lower semicontinuous.
Then Kn is ρ-closed for all n ≥ 1.

For all n ≥ 1, Kn is convex since ϕ is convex. Moreover, Kn is ρ-bounded, and the se-
quence (Kn)n is decreasing.

By property (R) the set K∞ =
⋂

n≥1
Kn is nonempty ρ-closed convex. Furthermore,

K∞ =
{

y ∈ K : ϕ(y) = ϕ0
}

.
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Indeed, if y ∈ K∞ then y ∈ Kn for all n ≥ 1. Thus ϕ(y) ≤ ϕ0 + 1
n for all n ≥ 1. Hence ϕ(y) ≤ ϕ0.

Since ϕ0 ≤ ϕ(y), we have ϕ(y) = ϕ0.
Next, we prove that K∞ is reduced to one point. Let z1, z2 ∈ K∞ be such that z1 �= z2. Set

z = z1 + z2 and let ε > 0. By the definition of ϕ there exists s0 ≥ 0 such that

sup
t≥s0

ρ
(
Tt(x0) – zi

)
) ≤ ϕ0 + ε, i = 1, 2.

Thus

ρ
(
Tt(x0) – zi

) ≤ ϕ0 + ε, i = 1, 2,

for all t ≥ s0.
Fixing t ≥ s0, we have

ρ
(
Tt(x0) – z1

) ≤ ϕ0 + ε and ρ
(
Tt(x0) – z1 + z1 – z2

)
= ρ

(
Tt(x0) – z2

) ≤ ϕ0 + ε.

Since ρ is (UUCED), there exists η(ϕ0, z) > 0 such that

1 –
1

ϕ0 + ε
ρ

(

Tt(x0) – z1 +
z1 – z2

2

)

≥ δ(ϕ0 + ε, z) ≥ η(ϕ0, z).

Hence

ρ

(

Tt(x0) –
z1 + z2

2

)

≤ (
1 – η(ϕ0, z)

)
(ϕ0 + ε).

Since t is arbitrarily fixed such that t ≥ s0, we have

sup
t≥s0

ρ

(

Tt(x0) +
z1 + z2

2

)

≤ (
1 – η(ϕ0, z)

)
(ϕ0 + ε).

Therefore

ϕ

(
z1 + z2

2

)

≤ (
1 – η(ϕ0, z)

)
(ϕ0 + ε).

As ε goes to 0+, we get

ϕ

(
z1 + z2

2

)

≤ (
1 – η(ϕ0, z)

)
ϕ0.

Since K∞ is convex, z1+z2
2 ∈ K∞. Therefore

ϕ0 = ϕ

(
z1 + z2

2

)

≤ (
1 – η(ϕ0, z)

)
ϕ0 < ϕ0,

a contradiction. Then K∞ is reduced to one point. To finish the proof, we show that K∞ is
reduced to one point if ϕ = 0. For x, y ∈ K , we have

ρ

(
x – y

2

)

≤ ϕ(x) + ϕ(y)
2

.
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In fact, let s ≥ 0. Then for every t ≥ s,

ρ

(
x – y

2

)

≤ ρ

(
x – Tt(x0)

2

)

+ ρ

(
Tt(x0) – y

2

)

,

and then

ρ

(
x – y

2

)

≤ ϕ(x) + ϕ(y)
2

for all x, y ∈ K . Especially, for x, y ∈ K∞,

ρ

(
x – y

2

)

≤ ϕ(x) + ϕ(y)
2

= ϕ0 = 0.

Thus x = y. In both cases, we have shown that K∞ is reduced to one point. As a result, ϕ

has a unique minimum point in K . �

The next result is a generalization of Theorem 1.1 in uniformly convex in every direction
modular spaces.

Theorem 3.22 Let ρ be a convex modular uniformly continuous and (UUCED), and let
Xρ be a modular space satisfyiong property (R). Let C be a nonempty ρ-closed convex ρ-
bounded subset of Xρ . Let S be a monotone ρ-nonexpansive semigroup on C. Assume that
there exists x0 ∈ C such that x0 ≤ Tt(x0) (resp., Tt(x0) ≤ x0) for all t ≥ 0. Then there exists
a common fixed point z ∈ Fix(S) such that x0 ≤ z (resp., z ≤ x0).

Proof Without loss of generality, we assume that x0 ≤ Tt(x0) for all t ≥ 0. Let (sn)n be a
nondecreasing sequence in R+ such that s0 = 0 and limn sn = +∞.

For all n ≥ 0, set

Kn =
⋂

t≥sn

[
Tt(x0),→) ∩ C.

(Kn)n is a decreasing sequence of ρ-closed convex and ρ-bounded subsets of C. In fact,
for all h ≥ 0, x0 ≤ Th(x0). In particular, for h = sn, we have x0 ≤ Tsn (x0). Let t ≥ sn. Then
Tt(x0) ≤ Tt+sn (x0) ≤ T2sn (x0) = x. Then x = T2sn (x0) ∈ Kn. Hence Kn is nonempty for all
n ≥ 0.

For all n ≥ 0, Kn is ρ-closed. Indeed, let (yp)p be a sequence in Kn that ρ-converges to
y ∈ C. For all p ≥ 0, yp ∈ Kn, that is, Tt(x0) ≤ yp for all t ≥ sn and p ≥ 0. Then yp – Tt(x0) ∈ P
for all t ≥ sn and p ≥ 0. Since

lim
p→+∞ρ

(
yp – Tt(x0) – y + Tt(x0)

)
= lim

n→+∞ρ(yp – y) = 0

and P is ρ-closed, we have y – Tt(x0) ∈ P for all t ≥ sn, that is, y ∈ Kn.
Kn is convex and ρ-bounded, since P is convex and Kn ⊂ C. Moreover, (Kn)n is decreas-

ing since (sn)n is increasing.
By property (R) the set K =

⋂
n≥0 Kn is nonempty ρ-closed and convex.
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K is invariant by S . Indeed, let x ∈ K ; then Tt(x0) ≤ x for all n ≥ 0 and t ≥ sn. Letting
η ≥ 0, let us prove that Tt(x0) ≤ Tη(x) for all t ≥ sn.

Let t ∈ N. If η > t, then ε = η – t > 0, where t ≥ sn. Since x0 ≤ x, x0 ≤ Tε(x0) ≤ Tε(x).
Hence Tt(x0) ≤ Tη(x) for all t ≥ sn. Thus Tη(x) ∈ Kn.

If η ≤ t, then t – η ≥ 0, where t ≥ sn, which implies Tt–η(x0) ≤ x, because x ∈ K0. Then
Tt(x0) ≤ Tη(x). Hence Tη(x) ∈ Kn. In both cases, we have S(K) ⊂ K .

Consider the function ϕ : K −→ R+ defined by

ϕ(y) = lim sup
t→+∞

ρ
(
Tt(x0) – y

)
.

By Lemma 3.21 ϕ has a unique minimum point z ∈ K .
Fix s, η ≥ 0 and let t ≥ s + η. As S is a monotone ρ-nonexpansive semigroup, we have

ρ
(
Tt(x0) – Ts(z)

)
= ρ

(
Ts

(
Tt–s(x0)

)
– Ts(z)

)

≤ ρ
(
Tt–s(x0) – z

)

≤ sup
t̄≥η

ρ
(
Tt̄(x0) – z

)
,

which implies

ϕ
(
Ts(y)

) ≤ inf
η≥0

sup
t̄≥η

ρ
(
Tt̄(x0) – y

)
.

Then ϕ(Ts(z)) ≤ ϕ(z) for all s ≥ 0. Thus Ts(z) is also a minimum point of ϕ for all s ≥ 0. By
the uniqueness of z, Ts(z) = z for all s ≥ 0. Therefore z is a common fixed point of S . �

3.2 Convergence theorems for common fixed point of a monotone semigroup
First, we introduce the notion of uniformly asymptotic regular semigroups.

Definition 3.23 Let C be a subset of Xρ . A semigroup S = {Tt : t ≥ 0} on C is said to be
uniformly asymptotic regular (u.a.r.) if for any s ≥ 0 and any ρ-bounded subset K of C, we
have

lim
t→+∞ sup

x∈K
ρ
(
Ts

(
Tt(x)

)
– Tt(x)

)
= 0.

Example 3.24 Let Xρ = R
2, and let the modular ρ be defined by ρ(x) = x2

1 +x2
2 for x = (x1, x2)

in Xρ . Let C = [0, A]× [0, A], where A > 0. Consider the one-parameter family S = {Tt : t ≥
0} defined by

T : C −→ C,

x �−→ Tt(x) = e–tx

for all t ≥ 0. It is quite easy to show that S is a semigroup. Moreover, S is u.a.r. In fact, let
s ≥ 0, and let K be a ρ-bounded subset of C. Then

lim
t→+∞ sup

x∈K
ρ
(
Ts

(
Tt(x)

)
– Tt(x)

)
= lim

t→+∞ sup
x∈K

ρ
(
e–s(e–tx

)
– e–tx

)

= lim
t→+∞ sup

x∈K

(
e–t)2(e–s – 1

)2(x2
1 + x2

2
)

= 0.
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Next, we give some properties of the partial order defined on the modular space Xρ by
a ρ-closed convex cone P.

Definition 3.25 We say that a partial order ≤ is ρ-closed if for any two sequences (xn)n

and (yn)n in Xρ such that xn ≤ yn for all n ≥ 0 that ρ-converge to x and y, respectively, then
x ≤ y.

Proposition 3.26 Let ρ be a convex modular satisfying the �2-type condition. The partial
order defined by a ρ-closed convex cone P (x ≤ y ⇐⇒ y–x ∈ P for x and y in Xρ ) is ρ-closed.

Proof Let (xn)n and (yn)n be two sequences in Xρ that ρ-converge to x and y, respectively,
such that xn ≤ yn for all n ≥ 0.

We have yn – xn ∈ P for all n ≥ 0. Moreover, for all n ≥ 0,

ρ
(
(yn – xn) – (y – x)

)
= ρ

(
(yn – y) + (x – xn)

)

≤ k
2
ρ(yn – y) +

k
2
ρ(xn – x) −→

n→+∞
0.

Hence (yn – xn)n ρ-converges to y – x. Since the cone P is ρ-closed, we have y – x ∈ P,
which equivalent to x ≤ y. �

Remark 3.27 The partial order “≤” defined by a ρ-closed convex cone P satisfies the fol-
lowing property:

If (xn)n is a nondecreasing sequence such that xn
ρ−→ x, then xn ≤ x for all n.

Indeed, fix arbitrary n0 ∈ N. Since (xn)n is a nondecreasing sequence, xn0 ≤ xn for all n ≥
n0, which is equivalent to xn – xn0 ∈ P. Hence

xn ∈ xn0 + P.

Since P is ρ-closed, so is xn0 + P. Therefore x ∈ xn0 + P implies x – xn0 ∈ P. Thus xn0 ≤ x
for all n0 ≥ 0. Hence

xn ≤ x for all n ≥ 0.

Lemma 3.28 ([4]) Let ρ be a convex modular (UUC1), and let Xρ be a modular space.
Let R > 0 and (αn)n ⊂ [a, b] with 0 < a ≤ b < 1. Let (un)n and (vn)n be two sequences in Xρ .
Assume that

⎧
⎪⎪⎨

⎪⎪⎩

lim supn→+∞ ρ(un) ≤ R,

lim supn→+∞ ρ(vn) ≤ R,

limn→+∞ ρ(αnun + (1 – αn)vn) = R.

Then

lim
n→+∞ρ(un – vn) = 0.
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We further define a new iteration algorithm for monotone ρ-nonexpansive semigroups
in modular spaces. Our iteration process is defined as follows: for x0 ∈ C such that x0 ≤
Tsx0 for all s ≥ 0,

(Si)

⎧
⎨

⎩

xn+1 = (1 – αn)Ttn (xn) + αnTtn (yn),

yn = (1 – βn)xn + βnTtn (xn),

where (αn)n and (βn)n are two sequences in (0, 1) such that 0 < a ≤ αn ≤ b < 1 and 0 <
c ≤ βn ≤ d < 1, and (tn)n ⊂ R+ is a nondecreasing sequence such that limntn = +∞ and
Ttn (x) ≤ Ttn+1 (x) for all x ∈ C.

The sequence (xn)n is nondecreasing, and for all n ≥ 0,

xn ≤ Ttn (xn) ≤ xn+1 ≤ Ttn+1 (xn+1). (5)

Indeed, for n = 0, we have x0 ≤ Tt0 (x0). By the convexity of the order interval [x0, Tt0 (x0)]
we have

x0 ≤ y0 ≤ Tt0 (x0). (6)

Using the monotonicity of Tt0 , we have

x0 ≤ y0 ≤ Tt0 (x0) ≤ Tt0 (y0). (7)

By the convexity of the order interval [Tt0 x0, Tt0 y0] we have

x0 ≤ y0 ≤ Tt0 (x0) ≤ x1 ≤ Tt0 (y0). (8)

Hence by the condition on (tn)n and the monotonicity of Tt1 we have

Tt0 (y0) ≤ Tt1 (y0) ≤ Tt1 (x1). (9)

By (8) and (9) we have

x0 ≤ Tt0 (x0) ≤ x1 ≤ Tt1 (x1).

Assume that inequality (5) is true for n ≥ 0. Let us prove that

xn+2 ≤ Ttn+2 (xn+2) ≤ xn+3 ≤ Ttn+3 (xn+3). (10)

We have xn+1 ≤ Ttn+1 (xn+1), and by the convexity of the order interval [xn+1, Ttn+1 (xn+1)] we
get

xn+1 ≤ yn+1 ≤ Ttn+1 (xn+1). (11)

Since Ttn+1 is monotone, we have

xn+1 ≤ yn+1 ≤ Ttn+1 (xn+1) ≤ Ttn+1 (yn+1).
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Using the convexity of the order interval [Ttn+1 (xn+1), Ttn+1 (yn+1)] and the condition on
(tn)n, we get

xn+1 ≤ Ttn+1 (xn+1) ≤ xn+2 ≤ Ttn+2 (xn+2). (12)

By the same way we prove that

xn+2 ≤ Ttn+2 (xn+2) ≤ xn+3 ≤ Ttn+3 (xn+3). (13)

Hence, for all n ≥ 0,

xn ≤ Ttn (xn) ≤ xn+1 ≤ Ttn+1 (xn+1).

Remark 3.29 As an example of a sequence (tn)n, we can consider the sequence (2ns)n where
s > 0. In fact, for n = 0, we show as before that x0 ≤ Ts(x0) ≤ x1 ≤ T2s(x1). Next, we assume
that xn ≤ T2ns(xn) ≤ xn+1 ≤ T2n+1s(xn+1). As before, we get

xn ≤ yn ≤ T2ns(xn) ≤ xn+1 ≤ T2ns(yn).

Moreover, T2ns(yn) ≤ T2ns(T2ns(yn)) = T2ns+2ns(yn) = T2n+1s(yn) ≤ T2n+1s(xn+1). Hence for all
n ≥ 0,

xn ≤ yn ≤ T2ns(xn) ≤ xn+1 ≤ T2ns(yn) ≤ T2n+1s(xn+1).

Then for all n ≥ 0,

xn ≤ T2ns(xn) ≤ xn+1 ≤ T2n+1s(xn+1).

Lemma 3.30 Let ρ be a convex modular (UUC1) satisfying the �2-type condition, and
let C be a ρ-closed convex ρ-bounded subset of a modular space Xρ . Let S be a monotone
ρ-nonexpansive semigroup on C, and let x0 ∈ C be such that x0 ≤ Ts(x0) for all s ≥ 0. Let
p ∈F ix(S) be such that x0 ≤ p. Then

lim
n

ρ
(
xn – Ttn (xn)

)
= 0.

Proof It obvious that xn ≤ p and yn ≤ p for all n ≥ 0. Moreover,

ρ(xn+1 – p) = ρ
(
(1 – αn)Ttn (xn) + αnTtn (yn) – p

)

≤ (1 – αn)ρ
(
Ttn (xn) – p

)
+ αnρ

(
Ttn (yn) – p

)

≤ (1 – αn)ρ(xn – p) + αnρ(yn – p),

(14)

or

ρ(yn – p) = ρ
(
(1 – βn)xn + βnTtn (xn) – p

)

≤ (1 – βn)ρ(xn – p) + βnρ
(
Ttn (xn) – p

)

≤ (1 – βn)ρ(xn – p) + βnρ(xn – p) = ρ(xn – p).

(15)
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From (14) and (15) we have ρ(xn+1 – p) ≤ ρ(xn – p). Hence the sequence (ρ(xn – p))n is
decreasing in R+. Then limnρ(xn – p) = R ≥ 0 exists.

If R = 0, then there is nothing to prove. Indeed, for all n ≥ 0,

ρ(xn – Ttn xn) ≤ k
2
ρ(xn – p) +

k
2
ρ
(
Ttn (xn) – p

)

≤ kρ(xn – p) −→
n→+∞

0.

If R > 0, then we put un = xn – p and vn = Ttn (xn) – p in Lemma 3.28. Then

lim sup
n→+∞

ρ(xn – p) = R

and

lim sup
n→+∞

ρ
(
Ttn (xn) – p

) ≤ lim sup
n→+∞

ρ(xn – p) = R.

Moreover,

ρ(xn+1 – p) ≤ (1 – αn)ρ(xn – p) + αnρ(yn – p),

which implies

ρ(xn+1 – p) – ρ(xn – p)
αn

≤ ρ(yn – p) – ρ(xn – p).

Since 0 < a ≤ αn ≤ b < 1, we have 1
b ≤ 1

αn
≤ 1

a . Thus by the previous inequality we have

ρ(xn+1 – p) – ρ(xn – p)
a

≤ ρ(xn+1 – p) – ρ(xn – p)
αn

≤ ρ(yn – p) – ρ(xn – p)

because ρ(xn+1 – p) ≤ ρ(xn – p). Consequently, as n goes to infinity, we have

R ≤ lim inf
n→+∞ ρ(yn – p). (16)

Otherwise, ρ(yn – p) ≤ ρ(xn – p), and then

lim sup
n→+∞

ρ(yn – p) ≤ R. (17)

By (16) and (17),

R ≤ lim inf
n→+∞ ρ(yn – p) ≤ lim sup

n→+∞
ρ(yn – p) ≤ R,

and thus

lim
n→+∞ρ(yn – p) = R,
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that is,

lim
n→+∞ρ

(
(1 – αn)(xn – p) + αn

(
Ttn (xn) – p

))
= R.

By Lemma 3.28,

lim
n

ρ
(
xn – Ttn (xn)

)
= 0. �

Lemma 3.31 Let ρ be a convex modular satisfying the �2-type condition. Let C be a
nonempty ρ-closed convex subset of a modular space Xρ , and let T : C −→ C be a monotone
ρ-nonexpansive mapping. Suppose (xn)n is a sequence in C such that there exists a subse-
quence (xϕ(n))n that ρ-converges to x ∈ C, xϕ(n) ≤ T(xϕ(n)) ≤ x (or x ≤ T(xϕ(n)) ≤ xϕ(n)) for
all integer n ≥ 0, and

lim
n→+∞ρ

(
xϕ(n) – T(xϕ(n))

)
= 0. (18)

Then x is a fixed point of T .

Proof Without loss of generality, we assume that xϕ(n) ≤ T(xϕ(n)) ≤ x for all n ≥ 0. Since T
is monotone ρ-nonexpansive, we have

ρ
(
T(xϕ(n)) – T(x)

) ≤ ρ(xϕ(n) – x). (19)

Hence

ρ

(
x – T(x)

2

)

≤ 1
2
ρ
(
x – T(xϕ(n))

)
+

1
2
ρ
(
T(xϕ(n)) – T(x)

)

≤ 1
2
ρ
(
x – T(xϕ(n))

)
+

1
2
ρ(xϕ(n) – x).

(20)

Moreover,

ρ
(
x – T(xϕ(n))

) ≤ k
2
ρ(x – xϕ(n)) +

k
2
ρ
(
xϕ(n) – T(xϕ(n))

)
. (21)

Therefore from (18), (20), and (21) we have

ρ

(
x – T(x)

2

)

≤ k
4
ρ(x – xϕ(n)) +

k
4
ρ
(
xϕ(n) – T(xϕ(n))

)
+

1
2
ρ(xϕ(n) – x) −→

n→+∞
0.

Hence x is a fixed point of T . �

We further use the fixed point sets with the partial order F≤
x (S) and F≥

x (S) given by

F≤
x (S) =

{
p ∈F ix(S) : p ≤ x

}
for some x

and

F≥
x (S) =

{
p ∈F ix(S) : p ≥ x

}
for some x,
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respectively. Next, we study the convergence of the iteration (Si) for monotone ρ-
nonexpansive semigroups u.a.r. S in uniformly convex modular spaces.

Theorem 3.32 Let ρ be a convex modular (UUC1) satisfying the �2-type condition. Let C
be a nonempty convex ρ-sequentially compact and ρ-bounded subset of a modular space
Xρ . Let S = {Tt : t ≥ 0} be a monotone ρ-nonexpansive u.a.r. semigroup on C. Assume that
there exists x0 ∈ C such that x0 ≤ Tt(x0) for all t ≥ 0 and that F≥

x0 (S) is nonempty. Then
the sequence (xn)n defined by the iterations (Si) ρ-converge to a common fixed point of the
semigroup S .

Proof Fix p ∈F≥
x0 (S). Without loss of generality, assume that x0 ≤ Tt(x0) for all t ≥ 0. We

have xn ≤ p for all n ≥ 0, and by Lemma 3.30

lim
n→+∞ρ

(
xn – Ttn (xn)

)
= 0. (22)

Let us prove that

lim
n→+∞ρ

(
xn – Ts(xn)

)
= 0 for all s ≥ 0. (23)

For all n ≥ 0,

ρ
(
xn+1 – Ts(xn+1)

)
= ρ

(
(1 – αn)Ttn (xn) + αnTtn (yn) – Ts(xn+1)

)

≤ (1 – αn)ρ
(
Ttn (xn) – Ts(xn+1)

)
+ αnρ

(
Ttn (yn) – Ts(xn+1)

)
,

(24)

ρ
(
Ttn (xn) – Ts(xn+1)

)
= ρ

(
Ttn (xn) – TsTtn (xn) + TsTtn (xn) – Ts(xn+1)

)

≤ k
2
ρ
(
Ttn (xn) – TsTtn (xn)

)
+

k
2
ρ
(
TsTtn (xn) – Ts(xn+1)

)

≤ k
2
ρ
(
Ttn (xn) – TsTtn (xn)

)
+

k
2
ρ
(
Ttn (xn) – xn+1

)
.

(25)

Since S is u.a.r., for any ρ-bounded subset K of C, we have

lim
n→+∞ρ

(
Ttn (xn) – TsTtn (xn)

) ≤ lim
n→+∞ sup

x∈K
ρ
(
Ttn (x) – TsTtn (x)

)
= 0.

Hence

lim
n→+∞ρ

(
Ttn (xn) – TsTtn (xn)

)
= 0. (26)

Moreover, for all n ≥ 0,

ρ
(
Ttn (xn) – xn+1

)
= ρ

(
(1 – αn)Ttn (xn) + αnTtn (yn) – Ttn (xn)

)

≤ αnρ
(
Ttn (yn) – Ttn (xn)

)

≤ αnρ(yn – xn)

≤ αnρ
(
(1 – βn)xn + βnTtn (xn) – xn

)

≤ αnβnρ
(
Ttn (xn) – xn

)
.
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From the hypothesis on (αn)n and (βn)n and (22) we get

lim
n

ρ
(
xn+1 – Ttn (xn)

)
= 0. (27)

Using (25), (26), and (27), we have

lim
n

ρ
(
Ttn (xn) – Ts(xn+1)

)
= 0. (28)

Otherwise,

ρ
(
Ttn (yn) – Ts(xn+1)

)
= ρ

(
Ttn (yn) – TsTtn (yn) + TsTtn (yn) – Ts(xn+1)

)

≤ k
2
ρ
(
Ttn (yn) – TsTtn (yn)

)
+

k
2
ρ
(
TsTtn (yn) – Ts(xn+1)

)

≤ k
2
ρ
(
Ttn (yn) – TsTtn (yn)

)
+

k
2
ρ
(
Ttn (yn) – xn+1

)
.

(29)

Since S is u.a.r., we have

lim
n

ρ
(
Ttn (yn) – TsTtn (yn)

)
= 0. (30)

Moreover,

ρ
(
Ttn (yn) – xn+1

)
= ρ

(
Ttn (yn) – (1 – αn)Ttn (xn) – αnTtn (yn)

)

≤ (1 – αn)ρ(xn – yn)

≤ (1 – αn)(1 – βn)ρ
(
xn – Ttn (xn)

)
.

Therefore

lim
n

ρ
(
Ttn (yn) – xn+1

)
= 0. (31)

By (29), (30), and (30)

lim
n

ρ
(
Ttn (yn) – Ts(xn+1)

)
= 0. (32)

From (24), (28), and (32) we have

lim
n

ρ
(
xn+1 – Ts(xn+1)

)
= 0. (33)

Since C is ρ-sequentially compact, (xn)n has a subsequence (xϕ(n))n ρ-converging to a point
x ∈ C such that xϕ(n) ≤ x. Moreover, by (33)

lim
n

ρ
(
xϕ(n) – Ts(xϕ(n))

)
= 0.

Hence by Lemma 3.31 x is a fixed point of Ts for all s ≥ 0. Then x is a common fixed point
of the semigroup S .

To complete the proof, we prove that (xn)n ρ-converges to x.
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Let (xψ(n))n be another subsequence of (xn)n that ρ-converges to y. For each ϕ(n), there
exists a large enough ψ(n) such that xϕ(n) ≤ xψ(n). Then by Proposition 3.26 we have x ≤ y.
In the same way, we get y ≤ x. Therefore x = y.

Hence the sequence (xn)n has a unique cluster point x, and since C is ρ-sequentially
compact, (xn)n ρ-converges to x. �

Example 3.33 Let the space R be equipped with the convex modular ρ(x) = |x|2 for x ∈R.
It is quite easy to see that ρ is (UUC1) and satisfies the Fatou property and �2-type
condition. Consider the usual partial ordering defined on R, that is, x � y if and only if
y – x ∈ [0,∞[. Let C = [0, 1] be a ρ-sequentially compact, ρ-bounded, and convex subset
of R.

Let the family S = {Tt : t ≥ 0} be such that

Tt : C −→ C,

x �−→ Tt(x) = f
(
5–t f –1(x)

)
,

where f (w) = 1 – w for all w ∈ C. It easy to verify that S is a monotone ρ-nonexpansive
semigroup and uniformly asymptotic regular (u.a.r.).

Let x0 = 0 ∈ C. We have x0 � Tt(x0) = 1 – 5–t for all t ≥ 0. Moreover, F≥
x0 (S) = {1} is

nonempty. Let αn = α ∈ (0, 1), βn = β ∈ (0, 1), and tn = 2n for all n ≥ 0. By induction on n
we construct the sequence (xn)n≥0 given as follows:

xn+1 =
(

1 –
1

52n

)(

1 +
αβ

52n

)

+
xn

52n

(

1 – αβ

(

1 –
1

52n

))

(34)

for n ≥ 0. In fact, for n = 0, we have x0 = 0 and Tt0 (x0) = 1– 1
5 . Then, using the iteration (Si),

we get y0 = (1 – 1
5 )β . Thus x1 = (1 – 1

5 )(1 + αβ

5 ). Assume that (34) is true until the order n.
Let us prove that

xn+2 =
(

1 –
1

52n+1

)(

1 +
αβ

52n+1

)

+
xn+1

52n+1

(

1 – αβ

(

1 –
1

52n+1

))

.

Using the iteration (Si), we obtain yn+1 = β(1 – 1
52n+1 ) + (1 – β(1 – 1

52n+1 ))xn+1. Thus

xn+2 = αTtn+1 (yn+1) + (1 – α)Ttn+1 (xn+1)

= α

(

1 –
1

52n+1 (1 – yn+1)
)

+ (1 – α)
(

1 –
1

52n+1 (1 – xn+1)
)

=
(

1 –
1

52n+1

)

+
xn+1

52n+1 +
α

52n+1 (yn+1 – xn+1)

=
(

1 –
1

52n+1

)

+
xn+1

52n+1 +
αβ

52n+1 (Ttn+1 xn+1 – xn+1)

=
(

1 –
1

52n+1

)(

1 +
αβ

52n+1

)

+
xn+1

52n+1

(

1 – αβ

(

1 –
1

52n+1

))

.

Therefore by Theorem 3.32 the sequence (xn)n ρ-converges to 1.
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4 Conclusion
We have established some existence results for monotone ρ-nonexpansive semigroups in
modular spaces. Then we proposed an iteration scheme with some convergence results
for the class of uniformly asymptotic regular monotone ρ-nonexpansive semigroups. Our
results of existence are generalizations of several results mentioned in the introduction
and the reference sections of this paper.
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