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Abstract
Let B be a uniformly convex and uniformly smooth real Banach space with dual space
B∗. Let F : B → B∗, K : B∗ → B be maximal monotone mappings. An iterative algorithm
is constructed and the sequence of the algorithm is proved to converge strongly to a
solution of the Hammerstein equation u + KFu = 0. This theorem is a significant
improvement of some important recent results which were proved in real Hilbert
spaces under the assumption that F and K are maximal monotone continuous and
bounded. The continuity and boundedness restrictions on K and F have been
dispensed with, using our new method, even in the more general setting considered
in our theorems. Finally, numerical experiments are presented to illustrate the
convergence of the sequence of our algorithm.
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1 Introduction
Let B be a real Banach space with a strictly convex dual space B∗. Consider the Hammer-
stein equation

(I + KF)u = 0, (1.1)

where F : B → B∗ is a nonlinear mapping and K : B∗ → B is a linear map such that R(F) ⊂
D(K). If Ω denotes a domain of σ -finite measure dy in R

N , and κ : Ω × Ω → R and f :
Ω × R → R are measurable real-valued functions on Ω , one can define a linear integral
operator K by Kv :=

∫
Ω

κ(·, y)v(y) dy and an operator F by the Nemitskyi or superposition
operator given by Fu := f (·, u(·)) to obtain equation (1.1).

Numerous problems in differential equation theory can, as a rule, be modeled by a Ham-
merstein equation (see, e.g., Pascali and Sburlan [40]). For example, the amplitude of os-
cillation v(t) is a solution of the problem

⎧
⎨

⎩

d2v
dt2 + a2 sin v(t) = z(t), t ∈ [0, 1],

v(0) = v(1) = 0,
(1.2)
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where the driving force z(t) is periodical and odd. The constant a �= 0 depends on the
length of the pendulum and on gravity. Since the Green’s function of the problem

v′′(t) = 0, v(0) = v(1) = 0

is the triangular function

k(t, x) =

⎧
⎨

⎩

t(1 – x), 0 ≤ t ≤ x,

x(1 – t), x ≤ t ≤ 1,
(1.3)

problem (1.2) is equivalent to the nonlinear integral equation

v(t) = –
∫ 1

0
k(t, x)

[
z(x) – a2 sin v(x)

]
dx. (1.4)

If
∫ 1

0 k(t, x)z(x) dx = g(t) and v(t) + g(t) = u(t), then (1.4) can be written as the Hammerstein
integral equation

u(t) +
∫ 1

0
k(t, x)f

(
x, u(x)

)
dx = 0,

where f (x, u(x)) = a2 sin[u(x) – g(x)].
The Hammerstein equation also plays a crucial role in the theory of optimal control sys-

tems, in automation and in network theory. For example, in studying automatic control,
Narendra and Gallman [36], using a Hammerstein model, proposed an iterative method
for the identification of nonlinear systems, for samples of inputs and outputs in the pres-
ence of noise. For more on problems in optimal control, automation and network systems
that can be modeled as Hammerstein equations, see, e.g., Dolezal [30].

Several existence and uniqueness theorems have been proved for equations of Hammer-
stein type (see, e.g., Brezis and Browder [3, 4], Browder and Gupta [6], Chepanovich [7],
De Figueiredo and Gupta [28]).

A map A : D(A) ⊂ B → B∗ is called monotone if for all x, y ∈ B, 〈Ax – Ay, x – y〉 ≥ 0. The
map A is called maximal monotone if A is monotone, and in addition, R(J + λA) is B∗, for
all λ > 0. Monotone mappings were studied in Hilbert spaces by Zarantonello [46], Minty
[35], and a host of other authors. For more recent studies of monotone mappings and
Hammerstein equations, the reader may see, for example, Berinde [2], Chidume [8–10],
Chidume and Chidume [14], Goebel and Reich [31], Zeidler [47].

In general, equations of Hammerstein type are nonlinear and thus, there are no closed-
form solutions of such equations. Consequently, methods for approximating such equa-
tions are of interest. Several attempts have been made to approximate solutions of equa-
tions of Hammerstein type. An early method introduced by Brezis and Browder [5] was
in the case where one of the operators is angle bounded (see, e.g., Pascali and Sburlan
[40]). They proved strong convergence of a suitably defined Galerkin approximation to a
solution of (1.1) as the following theorem.

Theorem 1.1 Let H be a separable Hilbert space and C be a closed subspace of H . Let K :
H → C be a bounded continuous monotone operator and F : C → H be an angle-bounded
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and weakly compact mapping. For a given f ∈ C, consider the Hammerstein equation

(I + KF)u = f (1.5)

and its nth Galerkin approximation given by

(I + KnFn)un = P∗
nf , (1.6)

with Kn = P∗
nKPn : H → C and Fn = PnFP∗

n : Cn → H , where the symbols have their usual
meanings (see [40]). Then, for each n ∈ N , the Galerkin approximation (1.6) admits a
unique solution un ∈ Cn and {un} converges strongly in H to the unique solution u ∈ C
of the equation (1.5).

The first iterative methods for approximating solutions of Hammerstein equations, in
real Banach spaces more general than Hilbert spaces, as far as we know, were obtained by
Chidume and Zegeye [25] (see also Chidume [10], Chap. 13).

Let B be a real Banach space and F , K : B → B be accretive-type mappings. Let E := B×B.
Then, define T : E → E by

T[u, v] = [Fu – v, Kv + u], for [u, v] ∈ E.

We note that T[u, v] = 0 ⇐⇒ u solves (1.1) and v = Fu. With this, Chidume and Zegeye
[25] were able to prove strong convergence of an iterative algorithm defined in the Cartesian
product space E to a solution of the Hammerstein equation (1.1). Extensions of these early
results of Chidume and Zegeye [25] were obtained by several authors (see, e.g., Chidume
and Zegeye [26, 27], Chidume and Djitte [15–17], Chidume and Ofoedu [21], Chidume
and Shehu [22, 23], Chidume et al. [12, 20] Djitte and Sene [29], Ofoedu and Onyi [39],
Ofoedu and Malonza [38], Shehu [43], Minjibir and Mohammed [34], and the references
contained therein).

In 2015, Chidume and Shehu [24] introduced a new explicit iterative algorithm in the
setting of a real Hilbert space and proved the following strong convergence theorem.

Theorem 1.2 Let H be a real Hilbert space. Let K , F : H → H be bounded, continuous and
monotone mappings. Suppose that u∗ ∈ H is a solution of u + KFu = 0. Let {un} and {vn} be
sequences in H defined iteratively from arbitrary u1, v1 ∈ H by

⎧
⎨

⎩

un+1 = un – β2
n(Fun – vn) – βnαn(un – u1),

vn+1 = vn – β2
n(Kvn + un) – βnαn(vn – v1),

(1.7)

where {αn} and {βn} are real sequences in (0, 1) such that

∞∑

n=1

β2
n < ∞ and

∞∑

n=1

αnβn = ∞.

Then, there exists a real constant ε0 > 0 such that if βn < ε0αn, ∀n ≥ n0, for some n0 ∈ N,
the sequence {un} converges to u∗.
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Recently, Chidume and Bello [13], studied a coupled explicit algorithm different from
given by (1.7) and proved the following strong convergence theorem in Lp spaces, 1 < p < 2.

Theorem 1.3 Let E = Lp, 1 < p < 2. Let F : E → E∗ and K : E∗ → E be strongly monotone
and bounded maps. For (u0, v0) ∈ E × E∗, define the sequences {un} and {vn} in E and E∗

respectively by

⎧
⎨

⎩

un+1 = J–1(Jun – αn(Fun – vn)),

vn+1 = J(J–1vn – αn(Kvn + un)), n ≥ 0,
(1.8)

where {αn} ⊂ (0, 1) satisfies the following conditions:
∑∞

n=1 αn = ∞,
∑∞

n=1 α2
n < ∞ and

∑∞
n=1(αn)

q
q–1 < ∞, with q being such that 1

q + 1
p = 1. Assume that the equation u + KFu = 0

has a solution. Then there exists γ0 > 0 such that if αn ≤ γ0 for all n ≥ 1, the sequences {un}
and {vn} converge strongly to u and v, respectively, where u is the solution of u + KFu = 0
with v = Fu.

In 2017, Uba et al. [44] proved the following theorem:

Theorem 1.4 Let E be a uniformly convex and uniformly smooth real Banach space and
F : E → E∗, K : E∗ → E be maximal monotone and bounded maps. For u1 ∈ E, v1 ∈ E∗

define the sequences {un} and {vn} in E and E∗, respectively, by

⎧
⎨

⎩

un+1 = J–1(Jun – λn(Fun – vn) – λnθn(Jun – Ju1)),

vn+1 = J(J–1vn – λn(Kvn + un) – λnθn(J–1vn – J–1v1)), n ≥ 1.
(1.9)

Assume that the equation u + KFu = 0 has a solution. Then, the sequences {un} and {vn}
converge strongly to u∗ and v∗, respectively, where u∗ is the solution of u + KFu = 0 with
v∗ = Fu∗, where {λn} and {θn} are sequences in (0, 1) satisfying some appropriate conditions.

Remark 1 We observe that in Theorems 1.2, 1.3, and 1.4, the operators K and F are re-
quired to be bounded. This is a serious drawback on these theorems.

It is our purpose in this paper to first prove a significant improvement of Theorem 1.2.
We introduce a new recursive formula, and extend Theorem 1.2 to uniformly convex and
uniformly smooth real Banach spaces and, at the same time, dispense with the requirement
in Theorem 1.2 that the mappings K and F be continuous and bounded. Furthermore, us-
ing our new recursive formula, we are able to prove strong convergence without imposing
any boundedness assumption on the mappings K and F . This makes our theorem much
more applicable than Theorem 1.4. Finally, we give numerical experiments to illustrate the
convergence of the sequence of our theorem.

2 Preliminaries
In this section, we present definitions of some terms, and results that will be needed in the
proof of our main theorem.
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Definition 2.1 Let E be a smooth real Banach space. The Lyapunov functional φ : E×E →
R is defined by

φ(u, v) = ‖u‖2 – 2〈u, Jv〉 + ‖v‖2, ∀u, v ∈ E. (2.1)

It was introduced by Alber and has been studied by many authors (see, e.g., Alber [1];
Chidume et al. [11, 19]; Kamimura and Takahashi [32]; Nilsrakoo and Saejung [37]; and
the references therein). It is easy to see that from the definition of φ,

(‖u‖ – ‖v‖)2 ≤ φ(u, v) ≤ (‖u‖ + ‖v‖)2, ∀u, v ∈ E. (2.2)

Definition 2.2 Let E be a normed linear space and consider the map V : E × E∗ → R

defined by

V
(
u, u∗) = ‖u‖2 – 2

〈
u, u∗〉 +

∥
∥u∗∥∥, ∀u ∈ E, u∗ ∈ E∗.

Observe that

V
(
u, u∗) = φ

(
u, J–1u∗), ∀u ∈ E, u∗ ∈ E∗.

Lemma 2.3 (Alber and Ryazantseva [1]) Let E be a reflexive strictly convex and smooth
Banach space with E∗ as its dual. Then,

V
(
u, u∗) + 2

〈
J–1u∗ – u, v∗〉 ≤ V

(
u, u∗ + v∗), (2.3)

for all u ∈ E and u∗, v∗ ∈ E∗.

Lemma 2.4 (Alber and Ryazantseva [1]) Let E be a reflexive strictly convex and smooth
Banach space with dual space E∗. Let W : E × E → R be defined by W (u, v) = 1

2φ(v, u).
Then, ∀u, v, s ∈ E,

W (u, v) – W (s, u) ≥ 〈s – v, Ju – Js〉, i.e.,φ(v, u) – φ(u, s) ≥ 2〈s – v, Ju – Js〉,

and also, W (u, v) ≤ 〈u – v, Ju – Jv〉.

Lemma 2.5 (Chidume and Idu [18]) Let E be a smooth real Banach space with dual space
E∗. Let φ : E × E → R be the Lyapunov functional. Then,

φ(v, u) = φ(u, v) – 〈u + v, Ju – Jv〉 + 2
(‖u‖2 – ‖v‖2), ∀u, v ∈ E.

Lemma 2.6 (Rockafellar [42]; see also, Pascali and Sburlan [40]) A monotone mapping
T : E → 2E∗ is locally bounded at the interior points of its domain.

Remark 2 Let E∗ be a real strictly convex dual space with a Fréchet differentiable norm.
Let A : E → E∗ be a maximal monotone operator with no monotone extension. Let s ∈ E∗

be fixed. Then for every ρ > 0, there exists a unique uρ ∈ E such that Juρ + ρAuρ � s (see
Reich [41]). Setting Jρs = uρ , we have the resolvent Jρ := (J + ρA)–1 : E∗ → E of A for every
ρ > 0. The following is a celebrated result of Reich.
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Lemma 2.7 (Reich [41]) Let E∗ be a real strictly convex dual space with a Fréchet differen-
tiable norm, and let A be a maximal monotone operator from E to E∗ such that A–10 �= ∅.
Let s ∈ E∗ be arbitrary but fixed. For each ρ > 0 there exists a unique uρ ∈ E such that
Juρ + ρAuρ � s. Furthermore, uρ converges strongly to a unique point p ∈ A–10.

Remark 3 From Lemma 2.7, setting ρn = βn
αn

where αn
βn

→ 0, as n → ∞, s = Jv for some
v ∈ E, and yn := (J + βn

αn
A)–1s, we obtain

Ayn =
αn

βn

(
Jv – Jyn), (2.4)

yn → y∗ ∈ A–10, where A : E → E∗ is maximal monotone.

Remark 4 Let r > 0 such that ‖v‖ ≤ r,‖yn‖ ≤ r, for all n ≥ 1. We observe that equation
(2.4) yields

Jyn–1 – Jyn +
βn

αn

(
Ayn–1 – Ayn) =

(
αn–1βn – αnβn–1

αnβn–1

)
(
Jv – Jyn–1). (2.5)

From (2.5), applying Cauchy–Schwarz inequality, and using the fact that A is monotone,
we obtain

〈
yn–1 – yn, Jyn–1 – Jyn〉 ≤

(
αn–1βn – αnβn–1

αnβn–1

)
∥
∥Jv – Jyn–1∥∥

∥
∥yn–1 – yn∥∥.

It follows that if E is uniformly convex and uniformly smooth, using a result of Alber and
Ryazantseva [1] (see, e.g., Chidume and Idu [18, Lemma 2.3]), we obtain

(2L)–1δE
(
c–1

2
∥
∥yn–1 – yn∥∥

) ≤
(

αn–1βn – αnβn–1

αnβn–1

)
∥
∥Jv – Jyn–1∥∥

∥
∥yn–1 – yn∥∥

≤ 2r sup
{∥∥Jv – Jyn–1∥∥}

(
αn–1βn – αnβn–1

αnβn–1

)

, (2.6)

which gives

∥
∥yn–1 – yn∥∥ ≤ c2δ

–1
E

(
αn–1βn – αnβn–1

αnβn–1
D

)

. (2.7)

Similarly, using a result of Alber and Ryazantseva [1] (see, e.g., Chidume and Idu [18,
Lemma 2.4]), we obtain

∥
∥Jyn–1 – Jyn∥∥ ≤ c2δ

–1
E∗

(
αn–1βn – αnβn–1

αnβn–1
D

)

. (2.8)

Lemma 2.8 (Kamimura and Takahashi [32]) Let E be a uniformly convex and smooth real
Banach space, and let {un} and {vn} be two sequences of E. If either {un} or {vn} is bounded
and φ(un, vn) → 0 then ‖un – vn‖ → 0.

Lemma 2.9 (Chidume and Idu [18]) Let X, Y be real uniformly convex and uniformly
smooth spaces. Then E = X × Y is uniformly convex and uniformly smooth.
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Lemma 2.10 (Chidume and Idu [18]) Let E be a uniformly convex and uniformly smooth
real Banach space and F : E → E∗, K : E∗ → E be maximal monotone. Define A : E × E∗ →
E∗ × E by

A[u, v] = [Fu – v, Kv + u], ∀[u, v] ∈ E × E∗.

Then, A is maximal monotone.

Remark 5 From Lemma 2.7, setting ρn := βn
αn

where αn
βn

→ 0, as n → ∞, z = [z1, z2] =
JE×E∗ [u1, v1], for some [u1, v1] ∈ E × E∗, and [yn, (yn)∗] := (JE×E∗ + βn

αn
A)–1[z1, z2], we obtain

that

Jyn +
βn

αn

(
Fyn –

(
yn)∗) = z1, ∀n ≥ 1, and (2.9)

J–1(yn)∗ +
βn

αn

(
K

(
yn)∗ + yn) = z2, ∀n ≥ 1. (2.10)

Remark 6 Let yn → u∗ and (yn)∗ → v∗. From Lemma 2.7 we have that [yn, (yn)∗] converges
to a point in A–10. This implies that [u∗, v∗] ∈ A–10. Consequently, A[u∗, v∗] = 0, that is,
Fu∗ – v∗ = 0 and Kv∗ + u∗ = 0. Hence, v∗ = Fu∗ and u∗ + KFu∗ = 0.

The analytical representations of duality maps are known in Lp(Ω) and Lq(Ω) spaces,
for p > 1 and q > 1 such that 1

p + 1
q = 1:

Jz = ‖z‖2–p
Lp

∣
∣z(s)

∣
∣p–2z(s) ∈ Lq(Ω), s ∈ Ω ,

J–1z = ‖z‖2–q
Lq

∣
∣z(s)

∣
∣q–2z(s) ∈ Lp(Ω), s ∈ Ω

(see, e.g., Lindenstrauss and Tzafriri [33]).

3 Main result
Definition 3.1 A mapping A : E → E∗ is quasi-bounded if for any σ > 0 there exists τ > 0
such that whenever 〈y, Ay〉 ≤ σ‖y‖ and ‖y‖ ≤ σ then ‖Ay‖ ≤ τ .

We first prove the following lemma (see Pascali and Sburlan [40, Chap. III, Lemma 3.6]).

Lemma 3.2 Let E be a real normed space with dual space E∗. Any monotone map A :
D(A) ⊂ E → E∗ with 0 ∈ Int D(A) is quasi-bounded.

Proof By Lemma 2.6, A is locally bounded at 0. Now, A is locally bounded at 0 ⇒ ∃r > 0
such that

‖Ax‖ ≤ σ , ∀x ∈ B(0, r), for some σ > 0.

Using this σ > 0, suppose 〈Ay, y〉 ≤ σ‖y‖ and ‖y‖ ≤ σ . Then, by monotonicity of A, we
have

〈Ay, y〉 ≥ 〈Ay, x〉 + 〈Ax, y – x〉, ∀x ∈ B(0, r).
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Observe that

〈Ax, y – x〉 ≤ ∣
∣〈Ax, y – x〉∣∣

≤ ‖Ax‖(‖y‖ + ‖x‖) ≤ σ
(‖y‖ + r

)
.

Thus,

〈Ay, x〉 ≤ 〈Ay, y〉 + 〈Ax, x – y〉
≤ σ‖y‖ + σ

(‖y‖ + r
)
, ∀x ∈ B(0, r).

This implies that

∣
∣〈Ay, x〉∣∣ ≤ σ‖y‖ + σ

(‖y‖ + r
)
, ∀x ∈ B(0, r).

Thus,

sup
‖x‖≤r

∣
∣〈Ay, x〉∣∣ ≤ σ‖y‖ + σ

(‖y‖ + r
)
.

And therefore,

‖Ay‖ ≤ σ

r
‖y‖ +

σ

r
(‖y‖ + r

)
,

implying easily the quasi-boundedness of A. �

In Lemma 3.3 below, the sequences {αn}, {βn} ⊂ (0, 1) satisfy the following conditions:
(i) limn→∞ αn = 0, limn→∞ αn

βn
= 0,

∑∞
n=1 αnβn = ∞,

(ii) δ–1
E (βnM0) ≤ αnγ0; δ–1

E∗ (βnM∗
0) ≤ αnγ0;βnS∗ ≤ αnγ0, ∀n ≥ 1, for some constants,

M0, M∗
0, S∗,γ0 > 0.

Lemma 3.3 Let E be a uniformly convex and uniformly smooth real Banach space. Let
F : E → E∗, K : E∗ → E be maximal monotone mappings. For arbitrary x ∈ E, y ∈ E∗, define
the sequences {un} and {vn} in E and E∗, respectively, for u1 ∈ E, v1 ∈ E∗ by

un+1 = J–1(Jun – β2
n
(
Fun – vn) – αnβn

(
Jun – Jx

))
, (3.1)

vn+1 = J
(
J–1vn – β2

n
(
Kvn + un) – αnβn

(
J–1vn – J–1y

))
, (3.2)

where {αn} and {βn} are sequences in (0, 1) satisfying conditions (i) and (ii). Assume that
the equation u + KFu = 0 has a solution. Then, the sequences {un} and {vn} are bounded.

Proof Now, to show that sequences {un} and {vn} are bounded, set

wn =
(
un, vn), w∗ =

(
u∗, v∗) ∈ W = E × E∗,

where u∗ is a solution (1.1) with v∗ = Fu∗.
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Define Φ : W × W → R by

Φ
(
w1, w2) = φ

(
u1, u2) + φ

(
v1, v2),

where w1 = (u1, v1) and w2 = (u2, v2). Let W be endowed with the norm

∥
∥(u, v)

∥
∥

W =
(‖u‖2

E + ‖v‖2
E∗

) 1
2 .

It suffices to show that {wn} is bounded. We show this by induction. Let w1 ∈ W . Then
there exists r > 0 such that Φ(w∗, w1) ≤ r

8 . Let B := {w = (u, v) ∈ W : Φ(w∗, w) ≤ r}. It suf-
fices to show that Φ(w∗, wn) ≤ r, for all n ≥ 1. Let w, w1 ∈ B and α,β ∈ (0, 1). Then,

Φ
(
w∗, w

) ≤ r, i.e.,φ
(
u∗, u

)
+ φ

(
v∗, v

) ≤ r.

Therefore,

φ
(
u∗, u

) ≤ r and φ
(
v∗, v

) ≤ r.

Now, using inequality (2.2),

φ
(
u∗, u

) ≤ r �⇒ ‖u‖ ≤ ∥
∥u∗∥∥ +

√
r.

Since F is also locally bounded at u, there exists k1 > 0 such that

〈u, Fu〉 ≤ k1‖u‖.

Define σ := max{k1,‖u∗‖ +
√

r}. Hence, 〈u, Fu〉 ≤ σ‖u‖ and ‖u‖ ≤ σ . By Lemma 3.2, F is
quasi-bounded. Thus, there exists τ1 > 0 such that

‖Fu‖ ≤ τ1, ∀(u, v) ∈ B.

Similarly, there exists τ2 > 0 such that

‖Kv‖ ≤ τ2, ∀(u, v) ∈ B.

Define

S∗ = max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
{∥
∥β(Fu – v) + α(Ju – Jx)

∥
∥
}

+ 1, sup
{‖Ju – Jx‖} + 1,

sup
{∥
∥J–1(Ju – β2(Fu – v) – αβ(Ju – Jx)

)
– u

∥
∥
}

+ 1,
sup

{∥
∥β(Kv + u) + α

(
J–1v – J–1y

)∥
∥
}

+ 1, sup
{∥
∥J–1v – J–1y

∥
∥
}

+ 1,
sup

{∥
∥J

(
J–1v – β2(Kv + u) – αβ

(
J–1v – J–1y

))
– v

∥
∥
}

+ 1

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

where all the suprema are taken over u, v ∈ B. The boundedness of K , F , J on bounded
sets guarantees that S∗ is well defined. Let M := max{c2S∗, S∗}, M0 = M∗

0 := 2L(S∗)2 γ0 :=
min{1, r

32M }. Then, for n = 1, by construction Φ(w∗, w1) ≤ r. Assume Φ(w∗, wn) ≤ r, for
some n ≥ 1, i.e.,

φ
(
u∗, un) + φ

(
v∗, vn) ≤ r, for some n ≥ 1.
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We show that Φ(w∗, wn+1) ≤ r. For contradiction, suppose r < Φ(w∗, wn+1). Using a result
of Alber and Ryazantseva [1] (see, e.g., Chidume and Idu, [18, Lemma 2.3]) and recurrence
relation (3.1), we have

(2L)–1δE
(
c–1

2
∥
∥un+1 – un∥∥)

≤ 〈
Jun+1 – Jun, un+1 – un〉

≤ ∥
∥Jun+1 – Jun∥∥

∥
∥un+1 – un∥∥

≤ βn
[
sup

{∥
∥βn

(
Fun – vn) + αn

(
Jun – Jx

)∥
∥
}

+ 1
]∥
∥un+1 – un∥∥.

Thus,

∥
∥un+1 – un∥∥ ≤ c2δ

–1
E (βnM0). (3.3)

Similarly, using a result of Alber and Ryazantseva [1] (see, e.g., Chidume and Idu, [18,
Lemma 2.4]) and recurrence relation (3.2), we obtain

∥
∥vn+1 – vn∥∥ ≤ c2δ

–1
E∗

(
βnM∗

0
)
. (3.4)

Now, using recurrence relation (3.1), Lemma 2.3, and inequality (3.3), we have

φ
(
u∗, un+1)

= V
(
u∗, Jun – β2

n
(
Fun – vn) – αnβn

(
Jun – Jx

))

≤ V
(
u∗, Jun) – 2

〈
un+1 – u∗,β2

n
(
Fun – vn) + αnβn

(
Jun – Jx

)〉

= φ
(
u∗, un) – 2

〈
un – u∗,β2

n
(
Fun – vn) + αnβn

(
Jun – Jx

)〉

– 2
〈
un+1 – un,β2

n
(
Fun – vn) + αnβn

(
Jun – Jx

)〉

≤ φ
(
u∗, un) – 2

〈
un – u∗,β2

n
(
Fun – vn) + αnβn

(
Jun – Jx

)〉

+ 2βn
∥
∥un+1 – un∥∥

∥
∥βn

(
Fun – vn) + αn

(
Jun – Jx

)∥
∥

≤ φ
(
u∗, un) – 2β2

n
〈
un – u∗, Fun – vn〉 – 2αnβn

〈
un – u∗, Jun – Jx

〉

+ 2βnc2S∗δ–1
E (βnM0). (3.5)

Observe that, by monotonicity of F and the fact that v∗ = Fu∗, we have

〈
un – u∗, Fun – vn〉 ≥ 〈

un – u∗, v∗ – vn〉.

Thus, substituting this in inequality (3.5), we have

φ
(
u∗, un+1) ≤ φ

(
u∗, un) – 2β2

n
〈
un – u∗, v∗ – vn〉

– 2αnβn
〈
un – un+1, Jun – Jx

〉
– 2αnβn

〈
un+1 – u∗, Jun – Jun+1〉

– 2αnβn
〈
un+1 – u∗, Jun+1 – Jx

〉
+ 2βnc2S∗δ–1

E (βnM0). (3.6)



Chidume et al. Fixed Point Theory and Applications          (2020) 2020:4 Page 11 of 23

Using Lemma 2.4, we have

–2αnβn
〈
un+1 – u∗, Jun+1 – Jx

〉 ≤ αnβnφ
(
u∗, x

)
– αnβnφ

(
u∗, un+1).

Substituting this into inequality (3.6), we obtain

φ
(
u∗, un+1)

≤ φ
(
u∗, un) – αnβnφ

(
u∗, un+1) + αnβnφ

(
u∗, x

)

– 2β2
n
〈
un – u∗, v∗ – vn〉 – 2αnβn

〈
un – un+1, Jun – Jx

〉

– 2αnβn
〈
un+1 – u∗, Jun – Jun+1〉 + 2βnc2S∗δ–1

E (βnM0)

≤ φ
(
u∗, un) – αnβnφ

(
u∗, un+1) + αnβnφ

(
u∗, x

)

– 2β2
n
〈
un – u∗, v∗ – vn〉 + 2αnβn

∥
∥un – un+1∥∥

∥
∥Jun – Jx

∥
∥

+ 2αnβn
∥
∥un+1 – u∗∥∥∥

∥Jun – Jun+1∥∥ + 2βnc2S∗δ–1
E (βnM0)

≤ φ
(
u∗, un) – αnβnφ

(
u∗, un+1) + αnβnφ

(
u∗, x

)

– 2β2
n
〈
un – u∗, v∗ – vn〉 + 2αnβnc2S∗δ–1

E (βnM0)

+ 2αnβn
(
βnS∗)S∗ + 2βnc2S∗δ–1

E (βnM0). (3.7)

Similarly, using recurrence relation (3.2), Lemma 2.3, inequality (3.4), monotonicity of K ,
the fact that Kv∗ = –u∗, and Lemma 2.4, we obtain

φ
(
v∗, vn+1) ≤ φ

(
v∗, vn) – αnβnφ

(
v∗, vn+1) + αnβnφ

(
v∗, y

)

– 2β2
n
〈
vn – v∗, un – u∗〉 + 2αnβnc2S∗δ–1

E∗
(
βnM∗

0
)

+ 2αnβn
(
βnS∗)S∗ + 2βnc2S∗δ–1

E∗
(
βnM∗

0
)
. (3.8)

Thus, adding inequalities (3.7) and (3.8), we obtain

r < Φ
(
w∗, wn+1)

= φ
(
u∗, un+1) + φ

(
v∗, vn+1)

≤ Φ
(
w∗, wn) – αnβnΦ

(
w∗, wn+1) + αnβnΦ

(
w∗, w1)

+ 2αnβnc2S∗δ–1
E (βnM0) + 2αnβn

(
βnS∗)S∗

+ 2βnc2S∗δ–1
E (βnM0) + 2αnβnc2S∗δ–1

E∗
(
βnM∗

0
)

+ 2αnβn
(
βnS∗)S∗ + 2βnc2S∗δ–1

E∗
(
βnM∗

0
)

≤ Φ
(
w∗, wn) – αnβnΦ

(
w∗, wn+1) + αnβnΦ

(
w∗, w1)

+ 2α2
nβnc2S∗γ0 + 2α2

nβnS∗γ0 + 2αnβnc2S∗γ0

+ 2α2
nβnc2S∗γ0 + 2α2

nβnS∗γ0 + 2αnβnc2S∗γ0

≤ Φ
(
w∗, wn) – αnβnΦ

(
w∗, wn+1) + αnβnΦ

(
w∗, w1)

+ 2αnβnMγ0 + 2αnβnMγ0 + 2αnβnMγ0
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+ 2αnβnMγ0 + 2αnβnMγ0 + 2αnβnMγ0

≤ Φ
(
w∗, wn) – αnβnΦ

(
w∗, wn+1) +

rαnβn

8
+

3rαnβn

8

≤ r – rαnβn +
rαnβn

2
= r –

rαnβn

2
< r.

This is a contradiction. Hence, Φ(w∗, wn+1) ≤ r. Thus, Φ(w∗, wn) ≤ r, for all n ≥ 1. Conse-
quently, we have φ(u∗, un) ≤ r and φ(v∗, vn) ≤ r, for all n ≥ 1. Therefore, using inequality
(2.2), we deduce that {un} and {vn} are bounded. �

In Theorem 3.4 below, the sequences {αn}, {βn} ⊂ (0, 1) satisfy the following conditions:
(i) limn→∞ αn = 0, limn→∞ αn

βn
= 0,

∑∞
n=1 αnβn = ∞,

(ii) δ–1
E (βnM0) ≤ αnγ0; δ–1

E∗ (βnM∗
0) ≤ αnγ0;βnS∗ ≤ αnγ0, ∀n ≥ 1, for some constants,

M0, M∗
0, S∗,γ0 > 0,

(iii) δ–1
E (ηn) → 0; δ–1

E∗ (ηn) → 0,

(iv) δ–1
E (ηn)
αnβn

→ 0; δ–1
E∗ (ηn)
αnβn

→ 0,
ηn = αn–1βn–αnβn–1

αnβn–1
.

Theorem 3.4 Let E be a uniformly convex and uniformly smooth real Banach space. Let
F : E → E∗, K : E∗ → E be maximal monotone mappings. For arbitrary x ∈ E, y ∈ E∗, define
the sequences {un} and {vn} in E and E∗, respectively, for u1 ∈ E, v1 ∈ E∗, by

⎧
⎨

⎩

un+1 = J–1(Jun – β2
n(Fun – vn) – αnβn(Jun – Jx)),

vn+1 = J(J–1vn – β2
n(Kvn + un) – αnβn(J–1vn – J–1y)),

(3.9)

where {αn} and {βn} are sequences in (0, 1) satisfying conditions (i)–(iv). Assume that the
equation u + KFu = 0 has a solution. Then, the sequences {un} and {vn} converge strongly
to u∗ and v∗, respectively, where u∗ is a solution of u + KFu = 0 with v∗ = Fu∗.

Proof Using Lemmas 2.3 and 2.5, we have

φ
(
yn, un+1) = V

(
yn, Jun – β2

n
(
Fun – vn) – αnβn

(
Jun – Jx

))

≤ V
(
yn, Jun) – 2

〈
un+1 – yn,β2

n
(
Fun – vn) + αnβn

(
Jun – Jx

)〉

= φ
(
yn, un) – 2β2

n
〈
un+1 – yn, Fun – vn〉 – 2αnβn

〈
un+1 – yn, Jun – Jx

〉

= φ
(
un, yn) – 2

〈
un + yn, Jun – Jyn〉 + 2

(∥∥un∥∥2 –
∥
∥yn∥∥2)

– 2β2
n
〈
un+1 – yn, Fun – vn〉 – 2αnβn

〈
un+1 – yn, Jun – Jx

〉
. (3.10)

Observe that

φ
(
un, yn) = V

(
un, Jyn) = V

(
un, Jyn–1 + Jyn – Jyn–1)

≤ V
(
un, Jyn–1) – 2

〈
yn – un, Jyn–1 – Jyn〉.

Thus, substituting this into inequality (3.10) and using Lemma 2.5, we obtain

φ
(
yn, un+1) ≤ V

(
un, Jyn–1) – 2

〈
yn – un, Jyn–1 – Jyn〉
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– 2
〈
un + yn, Jun – Jyn〉 + 2

(∥∥un∥∥2 –
∥
∥yn∥∥2)

– 2β2
n
〈
un+1 – yn, Fun – vn〉 – 2αnβn

〈
un+1 – yn, Jun – Jx

〉

= φ
(
yn–1, un) – 2

〈
yn–1 + un, Jyn–1 – Jun〉 + 2

(∥
∥yn–1∥∥2 –

∥
∥un∥∥2)

– 2
〈
yn – un, Jyn–1 – Jyn〉 – 2

〈
un + yn, Jun – Jyn〉 + 2

(∥
∥un∥∥2 –

∥
∥yn∥∥2)

– 2β2
n
〈
un+1 – yn, Fun – vn〉 – 2αnβn

〈
un+1 – yn, Jun – Jx

〉

= φ
(
yn–1, un) + 2

(∥
∥yn–1∥∥2 –

∥
∥yn∥∥2) + 2

〈
yn–1 + un, Jun – Jyn–1〉

– 2
〈
yn – un, Jyn–1 – Jyn〉 – 2

〈
un + yn, Jun – Jyn〉

– 2β2
n
〈
un+1 – yn, Fun – vn〉 –2αnβn

〈
un+1 – yn, Jun – Jx

〉
. (3.11)

Now, we estimate the boxed term using Lemma 2.4 as

–2αnβn
〈
un+1 – yn, Jun – Jx

〉

= –2αnβn
〈
un+1 – un, Jun – Jx

〉
– 2αnβn

〈
un – yn–1, Jun – Jyn–1〉

– 2αnβn
〈
un – yn–1, Jyn–1 – Jx

〉
– 2αnβn

〈
yn–1 – yn, Jun – Jx

〉

≤ –2αnβn
〈
un+1 – un, Jun – Jx

〉
– αnβnφ

(
yn–1, un)

– 2αnβn
〈
un – yn–1, Jyn–1 – Jx

〉
– 2αnβn

〈
yn–1 – yn, Jun – Jx

〉
.

Therefore, substituting this into inequality (3.11), we have

φ
(
yn, un+1)

≤ φ
(
yn–1, un) + 2

(∥∥yn–1∥∥2 –
∥
∥yn∥∥2) + 2

〈
yn–1 + un, Jun – Jyn–1〉

– 2
〈
yn – un, Jyn–1 – Jyn〉 – 2

〈
un + yn, Jun – Jyn〉

– 2β2
n
〈
un+1 – yn, Fun – vn〉 – 2αnβn

〈
un+1 – un, Jun – Jx

〉

– αnβnφ
(
yn–1, un) – 2αnβn

〈
un – yn–1, Jyn–1 – Jx

〉

– 2αnβn
〈
yn–1 – yn, Jun – Jx

〉

= φ
(
yn–1, un) + 2

(∥∥yn–1∥∥2 –
∥
∥yn∥∥2) + 2

〈
yn–1 – yn, Jun – Jyn–1〉

+ 2
〈
un + yn, Jun – Jyn–1〉 – 2

〈
yn – un, Jyn–1 – Jyn〉

– 2
〈
un + yn, Jun – Jyn〉 – 2β2

n
〈
un+1 – yn, Fun – vn〉

– 2αnβn
〈
un+1 – un, Jun – Jx

〉
– αnβnφ

(
yn–1, un)

– 2αnβn
〈
un – yn–1, Jyn–1 – Jx

〉
– 2αnβn

〈
yn–1 – yn, Jun – Jx

〉

= φ
(
yn–1, un) – αnβnφ

(
yn–1, un) + 2

(∥
∥yn–1∥∥2 –

∥
∥yn∥∥2)

+ 2
〈
yn–1 – yn, Jun – Jyn–1〉 – 2

〈
un + yn, Jyn–1 – Jyn〉

– 2
〈
yn – un, Jyn–1 – Jyn〉 –2β2

n
〈
un+1 – yn, Fun – vn〉

– 2αnβn
〈
un+1 – un, Jun – Jx

〉
–2αnβn

〈
un – yn–1, Jyn–1 – Jx

〉
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– 2αnβn
〈
yn–1 – yn, Jun – Jx

〉
. (3.12)

We now estimate the boxed terms. Using equation (2.9) and the fact that F is monotone,
we obtain

–2β2
n
〈
un+1 – yn, Fun – vn〉 – 2αnβn

〈
un – yn–1, Jyn–1 – Jx

〉

= –2β2
n
〈
un+1 – un, Fun – vn〉 – 2β2

n
〈
un – yn, Fun – vn〉

– 2αnβn
〈
yn – yn–1, Jyn–1 – Jx

〉
– 2αnβn

〈
un – yn, Jyn–1 – Jyn〉

+ 2βn
〈
un – yn, –αn

(
Jyn – Jx

)〉

= –2β2
n
〈
un+1 – un, Fun – vn〉 + 2β2

n
〈
un – yn, vn – Fun〉

– 2αnβn
〈
yn – yn–1, Jyn–1 – Jx

〉
– 2αnβn

〈
un – yn, Jyn–1 – Jyn〉

+ 2β2
n
〈
un – yn, Fyn –

(
yn)∗〉

≤ –2β2
n
〈
un+1 – un, Fun – vn〉 – 2αnβn

〈
un – yn, Jyn–1 – Jyn〉

– 2αnβn
〈
yn – yn–1, Jyn–1 – Jx

〉
+ 2β2

n
〈
un – yn, vn –

(
yn)∗〉.

Thus, substituting this into inequality (3.12), and using inequalities (2.7), (2.8), and (3.3),
we obtain

φ
(
yn, un+1)

≤ φ
(
yn–1, un) – αnβnφ

(
yn–1, un) + 2

(∥∥yn–1∥∥2 –
∥
∥yn∥∥2)

+ 2
〈
yn–1 – yn, Jun – Jyn–1〉 – 2

〈
un + yn, Jyn–1 – Jyn〉

– 2
〈
yn – un, Jyn–1 – Jyn〉 – 2αnβn

〈
un+1 – un, Jun – Jx

〉

– 2αnβn
〈
yn–1 – yn, Jun – Jx

〉
– 2β2

n
〈
un+1 – un, Fun – vn〉

– 2αnβn
〈
un – yn, Jyn–1 – Jyn〉 – 2αnβn

〈
yn – yn–1, Jyn–1 – Jx

〉

+ 2β2
n
〈
un – yn, vn –

(
yn)∗〉

≤ (1 – αnβn)φ
(
yn–1, un) + 2N1

(∥∥yn–1 – yn∥∥ +
∥
∥Jyn–1 – Jyn∥∥)

+ 2αnβnN2
(∥∥un+1 – un∥∥ +

∥
∥yn–1 – yn∥∥ +

∥
∥Jyn–1 – Jyn∥∥)

+ 2β2
nN3

∥
∥un+1 – un∥∥ + 2β2

n
〈
un – yn, vn –

(
yn)∗〉

≤ (1 – αnβn)φ
(
yn–1, un) + 2N1

(
c2δ

–1
E ηn + c2δ

–1
E∗ ηn

)

+ 2αnβnN2
(
c2δ

–1
E (βnM0) + c2δ

–1
E ηn + c2δ

–1
E∗ ηn

)

+ 2β2
nN3c2δ

–1
E (βnM0) + 2β2

n
〈
un – yn, vn –

(
yn)∗〉

≤ (1 – αnβn)φ
(
yn–1, un) + αnβnN̂

(

c2δ
–1
E (βnM0) + c2δ

–1
E ηn + c2δ

–1
E∗ ηn

+ βnc2γ0 + c2δ
–1
E

(
ηn

αnβn

)

+ c2δ
–1
E∗

(
ηn

αnβn

))

+ 2β2
n
〈
un – yn, vn –

(
yn)∗〉, (3.13)

for some N1, N2, N3 > 0, and N̂ = max{N1, N2, N3}.
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Similarly, using Lemmas 2.3, 2.5 and 2.4, as well as equation (2.10), we obtain

φ
((

yn)∗, vn+1)

≤ φ
((

yn–1)∗, vn) – αnβnφ
((

yn–1)∗, vn) + 2
(∥
∥
(
yn–1)∗∥∥2 –

∥
∥
(
yn)∗∥∥2)

+ 2
〈(

yn–1)∗ –
(
yn)∗, J–1vn – J–1yn–1〉 + 2

〈(
yn)∗ + vn, J–1yn – J–1(yn–1)∗〉

– 2
〈(

yn)∗ – vn, J–1(yn–1)∗ – J–1(yn)∗〉 – 2αnβn
〈
vn+1 – vn, J–1vn – J–1y

〉

– 2αnβn
〈(

yn–1)∗ –
(
yn)∗, J–1vn – J–1y

〉
– 2β2

n
〈
vn+1 – vn, Kvn + un〉

– 2αnβn
〈
vn –

(
yn)∗, J–1yn–1 – J–1(yn)∗〉

– 2αnβn
〈(

yn–1)∗ –
(
yn)∗, J–1yn–1 – J–1y

〉
+ 2β2

n
〈
vn –

(
yn)∗, yn – un〉.

Since E∗ is uniformly convex and uniformly smooth, using inequalities (2.7), (2.8), and
(3.4), we obtain that, for some N̂∗ > 0,

φ
((

yn)∗, vn+1)

≤ (1 – αnβn)φ
((

yn–1)∗, vn) + αnβnN̂∗
(

c2δ
–1
E∗

(
βnM∗

0
)

+ 2c2δ
–1
E ηn

+ βnc2γ0 + c2δ
–1
E∗

(
ηn

2αnβn

)

+ c2δ
–1
E

(
ηn

αnβn

))

+ 2β2
n
〈
vn –

(
yn)∗, yn – un〉. (3.14)

Let pn = (yn, (yn)∗), wn = (un, vn). Adding inequalities (3.13) and (3.14), we obtain

Φ
(
pn, wn+1)

≤ (1 – αnβn)Φ
(
pn–1, wn) + αnβnN

(

c2δ
–1
E (βnM0) + 2βnc2γ0 + 2c2δ

–1
E ηn

+ 2c2δ
–1
E∗ ηn + 2c2δ

–1
E

(
ηn

αnβn

)

+ 2c2δ
–1
E∗

(
ηn

αnβn

)

+ c2δ
–1
E∗

(
βnM∗

0
)
)

, (3.15)

where N = max{N̂ , N̂∗}. Now, setting

an := Φ
(
pn–1, wn), σn := αnβn, cn ≡ 0,

and

bn :=
(

c2δ
–1
E (βnM0) + 2βnc2γ0 + 2c2δ

–1
E ηn + 2c2δ

–1
E∗ ηn + 2c2δ

–1
E

(
ηn

αnβn

)

+ 2c2δ
–1
E∗

(
ηn

αnβn

)

+ c2δ
–1
E∗

(
βnM∗

0
)
)

(3.16)

inequality (3.15) becomes

an+1 ≤ (1 – σn)an + σnbn + cn, n ≥ 1.
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It follows from a well known result of Xu [45] that an → 0 as n → ∞, which implies that
Φ(pn–1, wn) → 0, as n → ∞. By Lemma 2.8, we have ‖wn – pn–1‖W → 0. Consequently,
‖un – yn–1‖ → 0. Furthermore, using Remark 6, since [yn, (yn)∗] → [u∗, v∗] ∈ A–10, we have
that {un} converges strongly to a solution of the Hammerstein equation (1.1) with v∗ = Fu∗.
This completes the proof. �

Corollary 3.5 Let E = Lp (or W m
p (Ω)), 1 < p < ∞. Let F : E → E∗, K : E∗ → E be maximal

monotone mappings. For arbitrary x ∈ E, y ∈ E∗, define the sequences {un} and {vn} in E
and E∗, respectively, for u1 ∈ E, v1 ∈ E∗, by

un+1 = J–1(Jun – β2
n
(
Fun – vn) – αnβn

(
Jun – Jx

))
,

vn+1 = J
(
J–1vn – β2

n
(
Kvn + un) – αnβn

(
J–1vn – J–1y

))
,

(3.17)

where {αn} and {βn} are sequences in (0, 1) satisfying conditions (i)–(iv). Assume that the
equation u + KFu = 0 has a solution. Then, the sequences {un} and {vn} converge strongly
to u∗ and v∗, respectively, where u∗ is a solution of u + KFu = 0 with v∗ = Fu∗.

Proof Lp (or W m
p (Ω)), 1 < p < ∞ are uniformly convex and uniformly smooth. Hence, the

conclusion follows from Theorem 3.4. �

Corollary 3.6 Let H be a real Hilbert space. Let F : H → H , K : H → H be maximal
monotone mappings. For arbitrary x, y ∈ H , define the sequences {un} and {vn} in H , by:
u1, v1 ∈ H ,

un+1 = un – β2
n
(
Fun – vn) – αnβn

(
un – x

)
,

vn+1 = vn – β2
n
(
Kvn + un) – αnβn

(
vn – y

)
,

(3.18)

where {αn} and {βn} are sequences in (0, 1) satisfying conditions (i)–(iv). Assume that the
equation u + KFu = 0 has a solution. Then, the sequences {un} and {vn} converge strongly
to u∗ and v∗, respectively, where u∗ is a solution of u + KFu = 0 with v∗ = Fu∗.

Remark 7 If E = Lp (1 < p < ∞), real sequences that satisfy the hypothesis of the theorem
and corollaries above are αn = (n + 1)–a and βn = (n + 1)–b with 0 < b < 1

r a and a + b < 1
r ,

where r = max{p, q}. In particular, without loss of generality, let r = p. Then, one can choose
a := 1

p+1 and b := min{ 1
2D , 1

2p(p+1) }, where D is the constant appearing in Remark 4. The
verifications basically follow as in Chidume and Idu [18]. However, for completeness, we
verify conditions (ii)–(iv) of our theorem for Lp spaces, 1 < p < ∞. For p > 1, q > 1, E = Lp,
so that E∗ = Lq ( 1

p + 1
q = 1). Then (see, e.g., [1, p. 47]):

δE∗ (ε) = 1 –
[

1 –
(

ε

2

)q] 1
q

(0 < ε ≤ 2),

and so we obtain δ–1
E∗ (ε) = 2(1 – (1 – ε)q)

1
q ≤ 2q

1
q ε

1
q , since (1 – ε)q > 1 – qε, for q > 1. We

verify the following:
(ii) δ–1

E (βnM0) ≤ αnγ0;
(iii) δ–1

E (ηn) = δ–1
E ( αn–1βn

αnβn
– 1) → 0, as n → ∞;

(iv)
δ–1

E ( αn–1βn
αnβn –1)
αnβn

→ 0, as n → ∞.
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Now, to verify condition (ii), we have

δ–1
E (βnM0)

αn
=

2(1 – (1 – βnM0))
1
p

αn

≤ 2p
1
p (βnM0)

1
p

αn

=
2(pM0)

1
p (n + 1)–b

(n + 1)–a = 2(pM0)
1
p (n + 1)a–b → 0, as n → ∞.

Next we show that condition (iii) is satisfied:

δ–1
E

(
αn–1βn

αnβn
– 1

)

= 2
[

1 –
(

1 –
αn–1βn

αnβn–1
+ 1

)p] 1
p

= 2
[

1 –
(

2 –
αn–1βn

αnβn–1

)p] 1
p

= 2
[

1 –
(

2 –
n–a(n + 1)–b

(n + 1)–an–b

)p] 1
p

= 2
[

1 –
(

2 –
(

n + 1
n

)a( n
n + 1

)b)p] 1
p

≤ 2
[

1 –
(

2 –
(

1 +
1
n

)a)p] 1
p

≤ 2
[

1 –
(

1 –
a
n

)p] 1
p

≤ 2p
1
p

(
a
n

) 1
p

→ 0, as n → ∞.

Finally, we verify (iv). Using (iii), we have

δ–1
E ( αn–1βn

αnβn
– 1)

αnβn
≤ 2p

1
p ( a

n )
1
p

(n + 1)–(a+b)

= 2p
1
p

(
a
n

) 1
p

(n + 1)(a+b)

≤ 2a+b+1(pa)
1
p na+b– 1

p → 0, as n → ∞.

4 Numerical illustrations
In this section, we present numerical examples to compare the convergence of the se-
quence generated by our algorithm (3.9) with those produced by algorithms (1.8) and (1.9).

Example 1 In Theorems 1.3, 1.4 and 3.4, set E = R
2 then E∗ = R

2. Let

Fu =

(
3 –1
1 5

)(
u1

u2

)

, Kv =

(
7 2

–2 5

)(
v1

v2

)

.

Then, it is easy to see that F and K are continuous and strongly monotone. Thus, K and
F are maximal monotone and vector u∗ = (0, 0)T is the only solution of the equation u +
KFu = 0. In Theorem 1.3, we take αn = 1

n , in Theorem 1.4, we take λn = θn = 1

(n+1)
1
2

, and

in Theorem 3.4, we take αn = 1

(n+1)
1
2

,βn = 1

(n+1)
1
4

, n = 1, 2, . . . , as our parameters. Clearly,
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Table 1 Values choosing u1 = (1, 0)T , v1 = (2, 1)T

Algorithm (1.8) Algorithm (1.9) Algorithm (3.9)

n ‖un+1‖ ‖vn+1‖ ‖un+1‖ ‖vn+1‖ ‖un+1‖ ‖vn+1‖
1 1 2 1 2 1 2
2 5.0 9.0 3.2426 6.0711 4.138 6.665
3 5.5 24.0 5.7301 21.5393 7.464 24.944
10 0.0331 0.1479 153.338 562.409 231.37 998.396
20 0.0002 0.0007 4.1488 17.0121 37.730 73.156
41 4.780× e–6 6.6× e–6 0.0862 0.0571 3.323× e–8 1.064× e–7

50 2.377× e–6 2.387× e–6 0.0784 0.0519 successful
100 1.703× e–7 2.438× e–8 0.0561 0.0371 successful
116 9.703× e–8 2.043× e–8 0.0519 0.0343 successful
200 successful 0.03993 0.0263 successful
500 successful 0.02539 0.0167 successful
1000 successful 0.0179 0.0118 successful

Figure 1 Graph of the first 41 iterates of algorithms (1.8), (1.9) and (3.9), choosing u1 = (1, 0)T , v1 = (2, 1)T

these parameters satisfy the hypothesis of Theorems 1.3, 1.4, and 3.4. Setting a tolerance
of 10–8 and maximum number of iterations n = 1000, we obtain the iterates (see Table 1
and Fig. 1).

In Figs. 1, 2, 3 and 4, the y-axis represents the values of ‖un+1 – 0‖ while the x-axis
represents the number of iterations n.

Example 2 In Theorems 1.3, 1.4, and 3.4, set E = R
2 then E∗ = R

2. Let

Fu = (3u1 – u2 + sin u1, u1 + 7u2 + sin u2), Kv = (5v1 – 5v2, 3v1 + 6v2).

Then, it is easy to see that F and K are continuous and strongly monotone. Thus, K and
F are maximal monotone and vector u∗ = (0, 0)T is the only solution of the equation u +
KFu = 0. In Theorem 1.3, we take αn = 1

n , in Theorem 1.4, we take λn = θn = 1

(n+1)
1
2

, and

in Theorem 3.4, we take αn = 1

(n+1)
1
2

,βn = 1

(n+1)
1
4

, n = 1, 2, . . . , as our parameters. Clearly,

these parameters satisfy the hypothesis of Theorems 1.3, 1.4, and 3.4. Setting a tolerance
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Table 2 Values choosing u1 = (0, – 1
4 )
T , v1 = (– 1

2 , 1)
T

Algorithm (1.8) Algorithm (1.9) Algorithm (3.9)

n ‖un+1‖ ‖vn+1‖ ‖un+1‖ ‖vn+1‖ ‖un+1‖ ‖vn+1‖
1 0.25 1 0.25 1 0.25 1
2 2.747 7.0 1.869 4.8033 2.018 5.101
3 8.31 18.25 7.7957 16.312 8.738 19.059
10 0.683 4.419 914.49 2771.05 1040.71 3389.62
20 0.0224 0.0409 1362.57 8426.81 3612.04 13,675.89
50 6.307× e–5 0.0004 0.0929 0.2106 0.0718 0.2818
80 1.678× e–5 2.23× e–5 0.0015 0.0161 9.382× e–8 2.875× e–8

383 1.106× e–8 5.064× e–9 0.0007 0.0075 successful
500 successful 0.0006 0.0065 successful
1000 successful 0.0004 0.0046 successful

Figure 2 Graph of the first 80 iterates of algorithms (1.8), (1.9), and (3.9), choosing u1 = (0, – 1
4 )

T , v1 = (– 1
2 , 1)

T

of 10–8 and maximum number of iterations n = 1000, we obtain the iterates (see Table 2
and Fig. 2).

In Theorems 1.4 and 3.4, set E = Lp([0, 1]), E∗ = Lq([0, 1]), 1 < p < q < ∞, and 1
p + 1

q = 1.

F : Lp
(
[0, 1]

) → Lq
(
[0, 1]

)
,

u �−→ (Fu)(t) = Ju(t).

It is well known that the normalized duality map J is monotone and uniformly continuous
on bounded subsets of Lp and thus, maximal monotone. Let

K : Lq
(
[0, 1]

) → Lp
(
[0, 1]

)
,

v �−→ (Kv)(t) = tv(t).
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Since Lq([0, 1]) ⊂ Lp([0, 1]), K is well-defined. Observe that by definition K is linear. Next
we show that K is monotone. Let v, w ∈ Lq([0, 1]), then

〈
(Kv)(t) – (Kw)(t), v(t) – w(t)

〉
=

∫ 1

0

(
tv(t) – tw(t)

)(
v(t) – w(t)

)
dt

=
∫ 1

0
t
(
v(t) – w(t)

)2 dt ≥ 0.

Hence, K is monotone. Furthermore, since K is continuous, K is maximal monotone and
the function u∗(t) = (0, 0)T is the only solution of the equation u + KFu = 0. For the numer-
ical experiments, in Examples 3 and 4 below, in Theorem 1.4, we take λn = θn = 1

(n+1)
1
2

, and

in Theorem 3.4, we take αn = 1

(n+1)
1
2

,βn = 1

(n+1)
1
4

, n = 1, 2, . . . , as our parameters. Clearly,

these parameters satisfy the hypothesis of Theorems 1.4 and 3.4. We set a tolerance of
10–2 and maximum number of iterations n = 10.

Table 3 Values choosing u1(t) = t2 + 1 and v1(t) = cos t exp(–t)

Algorithm (1.9) Algorithm (3.9)
Time = 38.168 s Time = 33.342 s

n ‖un+1‖ ‖vn+1‖ ‖un+1‖ ‖vn+1‖
1 0.2644 0.4005 0.2273 0.1152
2 0.2411 0.4674 0.0535 0.3433
3 0.3784 0.3742 0.3407 0.2467
4 0.4156 0.4267 0.4038 0.3151
5 0.4518 0.3939 0.5258 0.3004
6 0.5447 0.4664 0.5794 0.3319
7 0.5232 0.3954 0.6505 0.3273
8 0.6153 0.4914 0.6800 0.3405
9 0.5780 0.3874 0.7354 0.3504
10 0.5918 0.3074 0.8007 0.2724

Figure 3 Graph of the first 10 iterates of algorithms (1.9) and (3.9), choosing u1(t) = t2 + 1 and
v1(t) = cos t exp(–t)
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Example 3 Taking p = 1.5, we have E = L1.5([0, 1]), E∗ = L3([0, 1]) (see Table 3 and Fig. 3)

F : L1.5
(
[0, 1]

) → L3
(
[0, 1]

)
,

u �−→ (Fu)(t) = Ju(t),

K : L3
(
[0, 1]

) → L1.5
(
[0, 1]

)
,

v �−→ (Kv)(t) = tv(t).

Example 4 Taking p = 5
3 , we have E = L 5

3
([0, 1]), E∗ = L2.5([0, 1]) (see Table 4 and Fig. 4)

F : L 5
3

(
[0, 1]

) → L2.5
(
[0, 1]

)
,

u �−→ (Fu)(t) = Ju(t),

K : L2.5
(
[0, 1]

) → L 5
3

(
[0, 1]

)
,

v �−→ (Kv)(t) = tv(t).

Table 4 Values choosing u1(t) = 1
1+x sin x and v1(t) = exp(t)

Algorithm (1.9) Algorithm (3.9)
Time = 17.700 s Time = 14.223 s

n ‖un+1‖ ‖vn+1‖ ‖un+1‖ ‖vn+1‖
1 1.2997 0.8496 0.8985 0.7560
2 0.6109 1.8814 0.4550 1.5637
3 1.4480 0.4603 0.9682 0.2581
4 0.4061 1.3936 0.4318 1.0630
5 1.1624 0.7364 0.8631 0.7177
6 0.7735 1.1298 0.7839 0.9367
7 1.0413 0.9851 0.9025 0.9110
8 0.9748 1.0935 0.9261 0.9713
9 1.0519 1.0873 0.9713 0.9977
10 1.0611 1.1242 1.0002 1.0301

Figure 4 Graph of the first 10 iterates of algorithms (1.9) and (3.9), choosing u1(t) = 1
1+x sin x and v1(t) = exp(t)
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Remark 8 From the numerical experiments above, we see that algorithm (3.9) is more ro-
bust and efficient than algorithms (1.8) and (1.9), and converges faster in terms of number
of iterations and CPU time in all the problems tested.

5 Conclusion
In this paper, an iterative algorithm that extends the results of Chidume and Shehu [24],
and complements the results of Uba et al. [44] is constructed. Strong convergence of
the sequence generated by the algorithm is proved in a uniformly convex and uniformly
smooth real Banach space. The theorem proved is a significant improvement of the results
of Chidume and Shehu [24] which was proved in real Hilbert spaces under the assump-
tion that F and K are continuous and bounded. These restrictions on K and F have been
dispensed with even in the more general setting considered here. Finally, numerical ex-
periments are presented to demonstrate the convergence of the sequence of the proposed
algorithm.
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