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Abstract
In this paper, we obtain a new convergence theorem for fixed points of weak
contractions in Branciari type generalized metric spaces under weaker conditions.
The proof process of the theorem is new and different from that of other authors. An
illustrative example of this theorem is to show how the new conditions extend
known results.
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1 Introduction
The concept of generalized metric spaces, which is a generalization of metric spaces, was
first defined by Branciari (see [1]) in 2000. The generalization is via the fact that the triangle
inequality is replaced by the rectangular inequality d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all
pairwise distinct points x, y, u, v of X. Afterwards, many authors studied and extended
the existence of old fixed point results in such spaces (see [1–18]). In this paper, we are
to generalize well-known related fixed points theorems. For this, we recall some basic
definitions and conclusions.

Definition 1.1 ([1]) Let X be a nonempty set and d : X × X → [0, +∞) be a mapping such
that for all x, y ∈ X and for all distinct points u, v ∈ X each of them different from x and y
satisfying the following conditions:

(d1) d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x);
(d3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (the rectangular inequality).
Then (X, d) is called a Branciari type generalized metric space.

Every metric space is a Branciari type generalized metric space, but the converse is not
true (see [2]).
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Definition 1.2 ([1]) Let (X, d) be a Branciari type generalized metric space and {xn} be a
sequence in X and x ∈ X. We call that

(i) {xn} is convergent to x if and only if d(xn, x) → 0 as n → ∞ (denoted by xn → x).
(ii) {xn} is a Cauchy sequence if and only if for each ε > 0 there exists a natural number

N such that d(xn, xm) < ε for all m, n > N .
(iii) X is complete if and only if every Cauchy sequence is convergent in X.

In 2012, Lakzian and Samet [4] obtained a fixed point theorem of the generalized metric
spaces.

Theorem 1.1 ([4]) Let (X, d) be a Hausdorff and complete generalized metric space, and
let T : X → X be a self-mapping satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
(1.1)

for all x, y ∈ X, where (i) ψ : [0, +∞) → [0, +∞) is a continuous and monotone nondecreas-
ing function with ψ(t) = 0 if and only if t = 0; (ii) ϕ : [0, +∞) → [0, +∞) is a continuous
function with ϕ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

In 2013, Liu and Chai [8] gave a generalization of Theorem 1.1.

Theorem 1.2 ([5]) Let (X, d) be a Hausdorff and complete generalized metric space, and
let T : X → X be a self-mapping satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)

)

– θ
(
a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)

) (1.2)

for all x, y ∈ X, where (i) ψ : [0, +∞) → [0, +∞) is a continuous and monotone nonde-
creasing function with ψ(t) = 0 if and only if t = 0; (ii) θ : [0, +∞) → [0, +∞) satisfies
limt→r θ (t) > 0 for r > 0 and limt→r θ (t) = 0 if and only if r = 0; (iii) ai ≥ 0(i = 1, 2, 3) with
a1 + a2 + a3 ≤ 1. Then T has a unique fixed point.

It is worth mentioning that ψ : [0, +∞) → [0, +∞) is both continuous and monotone
nondecreasing function, but we cannot obtain that t1 ≤ t2 if ψ(t1) ≤ ψ(t2). In fact, the
erroneous conclusion has been widely applied in proofs of the above theorems. This paper
is to provide the correct results related to the above theorems and to weaken the conditions
of theorems.

2 The main results
In this section, we denote by � the set of functions ψ : [0, +∞) → [0, +∞) satisfying the
following conditions:

(a1) ψ is monotone nondecreasing;
(a2) limt→r ψ(t) > 0 for r > 0 and limt→0+ ψ(t) = 0;
(a3) ψ(t) = 0 if and only if t = 0.
We denote by � the set of functions ϕ : [0, +∞) → [0, +∞) satisfying the following con-

ditions:
(b1) limt→r infϕ(t) > 0 for each r > 0;



Xue and Lv Fixed Point Theory Algorithms Sci Eng          (2021) 2021:1 Page 3 of 13

(b2) ϕ(t) → 0 implies that t → 0;
(b3) ϕ(t) = 0 if and only if t = 0.

Theorem 2.1 Let (X, d) be a Branciari type complete generalized metric space, and let
T : X → X be a self-mapping satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)

)

– ϕ
(
a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)

) (2.1)

for all x, y ∈ X, where ψ ∈ � , ϕ ∈ � and ai ≥ 0(i = 1, 2, 3) with a1 + a2 + a3 ≤ 1. Then T has
a unique fixed point.

Proof In order to prove our conclusion, we divide the proof into the following steps.
Step 1. If there exists a fixed point of T , the fixed point is unique.
Suppose that there exist two fixed points p, q with Tp = p �= q = Tq, it means that

d(p, q) �= 0. Taking x = p and y = q in (2.1), we have

ψ
(
d(p, q)

)
= ψ

(
d(Tp, Tq)

)

≤ ψ
(
a1d(p, q) + a2d(p, Tp) + a3d(q, Tq)

)

– ϕ
(
a1d(p, q) + a2d(p, Tp) + a3d(q, Tq)

)

= ψ
(
a1d(p, q)

)
– ϕ

(
a1d(p, q)

)
.

(2.2)

If a1 = 0, then ψ(d(p, q)) = 0, i.e., d(p, q) = 0, which contradicts d(p, q) �= 0. If a1 > 0, we
deduce from (2.2) that

ψ
(
d(p, q)

)
< ψ

(
a1d(p, q)

) ≤ ψ
(
d(p, q)

)

is a contradiction and p = q. Hence the fixed point is unique.
Step 2. T has the fixed point in X.
Let x0 ∈ X and construct a sequence {xn} in X by xn+1 = Txn for all n ≥ 0.
Case 1. T has a periodic point.
Case 1-1. If xn+1 = xn for some n, then xn is a fixed point of T .
For the rest, we assume that d(xn+1, xn) �= 0 for all n.
Case 1-2. If xn+2 = xn for some n, then Txn is a fixed point of T . Suppose it is not true,

then Txn �= T2xn, i.e., d(Txn, T2xn) > 0, which implies that ϕ(d(Txn, T2xn)) > 0. By (2.1), we
have

ψ
(
d(xn, xn+1)

)

= ψ
(
d
(
T2xn, Txn

))

≤ ψ
(
a1d(xn+1, xn) + a2d(xn+2, xn+1) + a3d(xn, xn+1)

)

– ϕ
(
a1d(xn+1, xn) + a2d(xn+2, xn+1) + a3d(xn, xn+1)

)

= ψ
(
(a1 + a2 + a3)d(xn, xn+1)

)
– ϕ

(
(a1 + a2 + a3)d(xn, xn+1)

)

≤ ψ
(
d(xn, xn+1)

)
– ϕ

(
(a1 + a2 + a3)d(xn, xn+1)

)
,

(2.3)
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i.e., ϕ((a1 +a2 +a3)d(xn, xn+1)) = 0. If
∑3

i=1 ai �= 0, we get that d(xn, xn+1) = 0, a contradiction.
If

∑3
i=1 ai = 0, we get from (2.3) that ψ(d(xn, xn+1)) = 0, i.e., d(xn, xn+1) = 0 is a contradiction

to the assumption, and so Txn is a fixed point of T .
Case 1-3. If there are two natural numbers m, n such that xm = xn with m – n > 2 and

xi �= xj for all n ≤ i �= j < m, we claim that Tm–n–1xn is a fixed point of T . Suppose that it
does not hold, then

Tm–n–1xn �= Tm–nxn ⇔ d
(
Tm–n–1xn, Tm–nxn

)
> 0 ⇔ d(xm–1, xm) > 0,

it implies that

ϕ
(
d
(
Tm–n–1xn, Tm–nxn

))
> 0.

Again using (2.1), we get

ψ
(
d(xm+1, xm)

)

= ψ
(
d(Txm, Txm–1)

)

≤ ψ
(
a1d(xm, xm–1) + a2d(xm+1, xm) + a3d(xm–1, xm)

)

– ϕ
(
a1d(xm, xm–1) + a2d(xm+1, xm) + a3d(xm–1, xm)

)
.

(2.4)

If d(xm, xm–1) < d(xm+1, xm), then

ψ
(
d(xm+1, xm)

)

≤ ψ
(
(a1 + a2 + a3)d(xm+1, xm)

)

– ϕ
(
a1d(xm, xm–1) + a2d(xm+1, xm) + a3d(xm–1, xm)

)

≤ ψ
(
d(xm+1, xm)

)

– ϕ
(
a1d(xm, xm–1) + a2d(xm+1, xm) + a3d(xm–1, xm)

)
,

(2.5)

i.e.,

ϕ
(
a1d(xm, xm–1) + a2d(xm+1, xm) + a3d(xm–1, xm)

)
= 0,

that is,

(a1 + a3)d(xm, xm–1) + a2d(xm+1, xm) = 0,

which implies that a1 = a2 = a3 = 0. From (2.4), we obtain that ψ(d(xm+1, xm)) = 0 ⇔
d(xm+1, xm) = 0, which is a contradiction and so d(xm+1, xm) ≤ d(xm, xm–1). Then we have

ψ
(
d(xn+1, xn)

)

= ψ
(
d(xm+1, xm)

)

= ψ
(
d(Txm, Txm–1)

)

≤ ψ
(
a1d(xm, xm–1) + a2d(xm, xm+1) + a3d(xm–1, xm)

)
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– ϕ
(
a1d(xm, xm–1) + a2d(xm, xm+1) + a3d(xm–1, xm)

)
(2.6)

≤ ψ
(
(a1 + a2 + a3)d(xm–1, xm)

)

– ϕ
(
a1d(xm, xm–1) + a2d(xm, xm+1) + a3d(xm–1, xm)

)

≤ ψ
(
d(xm, xm–1)

)

– ϕ
(
a1d(xm, xm–1) + a2d(xm, xm+1) + a3d(xm–1, xm)

)
,

then a1d(xm, xm–1) + a2d(xm, xm+1) + a3d(xm–1, xm) > 0. Otherwise, a1 = a2 = a3 = 0, we
obtain a contradiction. Therefore, (2.6) turns into

ψ
(
d(xn+1, xn)

)

≤ ψ
(
d(xm, xm–1)

)

– ϕ
(
a1d(xm, xm–1) + a2d(xm, xm+1) + a3d(xm–1, xm)

)

< ψ
(
d(xm, xm–1)

)

· · ·
≤ ψ

(
d(xn+1, xn)

)

(2.7)

a contradiction. Hence, the conclusion holds.
Case 2. T has no periodic point, i.e., xm �= xn for all m �= n.
Step 2-1. Show that limn→∞ d(xn+1, xn) = 0. Taking x = xn, y = xn–1 in (2.1), we have

ψ
(
d(xn+1, xn)

)

= ψ
(
d(Txn, Txn–1)

)

≤ ψ
(
a1d(xn, xn–1) + a2d(xn, xn+1) + a3d(xn–1, xn)

)

– ϕ
(
a1d(xn, xn–1) + a2d(xn, xn+1) + a3d(xn–1, xn)

)
.

(2.8)

If d(xn, xn–1) < d(xn+1, xn), then

ψ
(
d(xn+1, xn)

)

≤ ψ
(
d(xn+1, xn)

)

– ϕ
(
a1d(xn, xn–1) + a2d(xn, xn+1) + a3d(xn–1, xn)

)
,

(2.9)

it implies that

ϕ
(
a1d(xn, xn–1) + a2d(xn, xn+1) + a3d(xn–1, xn)

)
= 0, (2.10)

then a1 = a2 = a3. Thus

ψ
(
d(xn+1, xn)

)
= 0 ⇔ d(xn+1, xn) = 0,

a contradiction. Hence

d(xn+1, xn) ≤ d(xn, xn–1) (2.11)
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for all n. Since ψ is monotone nondecreasing, then

ψ
(
d(xn+1, xn)

) ≤ ψ
(
d(xn, xn–1)

)
.

There exist nonnegative numbers r and r∗ such that

lim
n→∞ d(xn+1, xn) = r, lim

n→∞ψ
(
d(xn+1, xn)

)
= r∗.

If r > 0, we get

lim
n→∞

[
a1d(xn, xn–1) + a2d(xn, xn+1) + a3d(xn–1, xn)

]

= (a1 + a2 + a3)r > 0,
(2.12)

then

lim
n→∞ infϕ

(
a1d(xn, xn–1) + a2d(xn, xn+1) + a3d(xn–1, xn)

)
> 0.

By (2.8), we have

ψ
(
d(xn+1, xn)

)

≤ ψ
(
d(xn, xn–1)

)

– ϕ
(
a1d(xn, xn–1) + a2d(xn, xn+1) + a3d(xn–1, xn)

)
.

(2.13)

Letting n → ∞ in (2.13), taking lower limits on each side of the above inequality, we de-
duce that

lim
n→∞ infϕ

(
a1d(xn, xn–1) + a2d(xn, xn+1) + a3d(xn–1, xn)

) ≤ 0,

a contradiction, and so limn→∞ d(xn+1, xn) = 0.
Step 2-2. Show that limn→∞ d(xn+2, xn) = 0. Again taking x = xn+1, y = xn–1 in (2.1), then

ψ
(
d(xn+2, xn)

)

= ψ
(
d(Txn+1, Txn–1)

)

≤ ψ
(
a1d(xn+1, xn–1) + a2d(xn+2, xn+1) + a3d(xn–1, xn)

)

– ϕ
(
a1d(xn+1, xn–1) + a2d(xn+2, xn+1) + a3d(xn–1, xn)

)

≤ ψ
(
a1d(xn+1, xn–1) + a2d(xn–1, xn) + a3d(xn–1, xn)

)

– ϕ
(
a1d(xn+1, xn–1) + a2d(xn+2, xn+1) + a3d(xn–1, xn)

)
.

(2.14)

If
∑3

i=1 ai = 0, then ai = 0 for i = 1, 2, 3. Thus, ψ(d(xn+2, xn)) = 0, a contradiction. If
∑3

i=1 ai �=
0, we consider the following cases.
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Case 2-2-1. If there exists a infinite subsequence {xn(i)} of {xn} such that d(xn(i), xn(i)–1) <
d(xn(i)+1, xn(i)–1) for all i. Without loss of generality, we have

d(xn(i), xn(i)–2) ≤ d(xn(i)–1, xn(i)–2)

≤ d(xn(i)–2, xn(i)–3)

≤ · · · · · ·
≤ d(xn(i–1), xn(i–1)–1)

< d(xn(i–1)+1, xn(i–1)–1)

(2.15)

for all i ≥ 1. Again by (2.1), we get

ψ
(
d(xn(i)+1, xn(i)–1)

)

= ψ
(
d(Txn(i), Txn(i)–2)

)

≤ ψ
(
a1d(xn(i), xn(i)–2) + a2d(xn(i)+1, xn(i))

+ a3d(xn(i)–1, xn(i)–2)
)

– ϕ
(
a1d(xn(i), xn(i)–2)

+ a2d(xn(i)+1, xn(i)) + a3d(xn(i)–1, xn(i)–2)
)

≤ ψ
(
(a1 + a2 + a3)d(xn(i)–1, xn(i)–2)

)

– ϕ
(
a1d(xn(i), xn(i)–2) + a2d(xn(i)+1, xn(i))

+ a3d(xn(i)–1, xn(i)–2)
)

≤ ψ
(
d(xn(i)–1, xn(i)–2)

)
– ϕ

(
a1d(xn(i), xn(i)–2)

+ a2d(xn(i)+1, xn(i)) + a3d(xn(i)–1, xn(i)–2)
)

(2.16)

for all i. If
∑3

i=1 ai = 0, then ai = 0 for i = 1, 2, 3. Thus, we have ψ(d(xn(i)+1, xn(i)–1)) = 0, i.e.,
d(xn(i)+1, xn(i)–1) = 0 is a contradiction. If

∑3
i=1 ai �= 0, then we get from (2.16) and (2.15)

that

ψ
(
d(xn(i)+1, xn(i)–1)

)

≤ ψ
(
d(xn(i)–1, xn(i)–2)

)
– ϕ

(
a1d(xn(i), xn(i)–2)

+ a2d(xn(i)+1, xn(i)) + a3d(xn(i)–1, xn(i)–2)
)

< ψ
(
d(xn(i)–1, xn(i)–2)

)

· · · · · ·
≤ ψ

(
d(xn(i–1), xn(i–1)–1)

)

≤ ψ
(
d(xn(i–1)+1, xn(i–1)–1)

)
.

(2.17)

It follows from (2.17) and the result of Step 2-1 that

ψ
(
d(xn(i)+1, xn(i)–1)

)
< ψ

(
d(xn(i)–1, xn(i)–2)

) → 0
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as i → ∞, that is,

lim
i→∞ψ

(
d(xn(i)+1, xn(i)–1)

)
= 0. (2.18)

And we also obtain from (2.17) that

ψ
(
d(xn(i)+1, xn(i)–1)

)
< ψ

(
d(xn(i–1)+1, xn(i–1)–1)

)
,

which implies that

d(xn(i)+1, xn(i)–1) < d(xn(i–1)+1, xn(i–1)–1),

so the sequence {d(xn(i)+1, xn(i)–1)} is monotone decreasing and bounded below, there exists
R ≥ 0 such that

lim
i→∞ d(xn(i)+1, xn(i)–1) = R.

If R > 0, then

lim
i→∞ψ

(
d(xn(i)+1, xn(i)–1)

)
> 0

contradicts (2.18). Thus d(xn(i)+1, xn(i)–1) → 0 as i → ∞.
Case 2-2-2. If there exists an infinite subsequence {xn(j)} of {xn} such that

d(xn(j)+1, xn(j)–1) ≤ d(xn(j), xn(j)–1),

then d(xn(j)+1, xn(j)–1) → 0 as j → ∞.
Therefore, in two cases we proved that limn→∞ d(xn+2, xn) = 0.
Step 2-3. Show that {xn} is a Cauchy sequence. Suppose, on the contrary, that there exists

ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} such that

d(xm(k), xn(k)) ≥ ε

for n(k) > m(k) > k with n(k) is the smallest index, and so we have

d(xm(k), xn(k)–1) < ε

for all k. Applying the rectangular inequality, we obtain that

ε ≤ d(xm(k), xn(k))

≤ d(xm(k), xn(k)–1) + d(xn(k)–1, xn(k)–2) + d(xn(k)–2, xn(k))

< ε + d(xn(k)–1, xn(k)–2) + d(xn(k)–2, xn(k)),

then d(xm(k), xn(k)) → ε as k → ∞. Similarly,

d(xm(k), xn(k)) – d(xm(k), xm(k)–1) – d(xn(k)–1, xn(k))
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≤ d(xm(k)–1, xn(k)–1)

≤ d(xm(k)–1, xm(k)) + d(xm(k), xn(k)) + d(xn(k), xn(k)–1),

then d(xm(k)–1, xn(k)–1) → ε as k → ∞. Furthermore, there exists K such that

d(xm(k)–1, xn(k)–1) >
ε

2
, d(xm(k), xm(k)–1) <

ε

2
, d(xn(k), xn(k)–1) <

ε

2

for m(k), n(k) > K . Again using (2.1), then

ψ
(
d(xm(k), xn(k))

)

= ψ
(
d(Txm(k)–1, Txn(k)–1)

)

≤ ψ
(
a1d(xm(k)–1, xn(k)–1) + a2d(xm(k), xm(k)–1)

+ a3d(xn(k), xn(k)–1)
)

– ϕ
(
a1d(xm(k)–1, xn(k)–1)

+ a2d(xm(k), xm(k)–1) + a3d(xn(k), xn(k)–1)
)

≤ ψ
(
(a1 + a2 + a3)d(xm(k)–1, xn(k)–1)

)

– ϕ(a1d
(
xm(k)–1, xn(k)–1 + a2d(xm(k), xm(k)–1)

+ a3d(xn(k), xn(k)–1)
)

≤ ψ
(
d(xm(k)–1, xn(k)–1)

)
– ϕ

(
a1d(xm(k)–1, xn(k)–1)

+ a2d(xm(k), xm(k)–1) + a3d(xn(k), xn(k)–1)
)
.

(2.19)

Taking the lower limit as n → ∞ in the above inequality, (2.19) yields

lim
k→∞

infϕ
(
a1d(xm(k)–1, xn(k)–1) + a2d(xm(k), xm(k)–1)

+ a3d(xn(k), xn(k)–1)
) ≤ 0.

On the other hand,

lim
k→∞

[
a1d(xm(k)–1, xn(k)–1) + a2d(xm(k), xm(k)–1)

+ a3d(xn(k), xn(k)–1)
]

= a1ε.
(2.20)

If a1 = 0, then we obtain from (2.19) that

ψ
(
d(xm(k), xn(k))

)

≤ ψ
(
a1d(xm(k)–1, xn(k)–1) + a2d(xm(k), xm(k)–1)

+ a3d(xn(k), xn(k)–1)
)

→ 0

(2.21)
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as k → ∞, i.e., limk→∞ ψ(d(xm(k), xn(k))) = 0, a contradiction. If a1 �= 0, then (2.20) implies
that

lim
k→∞

infϕ
(
a1d(xm(k)–1, xn(k)–1) + a2d(xm(k), xm(k)–1)

+ a3d(xn(k), xn(k)–1)
)

> 0,
(2.22)

which is a contradiction. Therefore, {xn} is a Cauchy sequence. Since (X, d) is complete,
there exists q ∈ X such that limn→∞ xn = q.

Step 2-4. Let us show that q is a fixed point of T . Suppose that it is not the case, then q
is not a fixed point of T , i.e., d(q, Tq) > 0. Since

d(q, Tq) – d(q, xn) – d(xn, xn+1) ≤ d(Tq, Txn)

≤ d(Tq, q) + d(q, xn) + d(xn, xn+1),

then

lim
n→∞ d(Tq, xn+1) = d(Tq, q) > 0.

Thus,

lim
n→∞ψ

(
d(Tq, xn+1)

)
> 0.

By (2.1), we get

ψ
(
d(Tq, xn+1)

)

= ψ
(
d(Tq, Txn)

)

≤ ψ
(
a1d(q, xn) + a2d(q, Tq) + a3d(xn+1, xn)

)

– ϕ
(
a1d(q, xn) + a2d(q, Tq) + a3d(xn+1, xn)

)
.

(2.23)

If a2 = 0, then (2.23) yields

ψ
(
d(Tq, xn+1)

) ≤ ψ
(
a1d(q, xn) + a3d(xn+1, xn)

) → 0 (2.24)

as n → ∞, i.e., limn→∞ ψ(d(Tq, xn+1)) = 0, a contradiction. If a2 �= 0, then we have

lim
n→∞ infϕ

(
a1d(q, xn) + a2d(q, Tq) + a3d(xn+1, xn)

)
> 0.

And we get from (2.23) that

ψ
(
d(Tq, xn+1)

)

≤ ψ
(
a1d(q, xn) + d(q, Tq) + a3d(xn+1, xn)

)

– ϕ
(
a1d(q, xn) + a2d(q, Tq) + a3d(xn+1, xn)

)
.

(2.25)
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Since

lim
n→∞

[
a1d(q, xn) + d(q, Tq) + a3d(xn+1, xn)

]
= d(Tq, q),

then

lim
n→∞ψ

(
a1d(q, xn) + d(q, Tq) + a3d(xn+1, xn)

)
= lim

n→∞ψ
(
d(Tq, xn+1)

)
.

Taking lower limits as n → ∞ on either side of inequality (2.25), then

lim
n→∞ infϕ

(
a1d(q, xn) + a2d(q, Tq) + a3d(xn+1, xn)

)
= 0,

which is a contradiction, and hence q = Tq. �

Remark 2.1 If a1 = 1, a2 = a3 = 0 and ψ , ϕ are all continuous in Theorem 2.1, then we
obtain Theorem 2.1 of [4]. If ψ is continuous and ϕ has limit in Theorem 2.1, then we
obtain the main results of [8].

Remark 2.2 In the proofs of the main theorems of [4, 19], and [8], there exists a common
problem for monotonicity of function ψ , which is unreasonable that ψ(t1) ≤ ψ(t2) implies
that t1 ≤ t2. It is as follows:

(i) In page 3 of [19], (2.2) implies (2.3).
(ii) In line 5 to line 3 from the bottom of page 903 of [4] and in line 7 to 10 from the top

of page 904 of [4].
(iii) The above problems still exist in the proof of the main theorem in [8].
In addition, the proof process of Theorem 2.1 is different from that of [4, 19], and [8].

As a corollary of Theorem 2.1, taking a1 = 1, a2 = a3 = 0, we obtain the following result.

Corollary 2.1 Let (X, d) be a Branciari type complete generalized metric space, and let
T : X → X be a self-mapping satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, y)

)
– ϕ

(
d(x, y)

)
(2.26)

for all x, y ∈ X, where ψ and ϕ are defined as in Theorem 2.1. Then T has a unique fixed
point.

Similar results are obtained from Theorem 2.1 putting a1 = a3 = 0, a2 = 1 or a1 = a2 = 0,
a3 = 1.

Corollary 2.2 Let (X, d) be a Branciari type complete generalized metric space, and let
T : X → X be a self-mapping satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(x, Tx)

)
– ϕ

(
d(x, Tx)

)

or

ψ
(
d(Tx, Ty)

) ≤ ψ
(
d(y, Ty)

)
– ϕ

(
d(y, Ty)

)
(2.27)
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for all x, y ∈ X, where ψ and ϕ are defined as in Theorem 2.1. Then T has a unique fixed
point.

Further, we obtain the following result which includes Corollary 5 of [7].

Corollary 2.3 Let (X, d) be a Branciari type complete generalized metric space, and let
T : X → X be a self-mapping satisfying

ψ
(
d(Tx, Ty)

) ≤ ψ
(
max

{
d(x, y), d(x, Tx), d(y, Ty)

})

– ϕ
(
max

{
d(x, y), d(x, Tx), d(y, Ty)

}) (2.28)

for all x, y ∈ X, where ψ and ϕ are defined as in Theorem 2.1. Then T has a unique fixed
point.

Finally, we introduce a simple example [7] that supports the result of our Theorem 2.1.

Example 2.1 ([7]) Let X = A ∪ B, where A = { 1
2 , 1

3 , 1
4 , 1

5 } and B = [1, 2]. Define the general-
ized metric on X as follows:

d(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(y, x), x, y ∈ X,

0, x, y ∈ X with x = y,

0.3, x = 1
2 , y = 1

3 or x = 1
4 , y = 1

5 ,

0.2, x = 1
2 , y = 1

5 or x = 1
3 , y = 1

4 ,

0.6, x = 1
2 , y = 1

4 or x = 1
5 , y = 1

3 ,

|x – y|, x, y ∈ B or x ∈ A, y ∈ B.

Then (X, d) is a Branciari type generalized metric space, but it is not a metric space. In
fact,

0.6 = d
(

1
2

,
1
4

)
> d

(
1
2

,
1
3

)
+ d

(
1
3

,
1
4

)
= 0.5.

Let T : X → X be defined by

Tx =

⎧
⎪⎪⎨

⎪⎪⎩

1
5 , x ∈ [1, 2],
1
4 , x ∈ { 1

2 , 1
3 , 1

4 },
1
3 , x = 1

5 .

Define ψ(t) = t, ϕ(t) = t
5 , t ∈ [0, +∞). Then T satisfies

ψ
(
d(Tx, Ty)

) ≤ ψ
(
a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)

)

– ϕ
(
a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)

)

for all x, y ∈ X, where a1 = 0.4, a2 = 0.4, a3 = 0.2 and T has a unique fixed point x = 1
4 .
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