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Abstract
This paper provides a well-posedness analysis for a hemivariational inequality of the
stationary Navier-Stokes equations by arguments of convex minimization and the
Banach fixed point. The hemivariational inequality describes a stationary
incompressible fluid flow subject to a nonslip boundary condition and a Clarke
subdifferential relation between the total pressure and the normal component of the
velocity. Auxiliary Stokes hemivariational inequalities that are useful in proving the
solution existence and uniqueness of the Navier–Stokes hemivariational inequality
are introduced and analyzed. This treatment naturally leads to a convergent iteration
method for solving the Navier–Stokes hemivariational inequality through a sequence
of Stokes hemivariational inequalities. Equivalent minimization principles are
presented for the auxiliary Stokes hemivariational inequalities which will be useful in
developing numerical algorithms.
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1 Introduction
Hemivariational inequalities (HVIs) were introduced by Panagiotopoulous in early 1980s,
responding to the need of modeling and study of engineering application problems involv-
ing non-smooth and non-monotone relations among certain physical quantities. Early
research results on hemivariational inequalities are summarized in several books, e.g.,
[12, 20, 21]. Recent research results on mathematical analysis and applications in contact
mechanics of hemivariational inequalities, and more generally variational-hemivariational
inequalities, can be found in [19, 22]. Recent advances on numerical analysis of variational-
hemivariational inequalities are summarized in [11].

Hemivariational inequalities also arise for applications in fluid mechanics. A station-
ary Navier–Stokes HVI is first studied in [16, 17], where the solution existence is proved
by employing a surjectivity result for a pseudomonotone coercive operator. Then an evo-
lutionary HVI is studied in [18], where the solution existence is proved by applying the
Galerkin method to regularized problems, and a solution is obtained as a limit of a se-
quence of solutions to a regularized problem. In [6], the solution existence is proved for a
nonstationary Navier–Stokes HVI through constructing a temporally semi-discrete ap-
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proximation whose solutions converge to a solution of the Navier–Stokes HVI. In [5],
well-posedness of a nonstationary Stokes HVI as well as an optimal control problem are
studied. Well-posedness of the stationary Stokes HVI is also studied in [14] through an
equivalent minimization principle. Recently, several papers have been published on the
numerical solution of hemivariational inequalities arising in fluid mechanics. In [4], the
mixed finite element method is analyzed for a stationary Stokes HVI with a nonlinear slip
boundary condition, and an optimal order error estimate is derived for the mini finite ele-
ment solution of the Stokes HVI. The nonconforming virtual element method for the same
problem is constructed later in [15], where an optimal order error estimate is derived for
the lowest-order element solution. A mixed finite element method is studied in [10] for
solving a stationary Navier–Stokes HVI with a nonlinear slip boundary condition, and an
optimal order error estimate is shown for the mini finite element method.

In this paper, we study the stationary Navier–Stokes HVI considered in [16, 17] from a
different perspective. We note that the HVI can be used, for example, to model an appli-
cation where the normal velocity of the fluid is regulated on the boundary to reduce the
total pressure. Unlike [16, 17] where abstract surjectivity result for pseudomonotone op-
erators is needed, we take an alternative approach using only basic notions and results in
functional analysis. We first establish an equivalent minimization principle for an auxiliary
problem and prove that there is a unique minimizer of the minimization problem. Under
smallness assumptions on the data, we show that the stationary Navier–Stokes HVI has
a unique solution by applying the Banach fixed point argument. Our approach naturally
leads to a convergent iteration algorithm so that the solution of the stationary Navier–
Stokes HVI can be approximated by a sequence of solutions of the simpler Stokes HVIs.
We also provide a Lipschitz continuous dependence result for the solution of the station-
ary Navier–Stokes HVI on the right-hand side function.

Let us recall the stationary Navier–Stokes HVI. Let � ⊂ R
d (d = 2, 3) be a bounded

simply connected set with a smooth boundary � = ∂�. Denote by n the unit outward
normal to �. For a vector-valued function u on the boundary, let un = u ·n and uτ = u –unn
be the normal component and the tangential component, respectively. The standard form
of the Navier–Stokes equations is

–ν�u + (u·∇)u + ∇p = f , div u = 0 in �, (1.1)

where ν and f are given, ν > 0 being the kinematic viscosity of the fluid and f the density
of volume forces. The unknown variables are the fluid velocity field u = (u1, . . . , ud)T and
the pressure p. The incompressibility property is reflected in the divergence free condi-
tion div u = 0. In relation to the boundary condition considered in this paper, we use the
identities (cf. [7])

(u·∇)u = curl u × u +
1
2
∇|u|2,

–�u = curl curl u – ∇ div u

and rewrite the Navier–Stokes equations with the Lamb formulation [13] as

ν curl curl u + curl u × u + ∇p̃ = f in �, (1.2)
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div u = 0 in �. (1.3)

Here, curl is the curl operator, and p̃ = p + |u|2/2 is the total pressure. For d = 3, the curl
operator is defined by the formula

curl u =
(

∂u3

∂x2
–

∂u2

∂x3
,
∂u1

∂x3
–

∂u3

∂x1
,
∂u2

∂x1
–

∂u1

∂x2

)T

.

The curl operator for a two-dimensional vector can be converted to that for a three-
dimensional vector through the following procedure: we extend vector u(x1, x2) =
(u1(x1, x2), u2(x1, x2))T by u(x1, x2, x3) = (u1(x1, x2), u2(x1, x2), 0)T . Then,

curl u =
(

0, 0,
∂u2

∂x1
–

∂u1

∂x2

)T

.

The Navier–Stokes equations (1.2)–(1.3) are supplemented with the following boundary
conditions:

uτ = 0, p̃ ∈ ∂ψ(un) on �. (1.4)

Here the super-potential ψ : � × R → R is locally Lipschitz continuous with respect to
its second argument. To simplify the notation, we write ψ(un) for ψ(x, un), and ∂ψ is the
subdifferential of ψ in the sense of Clarke with respect to its second argument. The first
part of condition (1.4), i.e., uτ = 0, is known as a nonslip boundary condition. The second
part is to regulate the normal velocity un to reduce the total pressure p̃ on �.

The rest of the paper is organized as follows. In Sect. 2, we review the notions of the
generalized directional derivative and the subdifferential in the sense of Clarke, and some
of their basic properties. We also introduce the Navier–Stokes hemivariational inequal-
ity formulation for problem (1.2)–(1.4). In Sect. 3, we show the well-posedness of the
Navier–Stokes hemivariational inequality. To prove the solution existence and uniqueness
of the Navier–Stokes HVI, we adopt arguments of the minimization principle for auxil-
iary Stokes hemivariational inequalities and apply the Banach fixed point theorem. This
naturally leads to a convergent iteration algorithm for the Navier–Stokes HVI through
solving Stokes hemivariational inequalities. We further show the Lipschitz continuous de-
pendence of the solution of the Navier–Stokes HVI on the right-hand side.

2 Navier–Stokes hemivariational inequality
In this section, we present the hemivariational inequality formulation for problem (1.2)–
(1.4). We first recall the definitions of the generalized directional derivative and general-
ized subdifferential in the sense of Clarke for a locally Lipschitz function and review some
basic properties.

Definition 2.1 Let V be a Banach space and denote by V ∗ its dual. Let 	 : V → R be a
locally Lipschitz functional. The generalized (Clarke) directional derivative of 	 at u ∈ V
in the direction v ∈ V is defined by

	0(u; v) = lim sup
w→u,λ↓0

	(w + λv) – 	(w)
λ

.
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The generalized gradient (subdifferential) of 	 at u is defined by

∂	(u) =
{

ζ ∈ V ∗ : 	0(u; v) ≥ 〈ζ , v〉 ∀v ∈ V
}

.

Given the generalized subdifferential, we can compute the generalized directional
derivative through the formula [2, Proposition 2.1.2]

	0(u; v) = max
{〈ξ , v〉 : ξ ∈ ∂	(u)

} ∀u, v ∈ V . (2.1)

If 	1,	2 : V →R are locally Lipschitz continuous, then [2, Proposition 2.3.3]

∂(	1 + 	2)(u) ⊂ ∂	1(u) + ∂	2(u) ∀u ∈ V , (2.2)

or equivalently,

(	1 + 	2)0(u; v) ≤ 	0
1 (u; v) + 	0

2 (u; v) ∀u, v ∈ V . (2.3)

In the analysis of the Navier–Stokes hemivariational inequality, we will need the follow-
ing result [3, Theorem 3.4].

Lemma 2.2 Let V be a real Banach space, and let g : V →R be locally Lipschitz continu-
ous. Then g is strongly convex on V with a constant α > 0, i.e.,

g
(

λu + (1 – λ)v
) ≤ λg(u) + (1 – λ)g(v) – αλ(1 – λ)‖u – v‖2

V ∀u, v ∈ V ,∀λ ∈ [0, 1],

if and only if ∂g is strongly monotone on V with a constant 2α, i.e.,

〈ξ – η, u – v〉 ≥ 2α‖u – v‖2
V ∀u, v ∈ V , ξ ∈ ∂g(u),η ∈ ∂g(v).

A proof of the next result can be found in [8, Proposition 2.5].

Proposition 2.3 Let V be a real Hilbert space, and let g : V → R be a locally Lipschitz
continuous and strongly convex functional on V with a constant α > 0. Then there exist
two constants c0 and c1 such that

g(v) ≥ α‖v‖2
V + c0 + c1‖v‖V ∀v ∈ V . (2.4)

Consequently, g(·) is coercive on V .

We will make use of the function space

V =
{

v ∈ H1(�) : div v = 0 in �, vτ = 0 on �
}

.

The following inequality holds [7, Proposition 3.1]:

‖v‖1,� ≤ c‖curl v‖0,� ∀v ∈ V ,
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where the constant c > 0 depends on � and �. Thus ‖curl ·‖0,� defines a norm and is
equivalent to the standard H1(�)-norm on V . We use ‖ · ‖V = ‖curl ·‖0,� for the norm
on V . By the Sobolev trace theorem, we have the inequality

‖vn‖0,� ≤ λ–1/2
0 ‖v‖V ∀v ∈ V, (2.5)

where λ0 > 0 is the smallest eigenvalue of the eigenvalue problem

u ∈ V,
∫

�

curl u · curl v dx = λ

∫

�

unvn ds ∀v ∈ V. (2.6)

Define

a(u, v) = ν

∫

�

curl u · curl v dx ∀u, v ∈ V,

b(u, v, w) =
∫

�

(curl u × v) · w dx ∀u, v, w ∈ V ,

〈f , v〉 =
∫

�

f · v dx ∀v ∈ V.

Then the following hemivariational inequality formulation can be derived for problem
(1.2)–(1.4) [17].

Problem 2.4 Find u ∈ V such that

a(u, v) + b(u, u, v) +
∫

�

ψ0(un; vn) ds ≥ 〈f , v〉 ∀v ∈ V. (2.7)

We note that the bilinear form a(·, ·) is continuous and coercive on V :

a(u, v) ≤ ν‖u‖V‖v‖V and a(v, v) = ν‖v‖2
V ∀u, v ∈ V .

The trilinear form b(·, ·, ·) is continuous on V :

b(u, v, w) ≤ cb‖u‖V‖v‖V‖w‖V ∀u, v, w ∈ V,

and satisfies

b(u, v, w) = –b(u, w, v) and b(u, v, v) = 0 ∀u, v, w ∈ V .

Concerning the superpotential ψ , we assume the following properties:
H(ψ). ψ : � ×R →R is such that
(i) ψ(·, ξ ) is measurable on � for all ξ ∈R and ψ(·, 0) ∈ L1(�);
(ii) ψ(x, ·) is locally Lipschitz on R for a.e. x ∈ �;
(iii) |η| ≤ c0 + c1|ξ | ∀ξ ∈R, η ∈ ∂ψ(x, ξ ) a.e. x ∈ � with c0, c1 ≥ 0;
(iv) ψ0(x, ξ1; ξ2 – ξ1) + ψ0(x, ξ2; ξ1 – ξ2) ≤ m|ξ1 – ξ2|2 ∀ξ1, ξ2 ∈R a.e. x ∈ � with m ≥ 0.
By (2.1), H(ψ) (iii) implies

∣

∣ψ0(ξ1; ξ2)
∣

∣ ≤ (

c0 + c1|ξ1|
)|ξ2| ∀ξ1, ξ2 ∈ R. (2.8)
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Define a functional 	 : V →R by

	(v) =
∫

�

ψ(vn) ds ∀v ∈ V.

Then, by [17, Lemma 13], under assumption H(ψ), 	 is well-defined and locally Lipschitz
continuous on V , and

	0(u; v) ≤
∫

�

ψ0(un; vn) ds ∀u, v ∈ V. (2.9)

Combining H(ψ) (iv), (2.5), and (2.9), we have, for v1, v2 ∈ V ,

	0(v1; v2 – v1) + 	0(v2; v1 – v2) ≤
∫

�

[

ψ0(v1n; v2n – v1n) + ψ0(v2n; v1n – v2n)
]

ds

≤
∫

�

m|v1n – v2n|2 ds ≤ mλ–1
0 ‖v1 – v2‖2

V . (2.10)

It is known that (2.10) is equivalent to [19]

〈η1 – η2, v1 – v2〉 ≥ –mλ–1
0 ‖v1 – v2‖2

V ∀vi ∈ V,ηi ∈ ∂	(vi), i = 1, 2. (2.11)

3 Well-posedness analysis
This section is devoted to a study of the well-posedness of Problem 2.4.

3.1 Study of auxiliary problems
We first introduce and study an auxiliary problem. Let w ∈ V be given.

Problem 3.1 Find u ∈ V such that

a(u, v) + 	0(u; v) ≥ 〈f , v〉 – b(w, w, v) ∀v ∈ V. (3.1)

We adopt the idea presented in [8, 9] and study the solution existence of Problem 3.1
through an equivalent minimization problem. Define a linear operator A : V → V∗ by

〈Au, v〉 = a(u, v) ∀u, v ∈ V. (3.2)

Then A ∈L(V, V∗). Define a functional l ∈ V∗ by

〈l, v〉 = 〈f , v〉 – b(w, w, v) ∀v ∈ V .

We introduce an energy functional

E(v) =
1
2

a(v, v) + 	(v) – 〈l, v〉 ∀v ∈ V , (3.3)

and consider a corresponding minimization problem:

Problem 3.2 Find u ∈ V such that

E(u) = inf
{

E(v) : v ∈ V
}

.
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The next result shows that Problem 3.1 and Problem 3.2 are equivalent.

Theorem 3.3 Assume H(ψ), f ∈ V∗, and

m < νλ0. (3.4)

Then, for any w ∈ V , Problem 3.1 and Problem 3.2 have the same unique solution u ∈ V .

Proof Obviously, E : V →R is locally Lipschitz continuous. By (2.2),

∂E(v) ⊂ Av + ∂	(v) – l. (3.5)

For i = 1, 2, with vi ∈ V and ζ i ∈ ∂E(vi), we have

ζ i = Avi + ηi – l, ηi ∈ ∂	(vi).

By (2.11),

〈ζ 1 – ζ 2, v1 – v2〉 = a(v1 – v2, v1 – v2) + 〈η1 – η2, v1 – v2〉 ≥ (

ν – mλ–1
0

)‖v1 – v2‖2
V .

Since m < νλ0, by Lemma 2.2, the energy functional E is strongly convex on V . Moreover,
by Proposition 2.3, E is coercive on V . Then the minimization Problem 3.2 has a unique
solution u ∈ V [1, Sect. 3.3.2], which satisfies the relation

E0(u; v) ≥ 0 ∀v ∈ V .

By (2.3),

E0(u; v) ≤ a(u, v) + 	0(u; v) – 〈l, v〉.

Thus,

a(u, v) + 	0(u; v) ≥ 〈l, v〉 ∀v ∈ V,

and u ∈ V is a solution of Problem 3.1.
Let us prove the solution uniqueness for Problem 3.1. Suppose that ũ ∈ V is another

solution of Problem 3.1. Then

a(ũ, v) + 	0(ũ; v) ≥ 〈l, v〉 ∀v ∈ V. (3.6)

We take v = ũ – u in (3.1), take v = u – ũ in (3.6), and add the two inequalities to obtain

a(ũ – u, ũ – u) ≤ 	0(ũ; u – ũ) + 	0(u; ũ – u).

By (2.10),

ν‖ũ – u‖2
V ≤ mλ–1

0 ‖ũ – u‖2
V .
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By the smallness condition (3.4), we conclude that ũ = u, i.e., a solution of Problem 3.1.
Therefore, u ∈ V is a solution of Problem 3.1 if and only if it is a solution of Problem 3.2,
and both problems admit a unique solution. �

Then, we consider a variant of Problem 3.1.

Problem 3.4 Find u ∈ V such that

a(u, v) +
∫

�

ψ0(un; vn) ds ≥ 〈f , v〉 – b(w, w, v) ∀v ∈ V. (3.7)

Theorem 3.5 Assume H(ψ), f ∈ V∗, and (3.4). Then, for any w ∈ V , Problem 3.4 has a
unique solution u ∈ V , which is also the unique solution of Problem 3.1 and Problem 3.2.

Proof From Theorem 3.3, we know that under the stated assumptions, Problem 3.1 has a
unique solution u ∈ V , which is the unique solution of Problem 3.2. Since

	0(u; v) ≤
∫

�

ψ0(un; vn) ds,

we see that the solution u satisfies inequality (3.7). In other words, u ∈ V is also a solution
of Problem 3.4.

The uniqueness of a solution to Problem 3.4 can be proved similarly as in the proof of
Theorem 3.3, and is hence omitted. Thus, the statement of Theorem 3.5 is valid. �

3.2 Solution existence and uniqueness
In this subsection, we show the solution existence and uniqueness for Problem 2.4 based
on the result from previous subsection, through a Banach fixed point argument.

For given w ∈ V , let us first bound ‖u‖V for the solution of Problem 3.4. We take v = –u
in (3.7) to obtain

a(u, u) ≤
∫

�

ψ0(un; –un) ds + 〈f , u〉 – b(w, w, u). (3.8)

By H(ψ) (iv) and (2.8),

∫

�

ψ0(un; –un) ds ≤
∫

�

m|un|2 ds –
∫

�

ψ0(0; un) ds

≤
∫

�

m|un|2 ds +
∫

�

c0|un|ds

≤ mλ–1
0 ‖u‖2

V + c0λ
–1/2
0 |�|1/2‖u‖V .

We derive from (3.8) that

(

ν – mλ–1
0

)‖u‖2
V ≤ c0λ

–1/2
0 |�|1/2‖u‖V + ‖f‖V∗‖u‖V + cb‖w‖2

V‖u‖V .

Hence,

‖u‖V ≤ c0λ
–1/2
0 |�|1/2 + ‖f‖V∗

ν – mλ–1
0

+
cb‖w‖2

V

ν – mλ–1
0

. (3.9)
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Introduce a bounded set of V by

Kf =
{

v ∈ V : ‖v‖V ≤ αf
}

, (3.10)

where

αf =
2(c0λ

–1/2
0 |�|1/2 + ‖f‖V∗ )

ν – mλ–1
0

. (3.11)

Proposition 3.6 Assume H(ψ), f ∈ V∗, and the smallness condition

0 < 2cbαf < ν – mλ–1
0 . (3.12)

Then, for any w ∈ Kf , the solution u of Problem 3.4 also belongs to the set Kf .

Proof For w ∈ Kf , from (3.9) we have

‖u‖V ≤ αf

2
+

cb

ν – mλ–1
0

α2
f ≤ αf

2
+

αf

2
= αf .

Hence, u ∈ Kf . �

Theorem 3.7 Assume H(ψ), f ∈ V∗, and (3.12). Then Problem 2.4 has a unique solution
u ∈ V .

Proof Define an operator � : Kf → Kf by

�w = u,

where u ∈ Kf denotes the unique solution of Problem 3.4. Let us prove that the operator
� : Kf → Kf is a contraction.

Let w1, w2 ∈ Kf and u1 = �w1, u2 = �w2 be the unique solutions of Problem 3.4 corre-
sponding to w1, w2, respectively. Then, for any v ∈ V ,

a(u1 – u2, v) +
∫

�

[

ψ0(u1n; vn) + ψ0(u2n; –vn)
]

ds ≥ b(w2, w2, v) – b(w1, w1, v). (3.13)

Take v = u2 – u1 in (3.13), we obtain

ν‖u1 – u2‖2
V = a(u1 – u2, u1 – u2)

≤
∫

�

[

ψ0(u1n; u2n – u1n) + ψ0(u2n; u1n – u2n)
]

ds

+ b(w2, w2, u1 – u2) – b(w1, w1, u1 – u2).

Note that
∫

�

[

ψ0(u1n; u2n – u1n) + ψ0(u2n; u1n – u2n)
]

ds ≤ mλ–1
0 ‖u1 – u2‖2

V
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and

b(w2, w2, u1 – u2) – b(w1, w1, u1 – u2)

= b(w2 – w1, w2, u1 – u2) – b(w1, w1 – w2, u1 – u2)

≤ cb
(‖w1‖V + ‖w2‖V

)‖u1 – u2‖V‖w1 – w2‖V .

Thus,

‖�w1 – �w2‖V = ‖u1 – u2‖V ≤ cb(‖w1‖V + ‖w2‖V )
ν – mλ–1

0
‖w1 – w2‖V

≤ βf ‖w1 – w2‖V ,

where

βf =
2cbαf

ν – mλ–1
0

. (3.14)

By the smallness condition (3.12),

βf < 1.

Hence, the operator � : Kf → Kf is contractive. Applying the Banach fixed point theorem
(cf. [1, Theorem 5.1.3]), we deduce that there exists a unique u∗ ∈ Kf such that �u∗ = u∗.

By the definition of �, u∗ ∈ Kf satisfies

a
(

u∗, v
)

+ b
(

u∗, u∗, v
)

+
∫

�

ψ0(u∗
n; vn

)

ds ≥ 〈f , v〉 ∀v ∈ V.

That is, u∗ ∈ Kf is a solution of Problem 2.4.
We now prove the uniqueness of the solution to Problem 2.4. Let u1 ∈ Kf and u2 ∈ Kf

be two solutions to Problem 2.4. Then, for any v ∈ V ,

a(u1 – u2, v) + b(u1, u1, v) – b(u2, u2, v) +
∫

�

[

ψ0(u1n; vn) + ψ0(u2n; –vn)
]

ds ≥ 0. (3.15)

Taking v = u2 – u1 in (3.15), we obtain

ν‖u1 – u2‖2
V = a(u1 – u2, u1 – u2)

≤
∫

�

[

ψ0(u1n; u2n – u1n) + ψ0(u2n; u1n – u2n)
]

ds

+ b(u2, u2, u1 – u2) – b(u1, u1, u1 – u2)

≤ mλ–1
0 ‖u1 – u2‖2

V + b(u2 – u1, u2, u1 – u2)

≤ mλ–1
0 ‖u1 – u2‖2

V + cb‖u2‖V‖u1 – u2‖2
V .

Hence,

‖u1 – u2‖2
V ≤ βf

2
‖u1 – u2‖2

V .
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Since βf < 1, we deduce from the above inequality that u1 = u2. This completes the proof
of the theorem. �

3.3 A convergent iteration algorithm
In addition to the existence of a unique fixed point for a contractive mapping over a closed
set of a complete space, the Banach fixed point theorem also provides the convergence of
a fixed point iteration algorithm. Consider the following iteration algorithm.

Algorithm 3.8 Initialization: Choose an initial guess u0 ∈ Kf , e.g., u0 = 0.
Iteration: For k ≥ 1, find uk ∈ V such that

a(uk , v) +
∫

�

ψ0(uk,n; vn) ds ≥ 〈f , v〉 – b(uk–1, uk–1, v) ∀v ∈ V. (3.16)

As an application of [1, Theorem 5.1.3], we have the following result.

Theorem 3.9 Assume H(ψ), f ∈ V∗ and (3.12). Let u ∈ V be the unique solution of Prob-
lem 2.4. Then the sequence {uk} ⊂ Kf defined by (3.16) converges to u:

‖uk – u‖V → 0 as k → ∞.

The following error estimates are valid:

‖uk – u‖V ≤ βf ‖uk–1 – u‖V , (3.17)

‖uk – u‖V ≤ βf

1 – βf
‖uk–1 – uk‖V , (3.18)

‖uk – u‖V ≤ βk
f

1 – βf
‖u0 – u1‖V . (3.19)

Remark 3.10 Under the smallness condition (3.12), the constant βf defined by (3.14) sat-
isfies βf < 1. The first error estimate (3.17) shows that the iteration algorithm converges
linearly with the convergence rate βf . The second bound (3.18) is an a-posteriori error esti-
mate: once the iterates uk–1 and uk are available, they can be used to provide a computable
upper bound of the error ‖uk – u‖V . The third bound (3.19) is an a-priori error estimate:
once u0 is chosen and u1 is calculated, it allows one to find the number of iterations needed
to guarantee the error ‖uk – u‖V to be in a given range.

Problem (3.16) is a Stokes-type hemivariational inequality in which the differential op-
erator for the unknown variable uk is linear. Obviously, it is easier to solve (3.16) than
Problem 2.4 in which the differential operator for the unknown variable uk is nonlinear.
When Problem 2.4 is solved by a numerical method, e.g., the finite element, the discretized
Navier–Stokes hemivariational inequality can be similarly approximated by Algorithm 3.8
at the discrete level. Under the stated assumptions, we again have convergence and the
three error estimates, all for the discrete solutions.

3.4 Lipschitz continuous dependence on the right-hand side
Finally, we provide a Lipschitz continuous dependence result for the solution u of Prob-
lem 2.4 on the right-hand side f .
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For m0 > 0, define a subset V∗
m0 ⊂ V∗ by

V∗
m0 =

{

f ∈ V∗ : ‖f‖V∗ ≤ m0
}

.

To derive the Lipschitz continuous dependence result, we assume f ∈ V∗
m0 from now on.

Similar to (3.11), define

αm0 =
2(c0λ

–1/2
0 |�|1/2 + m0)
ν – mλ–1

0
. (3.20)

Theorem 3.11 Assume H(ψ), f ∈ V∗
m0 , and

0 < 2cbαm0 < ν – mλ–1
0 . (3.21)

Then the solution u of Problem 2.4 depends Lipschitz continuously on f .

Proof Let f 1, f 2 ∈ V∗
m0 and u1, u2 ∈ V be the unique solutions of Problem 2.4 corresponding

to f 1, f 2, respectively. Then, for any v ∈ V ,

a(u1 – u2, v) + b(u1, u1, v) – b(u2, u2, v)

+
∫

�

[

ψ0(u1n; vn) + ψ0(u2n; –vn)
]

ds ≥ 〈f 1 – f 2, v〉. (3.22)

Take v = u2 – u1 in (3.22), we obtain

ν‖u1 – u2‖2
V = a(u1 – u2, u1 – u2)

≤
∫

�

[

ψ0(u1n; u2n – u1n) + ψ0(u2n; u1n – u2n)
]

ds

+ b(u2, u2, u1 – u2) – b(u1, u1, u1 – u2) + 〈f 1 – f 2, u1 – u2〉
≤ mλ–1

0 ‖u1 – u2‖2
V + b(u2 – u1, u2, u1 – u2) + ‖f 1 – f 2‖V∗‖u1 – u2‖V

≤ mλ–1
0 ‖u1 – u2‖2

V + cb‖u2‖V‖u1 – u2‖2
V + ‖f 1 – f 2‖V∗‖u1 – u2‖V .

From Theorem 3.7,

‖u2‖V ≤ αm0 .

Applying condition (3.21), we derive the inequality

‖u1 – u2‖V ≤ 2
ν – mλ–1

0
‖f 1 – f 2‖V∗ ,

which shows the Lipschitz continuity of the solution u with respect to f . �

4 Conclusions
We analyze a stationary Navier–Stokes HVI through convex minimization and Banach
fixed-point argument. In the existing literature, the solution existence of the Navier–
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Stokes HVI is proved through an application of an abstract surjectivity result for pseu-
domonotone operators. In this paper, we establish a minimization principle for an auxil-
iary Stokes HVI, and prove the solution existence and uniqueness of the Navier–Stokes
HVI by applying the Banach fixed point theorem. This treatment naturally leads to a con-
vergent iteration algorithm, where the unique solution of the stationary Navier–Stokes
HVI can be obtained as the limit of a sequence of solutions to the Stokes HVIs.
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