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Abstract
In this paper, we investigate the existence and the uniqueness of a common fixed
point of a pair of self-mappings satisfying new contractive type conditions on a
modular metric space endowed with a reflexive digraph. An application is given to
show the use of our main result.
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1 Introduction and preliminaries
More generalized contractive type conditions are considered in the study of the existence
and uniqueness of the fixed point. Alber and Guerre-Delabriere in [2] introduced a class
of weakly contractive maps on closed convex sets of Hilbert spaces. In [9], Rhoades ex-
tended a part of this study to an arbitrary Banach space. The notion of weak contrac-
tion has been studied by other authors in the setting of metric spaces (see [8, 12] and
the references therein). In [13], Zhang gave some new generalized contractive type con-
ditions for a pair of mappings in a metric space and proved some common fixed point
results for these mappings. Let F : [0, +∞[ −→R be a function satisfying the three condi-
tions:

(i) F(0) = 0 and F(t) > 0 for all t > 0;
(ii) F is nondecreasing on [0, +∞[;

(iii) F is continuous on [0, +∞[.
Consider the function φ : [0, +∞[ −→ [0, +∞[ such that

(i) φ(t) < t for all t > 0;
(ii) φ is nondecreasing and right upper semicontinuous on [0, +∞[;

(iii) limn→+∞ φn(t) = 0 for all t > 0.
In this paper, motivated by some works as [10], we extend the following theorem to the
setting of the modular metric space endowed with a reflexive digraph.
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Theorem ([13]) Let X be a complete metric space, and let T , S : X −→ X be two self-
mappings satisfying

F
(
d(Tx, Sy)

) ≤ φ(F
(
M(x, y)

)
for each x, y ∈ X,

where

M(x, y) = max

{
d(x, y), d(Tx, x), d(Sy, y),

d(Tx, y) + d(Sy, x)
2

}
.

Then T and S have a unique common fixed point in X. Moreover, for each x0 ∈ X, the
iterative sequence {xn} with x2n+1 = Tx2n and x2n+2 = Sx2n+1 converges to the common fixed
point of T and S.

In the sequel, we recall some basic notions: Let X be a nonempty set. For a function
]0, +∞[ × X × X → [0, +∞], we will use the notation

_λ(x, y) = (λ, x, y) for all λ > 0 and x, y ∈ X.

Definition 1.1 ([7]) A function ω : ]0, +∞[ × X × X → [0, +∞] is said to be modular
metric on X if it satisfies the following conditions:

(i) Given x, y ∈ X , x = y if and only if ωλ(x, y) = 0 for all λ > 0;
(ii) For all x, y ∈ X , for all λ > 0, ωλ(x, y) = ωλ(y, x);

(iii) For all x, y, z ∈ X and for all λ,μ > 0, ωλ+μ(x, y) ≤ ωλ(x, z) + ωμ(z, y).
In this case, (X,ω) is called modular metric space.

The modular ω is said to be regular if condition (i) holds for some λ > 0.
The modular ω is said to be convex if, for all λ,μ > 0 and x, y, z ∈ X, we have

ωλ+μ(x, y) ≤ λ

λ + μ
ωλ(x, z) +

μ

λ + μ
ωμ(z, y).

Let (X,ω) be a modular metric space. Fix x0 ∈ X. Set

Xω = Xω(x0) =
{

x ∈ X : ωλ(x, x0) −→ 0 as λ −→ ∞}

and

X∗
ω = X∗

ω(x0) =
{

x ∈ X : ∃λ > 0,ωλ(x, x0) < ∞}
.

The two linear spaces Xω and X∗
ω are said to be modular spaces (around x0). It is clear that

Xω ⊆ X∗
ω .

Definition 1.2 ([7]) We say that ω satisfies the �2-type condition if, for every α > 0, there
exists a constant Kα > 0 such that

ω λ
α

(x, y) ≤ Kαωλ(x, y)

for all x, y ∈ Xω and any λ > 0.
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Remark 1.3 If ω satisfies the �2-type condition, then ω is regular and Xω = X∗
ω = X.

A condition weaker than the �2-type condition is often used in the literature:

Definition 1.4 We say that ω satisfies the �2-condition if limn→+∞ ωλ(xn, x) = 0 for some
λ > 0 implies that limn→+∞ ωλ(xn, x) = 0 for all λ > 0.

It is clear that if ω satisfies the �2-type condition, then ω satisfies the �2-condition, and
that the converse is not true. Throughout this paper, we consider the modular metrics
satisfying the �2-type condition, and we adopt the definitions of some topological notions
as stated in [11].

Definition 1.5 Let ω be a modular metric on X.
1. We say that a sequence {xn} ⊂ Xω is ω-convergent to some x ∈ Xω if

limn→+∞ ωλ(xn, x) = 0 for some λ > 0. We will call x the ω-limit of {xn}.
If ω satisfies the �2-type condition, then limn→+∞ ωλ(xn, x) = 0 for all λ > 0.

2. We say that a sequence {xn} ⊂ Xω is ω-Cauchy if, for some λ > 0,

lim
n,m→+∞ωλ(xn, xm) = 0.

If ω satisfies the �2-type condition, then {xn} is ω-Cauchy if
limn,m→+∞ ωλ(xn, xm) = 0 for all λ > 0.

3. We say that M ⊂ Xω is ω-closed if the ω-limit of any ω-convergent sequence of M is
in M.

4. We say that M ⊂ Xω is ω-complete if any ω-Cauchy sequence in M is ω-convergent
and its ω-limit belongs to M.

5. We say that ω satisfies the Fatou property if, for some λ > 0, we have

ωλ(x, y) ≤ lim inf
n→+∞ ωλ(xn, y)

for any sequence {xn} ⊂ Xω which is ω-convergent to x and for any y ∈ Xω .

Let V be an arbitrary set. A directed graph, or digraph, is a pair G = (V , E) where E is
a subset of the Cartesian product V × V . The elements of V are called vertices or nodes
of G, and the elements of E are the edges also called oriented edges or arcs of G. An edge
of the form (v, v) is a loop on v. Another way to express that E is a subset of V × V is to
say that E is a binary relation over V . Given a digraph G, the set of vertices (respectively
of edges) of G is denoted by V (G) (respectively E(G)). A digraph G′ = (V ′, E′) is said to be
an induced subgraph of a digraph G = (V , E) on V ′ if V ′ ⊆ V and E′ = E ∩ (V ′ × V ′). We
denote G′ by G[V ′].

The digraph G = (V , E) is said to be
(i) transitive if whenever (x, y) ∈ E and (y, z) ∈ E, then (x, z) ∈ E.

(ii) reflexive if � := {(v, v) : v ∈ V } is a subset of E.
A vertex x is said to be

(i) a start point of G if there exists no vertex y such that (y, x) ∈ E.
(ii) isolated if, for each vertex y �= x, we have neither (x, y) ∈ E nor (y, x) ∈ E.
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Given two vertices x, y ∈ V . A path in G, from (or joining) x to y is a sequence of vertices
p = {ai}0≤i≤n, n ∈N

∗ such that a0 = x, an = y and (ai, ai+1) ∈ E for all i ∈ {0, 1, . . . , n – 1}. The
integer n is the length of the path p. If x = y and n > 1, the path p is called a directed cycle.
An acyclic digraph is a digraph which has no directed cycle.

We denote by y ∈ [x]G the fact that there is a directed path in G joining x to y.
A sequence {xn}n∈N is said to be G-nondecreasing if xn+1 ∈ [xn]G for all n ∈N.
A modular metric space (X,ω) endowed with a digraph G such that V (G) = X is denoted

by (X,ω, G). In recent years, there has been a great interest in the study of the fixed point
property in modular metric spaces endowed with a partial order, see [5] and the references
therein.

In this work, we investigate the existence and uniqueness of the common fixed point of a
pair of mappings satisfying a generalized contractive condition in the setting of a modular
metric space with a reflexive digraph. The main result is illustrated by an example and is
used to show the existence of a solution of a system of Fredholm integral equations.

As in [6], we use the property (OSC) defined as follows.

Definition 1.6 Let (X,ω, G) be a modular metric space endowed with a digraph. We say
that X satisfies the property (OSC) if, for any G-nondecreasing sequence {xn} ⊆ X which
is ω-convergent to x ∈ X, we have x ∈ [xn]G for all n ∈N.

2 Main result
The following technical lemmas borrowed from [5] are useful in the sequel and highlight
the use of the �2-type condition to establish the main result.

Lemma 2.1 If ω satisfies the �2-type condition, then

ωλ(x, y) < ∞ for all λ > 0 and for all (x, y) ∈ X2
ω.

Lemma 2.2 Let s, t ∈ N
∗. If ω satisfies the �2-type condition and {xn} is not ω-Cauchy,

then there exist ε > 0 and two subsequences of integers {nk} and {mk} such that nk > mk ≥ k,
ω2s (xnk , xmk ) ≥ ε, and ω 1

2t
(xnk –1, xmk ) < ε.

From now on, we mean 1 instead of λ for the same reason Abdou and Khamsi used in
[1]. One can see that the proof of the main result remains even if we replace 1 with any
λ > 0.

Let ψ : [0, +∞[ −→ [0, +∞[ be a function satisfying the two conditions:
(i) ψ(t) < t for all t > 0;

(ii) ψ is right upper semicontinuous on [0, +∞[.
Let

M(x, y) = max

{
ω1(x, y),ω1(x, Sx),ω1(y, Ty),

ω2(x, Ty) + ω2(y, Sx)
2

}

and

Ox0 (S, T) =
{

(TS)n(x0), S(TS)n(x0) : n ∈N
}

.
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Theorem 2.1 Let (X,ω, G) be a modular metric space endowed with a reflexive digraph
G where ω satisfies the �2-type condition and the Fatou property. Let C be an ω-complete
nonempty subset of Xω and T , S : C → C be two self-mappings. If the following conditions
are satisfied:

(i) for all x, y ∈ C,

(
y ∈ [x]G or x ∈ [y]G

) �⇒ F
(
ω1(Sx, Ty)

) ≤ ψ
(
F
(
M(x, y)

))
; (1)

(ii) there exists an element x0 ∈ C such that the induced subgraph G[Ox0 (S, T)] is a
directed path with a unique starting point x0;

(iii) ω satisfies the property (OSC),
then S and T have a common fixed point in C.

Proof Let x0 be an element of C such that G[Ox0 (S, T)] is a directed path. Consider the
sequence {xn} defined by

x2n+1 = Sx2n and x2n+2 = Tx2n+1 for all n ∈N.

Condition (ii) insures that {xn} is G-nondecreasing. If there exists an integer n such that

x2n = x2n+1 = x2n+2,

then x2n is a common fixed point of S and T . Otherwise, suppose that

x2n �= x2n+1 or x2n �= x2n+2 for all n ∈ N.

Let n ∈ N. From x2n+1 ∈ [x2n]G and applying (1) for x = x2n and y = x2n+1, we obtain

F
(
ω1(x2n+1, x2n+2)

) ≤ ψ
(
F
(
M(x2n, x2n+1)

))
. (2)

From

M(x2n, x2n+1) = max

{
ω1(x2n, x2n+1),ω1(x2n+1, x2n+2),

ω2(x2n, x2n+2)
2

}

and

ω2(x2n, x2n+2)
2

≤ ω1(x2n, x2n+1) + ω1(x2n+1, x2n+2)
2

,

it follows that

M(x2n, x2n+1) = max
{
ω1(x2n, x2n+1),ω1(x2n+1, x2n+2)

}
.

If we suppose that there exists an integer n such that

ω1(x2n, x2n+1) ≤ ω1(x2n+1, x2n+2),
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then

M(x2n, x2n+1) = ω1(x2n+1, x2n+2).

Thus

F
(
ω1(x2n+1, x2n+2)

) ≤ ψ
(
F
(
ω1(x2n+1, x2n+2)

))
,

which implies that F(ω1(x2n+1, x2n+2)) = 0. Hence, x2n+1 = x2n+2 and, from (2), x2n = x2n+1, a
contradiction. Hence, for each integer n, we have

ω1(x2n+1, x2n+2) ≤ ω1(x2n, x2n+1).

By the same argument, if we take, in inequality (1), x = x2n–1 and y = x2n, we obtain

ω1(x2n, x2n+1) < ω1(x2n–1, x2n) for all n ∈N
∗.

Then ω1(xn+1, xn+2) < ω1(xn, xn+1) for all n ∈ N. Thus, the sequence {ω1(xn, xn+1)} is de-
creasing and bounded below. Therefore it is ω-convergent to some r ≥ 0. Since

lim
n→+∞ M(x2n, x2n+1) = lim

n→+∞ max
{
ω1(x2n, x2n+1),ω1(x2n+1, x2n+2)

}
= r,

by letting to limit superior in inequality (2), we obtain

F(r) ≤ lim sup
n

ψ(F
(
M(x2n, x2n+1)

) ≤ ψ
(
F(r)

)
,

which implies that r = 0. Thus, limn→+∞ ω1(xn, xn+1) = 0.
Let us prove that the sequence {xn} is ω-Cauchy. For this, it is sufficient to show that

the subsequence {x2n} is ω-Cauchy. Assume the contrary. Then, according to Lemma 2.2,
there exists ε > 0 such that we can find two subsequences {mk} and {nk} of positive integers
satisfying nk > mk ≥ k such that the following inequalities hold:

ω8(x2nk , x2mk ) ≥ ε and ω 1
4

(x2nk–1, x2mk ) < ε.

If we take x = x2nk and y = x2mk–1, then y ∈ [x]G and inequality (1) becomes

ψ(F
(
ω1(x2nk +1, x2mk )

) ≤ F
(
M(x2nk , x2mk –1)

)
,

where

M(x2nk , x2mk–1) = max

{
ω1(x2nk , x2mk–1),ω1(x2nk , x2nk +1),ω1(x2mk –1, x2mk ),

ω2(x2nk , x2mk ) + ω2(x2mk–1, x2nk +1)
2

}
.

Since

ε ≤ ω8(x2nk , x2mk ) ≤ ω2(x2nk , x2mk )
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≤ ω1(x2nk , x2mk )

≤ ω 1
2

(x2nk–1, x2mk ) + ω 1
2

(x2nk –1, x2nk )

≤ ω 1
4

(x2nk–1, x2mk ) + ω 1
2

(x2nk –1, x2nk )

≤ ε + ω 1
2

(x2nk –1, x2nk ),

it follows that limk→+∞ ω2(x2nk , x2mk ) = limk→+∞ ω1(x2nk , x2mk ) = ε.
From

ε ≤ ω2(x2nk , x2mk ) ≤ ω1(x2nk , x2nk +1) + ω1(x2nk +1, x2mk ),

we get

ε – ω1(x2nk , x2nk +1) ≤ ω1(x2nk+1, x2mk )

≤ ω 1
2

(x2nk –1, x2mk ) + ω 1
4

(x2nk –1, x2nk )

+ ω 1
4

(x2nk , x2nk +1)

≤ ε + ω 1
4

(x2nk–1, x2nk ) + ω 1
4

(x2nk , x2nk +1).

Thus

lim
k→+∞

ω1(x2nk +1, x2mk ) = ε.

Similarly, using

ε ≤ ω2(x2nk , x2mk ) ≤ ω1(x2nk , x2mk –1) + ω1(x2mk–1, x2mk ),

we get

ε – ω1(x2mk–1, x2mk ) ≤ ω1(x2nk , x2mk –1)

≤ ω 1
2

(x2nk , x2nk –1) + ω 1
4

(x2nk–1, x2mk )

+ ω 1
4

(x2mk , x2mk –1)

≤ ω 1
2

(x2nk , x2nk –1) + ε + ω 1
4

(x2mk , x2mk–1).

Therefore limk→+∞ ω1(x2nk , x2mk –1) = ε.
From

ω8(x2nk , x2mk ) – ω4(x2nk , x2nk+1) – ω2(x2mk –1, x2mk )

≤ ω2(x2mk–1, x2nk +1)

≤ ω1(x2mk–1, x2nk ) + ω1(x2nk , x2nk +1),

we get limk→+∞ ω2(x2mk –1, x2nk+1) = ε. Since

ω2(x2mk–1, x2nk +1) ≤ ω1(x2mk –1, x2nk+1)
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≤ ω 1
2

(x2mk–1, x2mk ) + ω 1
4

(x2nk –1, x2mk ) + ω 1
8

(x2nk –1, x2nk )

+ ω 1
8

(x2nk , x2nk+1)

≤ ω 1
2

(x2mk–1, x2mk ) + ε + ω 1
8

(x2nk–1, x2nk ) + ω 1
8

(x2nk , x2nk +1)

and by letting k → +∞, we obtain limk→+∞ ω1(x2mk–1, x2nk +1) = ε. Therefore

lim
k→+∞

M(x2nk , x2mk–1) = ε.

From the continuity of F and the upper semicontinuity of ψ , we have

F(ε) ≤ ψ
(
F(ε)

)
,

a contradiction since ε > 0. Therefore the sequence {xn} is ω-Cauchy. Using the ω-
completeness of C, there exists x∗ ∈ C such that limn→+∞ ω1(xn, x∗) = 0. The property
(OSC) insures that x∗ ∈ [xn] for all n ∈N. Then

F
(
ω1

(
Sx2n, Tx∗)) ≤ ψ

(
F
(
M

(
x2n, x∗))), (3)

where

M
(
x2n, x∗) = max

{
ω1

(
x2n, x∗),ω1(x2n, x2n+1),ω1

(
x∗, Tx∗),

ω2(x2n, Tx∗) + ω2(x∗, x2n+1)
2

}
.

Since ω2(x2n, Tx∗) ≤ ω1(x2n, x∗) + ω1(x∗, Tx∗), limn M(x2n, x∗) = ω1(x∗, Tx∗).
Using the continuity of F and the upper continuity of ψ , we obtain

lim sup
n

ψ
(
F
(
M

(
x2n, x∗))) ≤ ψ(F

(
ω1

(
x∗, Tx∗)).

By the Fatou property, we have

ω1
(
x∗, Tx∗) ≤ lim inf

n
ω1

(
Sx2n, Tx∗).

Since F is continuous and nondecreasing on [0, +∞[, we have

F(ω1
(
x∗, Tx∗) ≤ F

(
lim inf

n
ω1

(
Sx2n, Tx∗)

)

≤ F
(

lim inf
n

ω1
(
Sx2n, Tx∗)

)

≤ lim sup
n

F
(
ω1

(
Sx2n, Tx∗))

≤ lim sup
n

ψ
(
F
(
M

(
x2n, x∗)))

≤ ψ(F
(
ω1

(
x∗, Tx∗)),
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which implies that ω1(x∗, Tx∗) = 0, and according to the regularity of ω, we have Tx∗ = x∗.
Since x∗ ∈ [x∗]G, F(ω1(Sx∗, Tx∗)) ≤ ψ(F(M(x∗, x∗))) where

M
(
x∗, x∗) = max

{
ω1

(
x∗, Sx∗),ω2

(
x∗, Sx∗)} = ω1

(
x∗, Sx∗),

which implies that F(ω1(Sx∗, x∗)) ≤ ψ(F(ω1(Sx∗, x∗))). Hence ω1(Sx∗, x∗) = 0 and the regu-
larity of ω insures that Sx∗ = x∗. �

The next example illustrates Theorem 2.1 and shows that the class of mappings satisfy-
ing our main result is a proper nonempty subset of the set of the mappings considered in
[13].

Example 2.3 Consider the modular metric space (X,ω) where

X = [0, 1] and ωλ(x, y) =
|x – y|2

2λ
for all λ ∈ ]0, +∞[ and x, y ∈ X.

Consider the reflexive digraph G = (X, E) represented in Fig. 1, where

E = � ∪
{(

1
3n , 0

)
,
(

1
3n ,

1
3n+1

)
: n ∈N

}
.

Consider the two self-mapping S and T defined on X by

Tx =
x
3

and Sx =
x
9

for all x ∈ X,

and the two functions F and ψ defined on [0, +∞[ by

F(t) =
√

t and ψ(t) =
t√
2

for all t ∈ [0, +∞[.

We can see that
1. X is ω-complete;

0

11
3

1
32

1
33

1
3n

1
3n+1

1
3n+2

Figure 1 The digraph G (the loops and the isolated vertices are not represented)
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11
32

1
33

1
35

1
33n

1
33n+2

1
33(n+1)

Figure 2 The digraph G[O1(S, T )] (the loops are not represented)

2. ω satisfies the �2-type condition and the Fatou property;
3. G[O1(S, T)] is a directed path with a unique starting point x0 (see Figure 2).

Let us show that, for all x, y ∈ C,

(
y ∈ [x]G or x ∈ [y]G

) �⇒ F
(
ω1(Sx, Ty)

) ≤ ψ
(
F
(
M(x, y)

))
.

For this, we proceed by disjunction of the cases:
• The case where x = y = 0 is avoided.
• If x = 1

3n for n ∈N and y = 0, then

F
(
ω1(Sx, Ty)

)
=

1√
2.3n+2

≤ 1
2.3n = ψ

(
F
(
M(x, y)

))
.

• If x = 0 and y = 1
3n for n ∈N, then

F
(
ω1(Sx, Ty)

)
=

1√
2.3n+1

≤ 1
2.3n ≤ ψ

(
F
(
M(x, y)

))
.

• If x = y = 1
3n for n ∈N, then

F
(
ω1(Sx, Ty)

)
=

√
2

3n+2 ≤ 4
3n+2 ≤ ψ

(
F
(
M(x, y)

))
.

• If x = 1
3n and y = 1

3m for m, n ∈N such that m > n, then

F
(
ω1(Sx, Ty)

)
=

1√
2

(
1

3n+2 –
1

3m+1

)
≤ 4

3n+2 ≤ ψ
(
F
(
M(x, y)

))
.

• If x = 1
3m and y = 1

3n for m, n ∈N such that m > n, then

F
(
ω1(Sx, Ty)

)
=

1√
2

(
1

3m+2 –
1

3n+1

)
≤

√
2

3n+1 ≤ ψ
(
F
(
M(x, y)

))
.

All assumptions of Theorem 2.1 are satisfied and S and T have a fixed point x∗ = 0.

Remark 2.4 In Example 2.3, if we consider the function ψ(t) = 0.8 × ln(1 + t) for all t ∈
[0, +∞[, we get

F
(
d(Sx, Ty)

)
=

1
2

> 0.8 ln

(
1 +

√
3

2

)
= ψ(F

(
M′(x, y)

)
for x = 0 and y =

3
4

,
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where d(x, y) = |x – y| and

M′(x, y) = max

{
d(x, y), d(Tx, x), d(Sy, y),

d(Tx, y) + d(Sy, x)
2

}
.

Theorem on page 2 is not applicable, but by Theorem 2.1, we obtain the existence of a
common fixed point of S and T . Indeed, we have, for all x, y ∈ X,

(
y ∈ [x]G or x ∈ [y]G

) �⇒ F
(
ω1(Sx, Ty)

) ≤ ψ
(
F
(
M(x, y)

))
.

Corollary 2.2 Let (X,ω, G) be a modular metric space endowed with a reflexive digraph
G where ω satisfies the �2-type condition and the Fatou property. Let C be an ω-complete
nonempty subset of Xω and T , S : C → C be two self-mappings. If the following conditions
are satisfied:

(i) there exists k ∈ [0, 1[ such that, for all x, y ∈ C,

(
y ∈ [x]G or x ∈ [y]G

) �⇒ ω1(Sx, Ty) ≤ (
1 + ω1(x, y)

)k – 1; (4)

(ii) there exists an element x0 ∈ C such that G[Ox0 (S, T)] is a directed path with a
unique starting point x0;

(iii) ω satisfies the property (OSC),
then S and T have a common fixed point in C.

Proof If we consider the two functions F and ψ defined on [0, +∞[ by

F(t) = ln(1 + t) and ψ(t) = kt,

then we can verify that the second part of implication (4) is equivalent to

F
(
ω1(Sx, Ty)

) ≤ ψ
(
F
(
ω1(x, y)

))
,

which implies that F(ω1(Sx, Ty)) ≤ ψ(F(M(x, y))), since F and ψ are nondecreasing on
[0, +∞[. By applying Theorem 2.1, we terminate the demonstration. �

In the sequel, we use the following lemma.

Lemma 2.5 ([5]) Let (X,ω) be a modular space such that ω is convex and satisfies the
�2-condition. If {xn} is a sequence in Xω such that limn→+∞ ω1(xn, xn+1) = 0, then {xn} is
ω-Cauchy.

Theorem 2.3 Let (X,ω, G) be a modular metric space endowed with a reflexive digraph G
where ω is convex and satisfies the �2-type condition and the Fatou property. Let C be an
ω-complete nonempty subset of Xω and T , S : C → C be two self-mappings. If the following
conditions are satisfied:

(i) for all x, y ∈ C,

(
y ∈ [x]G or x ∈ [y]G

) �⇒ F
(
ω1(Sx, Ty)

) ≤ ψ
(
F
(
M(x, y)

))
, (5)
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where

M(x, y) = max
{
ω1(x, y),ω1(x, Sx),ω1(y, Ty),ω2(x, Ty) + ω2(y, Sx)

}
;

(ii) there exists an element x0 ∈ C such that G[Ox0 (S, T)] is a directed path with a
unique starting point x0;

(iii) ω satisfies the property (OSC),
then S and T have a common fixed point in C and F(S, T) = F(S) = F(T), where F(T) is the
set of fixed points of T .

Proof Let x0 an element of C such that G[Ox0 (S, T)] is a directed path. Consider the se-
quence {xn} defined by

x2n+1 = Sx2n and x2n+2 = Tx2n+1 for all n ∈N.

Condition (ii) insures that {xn} is G-nondecreasing. If there exists an integer n such that

x2n = x2n+1 = x2n+2,

then x2n is a common fixed point of S and T . Otherwise, suppose that

x2n �= x2n+1 or x2n �= x2n+2 for all n ∈ N.

Let n ∈ N. From x2n+1 ∈ [x2n]G and applying (5) for x = x2n and y = x2n+1, we obtain

F
(
ω1(x2n+1, x2n+2)

) ≤ ψ
(
F
(
M(x2n, x2n+1)

))
. (6)

From

M(x2n, x2n+1) = max
{
ω1(x2n, x2n+1),ω1(x2n+1, x2n+2),ω2(x2n, x2n+2)

}
,

since ω is convex,

ω2(x2n, x2n+2) ≤ ω1(x2n, x2n+1) + ω1(x2n+1, x2n+2)
2

,

from which it follows that

M(x2n, x2n+1) = max
{
ω1(x2n, x2n+1),ω1(x2n+1, x2n+2)

}
.

By the same arguments as in the proof of Theorem 2.1, we prove that

lim
n→+∞ω1(xn, xn+1) = 0.

According to Lemma 2.5, the sequence {xn} is ω-Cauchy, and since C is ω-complete, then
{xn} is ω-convergent to an element x∗ ∈ C. Again similar to the proof of Theorem 2.1, we
prove that x∗ is a common fixed point of S and T . �
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3 Application
Consider the space X = C1([0, 1],R). Let G = (X, E) be the digraph such that, for all x, y ∈ X,

(x, y) ∈ E ⇐⇒ x(t) ≤ y(t) for each t ∈ [0, 1].

Consider the function ω : ]0, +∞[ × X × X −→ [0, +∞] defined, for each λ ∈ ]0, +∞[ and
x, y ∈ X, by

ω(λ, x, y) = ωλ(x, y) =
1
λ

‖x – y‖2
∞ =

1
λ

(
sup

t∈[0,1]

∣
∣x(t) – y(t)

∣
∣
)2

.

It is easy to check the following result.

Lemma 3.1 The function ω is a modular metric satisfying the following:
(i) ω satisfies the �2-type condition and the Fatou property;

(ii) Xω = X is ω-complete;
(iii) ω satisfies the (OSC) property.

Let us consider the following integral equations system:

(IES) :

⎧
⎨

⎩
x(t) =

∫ 1
0 f (t, y(s)) ds + a(t) ∀t ∈ [0, 1],

y(t) =
∫ 1

0 g(t, x(s)) ds + a(t) ∀t ∈ [0, 1],

where a ∈ X and f , g : [0, 1] ×R → R are two mappings such that f and g are of the class
C1 on [0, 1] ×R.

Let us consider the two mappings T and S defined in X as follows:

⎧
⎨

⎩
Tx(t) =

∫ 1
0 f (t, x(s)) ds + a(t),

Sx(t) =
∫ 1

0 g(t, x(s)) ds + a(t),
t ∈ [0, 1].

One can see that Tx and Sx are in X for all x ∈ X.

Theorem 3.2 If the following two conditions are satisfied:
(i) for every s, t ∈ [0, 1] and for all comparable elements x, y ∈ X ,

∣
∣f

(
t, x(s)

)
– g

(
t, y(s)

)∣∣ ≤ –1 +
√

1 +
∣
∣x(s) – y(s)

∣
∣,

(ii) there exists x0 ∈ X such that, for all t ∈ [0, 1], we have

x0(t) � Sx0(t) � TSx0(t) � STSx0(t) � (TS)2x0(t) � S(TS)2x0(t) � · · · ,

then the system (IES) admits at least a solution which belongs to the diagonal of X2.

Proof Let x and y be two comparable elements in X, that is, x ∈ [y]G or y ∈ [x]G. Since, for
each t, s ∈ [0, 1],

∣∣f
(
t, x(s)

)
– g

(
t, y(s)

)∣∣ ≤ –1 +
√

1 +
∣∣x(s) – y(s)

∣∣ ≤ –1 +
√

1 +
∥∥x(s) – y(s)

∥∥∞
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and

‖Tx – Sy‖∞ = sup
t∈[0,1]

∣∣Tx(t) – Sy(t)
∣∣ = sup

t∈[0,1]

∫ 1

0

∣∣f
(
t, x(s)

)
– g

(
t, y(s)

)∣∣ds,

we have

‖Tx – Sy‖∞ ≤ –1 +
√

1 +
∥∥x(s) – y(s)

∥∥∞.

Since

(
–1 +

√
1 +

∥
∥x(s) – y(s)

∥
∥∞

)2 ≤ –1 +
√

1 +
∥
∥x(s) – y(s)

∥
∥2

∞,

we have

ω1(Tx, Sy) ≤ –1 +
(
1 + ω1(x, y)

) 1
2 .

Since, for all t ∈ [0, 1],

x0(t) � Sx0(t) � TSx0(t) � STSx0(t) � (TS)2x0(t) � S(TS)2x0(t) � · · · ,

the induced subgraph G[Ox0 (S, T)] is a directed path with the unique starting point x0.
According to Corollary 2.2, T and S have a common fixed point in X, i.e., there exists an

element x∗ ∈ X such that (x∗, x∗) verifies the system (IES). Then the system (IES) admits
at least a solution in X2 which belongs to �(X × X) = {(u, u)/u ∈ X} the diagonal of X2. �

Conclusion Our results improve, extend, and generalize some classical results:
(i) In Theorem 2.3, if we take ωλ(x, y) = d(x,y)

λ
for all λ ∈ ]0, +∞[, we get an improved

version of the main result of Zhang [13, Theorem 1] by removing condition (iii)
verified by the function φ and the monotony of φ.

(ii) In Theorem 2.1, if the function F is the identity and the function ψ is nondecreasing,
we obtain an analogue of [4, Theorem 2] but for a common fixed point in the setting
of modular metric spaces with graph.

(iii) Theorem 2.3 generalizes and extends [3, Theorem 2.1] in the setting of a modular
metric space with graph.

(iv) Corollary 2.2 generalizes and extends [1, Theorem 3.1] in the setting of modular
metric spaces with graph, since

ω1(Sx, Ty) ≤ kω1(x, y) �⇒ ω1(Sx, Ty) ≤ (
1 + ω1(x, y)

)k – 1.
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