
Fixed Point Theory and Algorithms
for Sciences and Engineering

Giselsson and Moursi Fixed Point Theory Algorithms Sci Eng         (2021) 2021:25 
https://doi.org/10.1186/s13663-021-00709-0

R E S E A R C H Open Access

On compositions of special cases of Lipschitz
continuous operators
Pontus Giselsson1 and Walaa M. Moursi2,3*

*Correspondence:
walaa.moursi@uwaterloo.ca
2Department of Combinatorics and
Optimization, University of
Waterloo, Waterloo, Ontario,
N2L 3G1, Canada
3Mathematics Department, Faculty
of Science, Mansoura University,
Mansoura 35516, Egypt
Full list of author information is
available at the end of the article

Abstract
Many iterative optimization algorithms involve compositions of special cases of
Lipschitz continuous operators, namely firmly nonexpansive, averaged, and
nonexpansive operators. The structure and properties of the compositions are of
particular importance in the proofs of convergence of such algorithms. In this paper,
we systematically study the compositions of further special cases of Lipschitz
continuous operators. Applications of our results include compositions of scaled
conically nonexpansive mappings, as well as the Douglas–Rachford and
forward–backward operators, when applied to solve certain structured monotone
inclusion and optimization problems. Several examples illustrate and tighten our
conclusions.
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1 Introduction
In this paper, we assume that

X is a real Hilbert space

with the inner product 〈· | ·〉 and the induced norm ‖ · ‖. Let L > 0 and let T : X → X. Then
T is L-Lipschitz continuous if (∀(x, y) ∈ X ×X) ‖Tx–Ty‖ ≤ L‖x–y‖, and T is nonexpansive
if T is 1-Lipschitz continuous, i.e., (∀(x, y) ∈ X × X) ‖Tx – Ty‖ ≤ ‖x – y‖. In this paper, we
study compositions of what we call (see Definition 3.1) identity-nonexpansive decompo-
sitions (I-N decompositions for short) of Lipschitz continuous operators. Let (α,β) ∈ R

2

and let Id : X → X be the identity operator on X. A Lipschitz continuous operator R admits
an (α,β)-I-N decomposition if R = αId + βN for some nonexpansive operator N : X → X.
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For instance, averaged,1 conically nonexpansive,2 and cocoercive3 operators are all Lips-
chitz continuous operators that admit special I-N decompositions.

We consider compositions of the form

R = Rm · · ·R1, (1)

where m ∈ {2, 3, . . .}, I = {1, . . . , m}, and (Ri)i∈I is a family of Lipschitz continuous operators
such that, for each i ∈ I , Ri admits an (αi,βi)-I-N decomposition. That is, Ri = αi Id +βiNi

for all i ∈ I , where αi and βi are real numbers, and Ni : X → X are nonexpansive for all
i ∈ I . A straightforward (and naive) conclusion is that the composition is Lipschitz con-
tinuous with a constant �i∈I(|αi|+ |βi|). However, such a conclusion can be further refined
when, for instance, each Ri is an averaged operator. Indeed, in this case it is known that
the composition is an averaged (and not just Lipschitz continuous) operator (see, e.g., [2,
Proposition 4.46], [6, Lemma 2.2], and [21, Theorem 3]). In this paper, we provide a sys-
tematic study of the structure of R under additional assumptions on the decomposition
parameters.

Our main result is stated in Theorem 3.4. We show that, for m = 2, under a mild assump-
tion on (α1,α2,β1,β2) composition (1) is a scalar multiple of a conically nonexpansive op-
erator. As a consequence of Theorem 3.4, we show in Theorem 4.2 that, under additional
assumptions on the decomposition parameters, compositions of scaled conically nonex-
pansive mappings are scaled conically nonexpansive mappings, see also [1] for a relevant
result.4 Special cases of Theorem 4.2 include, e.g., compositions of averaged operators [2,
Proposition 4.46] and compositions of averaged and negatively averaged operators [12].

Of particular interest are compositions R that are averaged, conically nonexpansive, or
contractive. Let x0 ∈ X. For an averaged (respectively contractive) operator R, the se-
quence (Rkx0)k∈N converges weakly (respectively strongly) towards a fixed point of R (if
one exists) [2, Theorem 5.14]. For conically nonexpansive operators, a simple averaging
trick gives an averaged operator with the same fixed point set as the conically nonexpan-
sive operator. Iterating the new averaged operator yields a sequence that converges weakly
to a fixed point of the conically nonexpansive operator. These properties have been instru-
mental in proving convergence for the Douglas–Rachford algorithm and the forward–
backward algorithm. In this paper, we apply our composition result Theorem 4.2 to prove
convergence of these splitting methods in new settings.

The Douglas–Rachford and forward–backward methods traditionally solve monotone
inclusion problems of the form

Find x ∈ X such that 0 ∈ Ax + Bx, (2)

where A : X ⇒ X and B : X ⇒ X are maximally monotone, and, in the case of the forward–
backward method, A is additionally assumed to be cocoercive. The Douglas–Rachford

1Let T : X → X . Then T is α-averaged if α ∈ ]0, 1[ and nonexpansive N : X → X exists such that T = (1 – α) Id+αN.
2Let T : X → X . Then T is α-conically nonexpansive if α ∈ ]0,∞[ and nonexpansive N : X → X exists such that T = (1 –
α) Id+αN.
3Let T : X → X , and let β > 0. Then T is 1

β
-cocoercive if nonexpansive N : X → X exists such that T = β

2 (Id + N).
4The paper [1] appeared online while putting the finishing touches on this paper. Partial results of this work were presented
by the second author at the Numerical Algorithms in Nonsmooth Optimization workshop at Erwin Schrödinger Interna-
tional Institute for Mathematics and Physics (ESI) in Vienna in February 2019 and at the Operator Splitting Methods in
Data Analysis workshop at the Flatiron Institute, in New York in March 2019. Both workshops predate [1].
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method iterates the Douglas–Rachford map T = 1
2 (Id + Rγ BRγ A), where5 γ > 0 is a posi-

tive step-size. The Douglas–Rachford map is an averaged map of the composition of re-
flected resolvents. The forward–backward method iterates the forward–backward map
T = Jγ B(Id – γ A), where γ > 0 is a positive step-size. The forward–backward map is a
composition of a resolvent and a forward-step.

In this paper, we show that for Douglas–Rachford splitting we need not impose mono-
tonicity on the individual operators, but only on the sum, provided the sum is strongly
monotone. The reflected resolvents Rγ A and Rγ B are negatively conically nonexpansive,
the composition is conically nonexpansive, and a sufficient averaging gives an averaged
map that converges to a fixed point when iterated. Relevant work appears in [9, 16], and
[17].

More striking, for the forward–backward method, we show that it is sufficient that the
sum is monotone (not strongly monotone as for DR). More specifically, we show that iden-
tity can be shifted between the two operators, while still guaranteeing averagedness of the
forward–backward map T = Jγ B(Id – γ A). Indeed, the resolvent Jγ B is cocoercive and the
forward-step (Id – γ A) is scaled averaged. This implies that the composition is averaged
(given restrictions on the cocoercivity and averagedness parameters). Moreover, when the
sum is strongly monotone, again with no assumptions on monotonicity of the individual
operators, we show that the forward–backward map is contractive. We also prove tight-
ness of our contraction factor.

We also provide, in Theorem 4.7, a generalization of Theorem 4.2 to the setting in (1) of
compositions of more than two operators. We assume that all Ri are scaled conically non-
expansive operators and provide conditions on the parameters that give a specific scaled
conically nonexpansive representation of R. Our condition is symmetric in the individual
operators and allows for one of them to be scaled conic, while the rest must be scaled
averaged. This is in compliance with the m = 2 case in Theorem 4.2.

Finally, in Sect. 8, we provide graphical 2D-representations of different operator classes
that admit I-N decompositions such as Lipschitz continuous operators, averaged opera-
tors, and cocoercive operators. We also provide 2D-representations of compositions of
two such operator classes. Illustrations of the firmly nonexpansive ( 1

2 -averaged ) and non-
expansive operator classes have previously appeared in [10, 11], and illustrations of more
operator classes that admit particular I-N decompositions and their compositions have
appeared in [14, 24] and in early preprints of [15].

1.1 Organization and notation
The remainder of this paper is organized as follows: Sect. 2 presents useful facts and auxil-
iary results that are used throughout the paper. In Sect. 3, we present the main abstract re-
sults of the paper. Section 4 presents the main composition results of Lipschitz continuous
operators that admit I-N decompositions, under mild assumptions on the decomposition
parameters, as well as illustrative and limiting examples. In Sect. 5 and Sect. 6, we present
applications of our composition results to the Douglas–Rachford and forward–backward
algorithms, respectively. In Sect. 7 we present applications of our results to optimization
problems. Finally, in Sect. 8, we provide graphical representations of many different I-N
decompositions and their compositions.

5Let A : XX be an operator. The resolvent of A, denoted by JA , is defined by JA = (Id+A)–1 , and the reflected resolvent of A,
denoted by RA , is defined by RA = 2JA – Id
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The notation we use is standard and follows, e.g., [2] or [23].

2 Facts and auxiliary results
Let ρ ∈ R. Let A : X → X. Recall that A is ρ-monotone if (∀(x, u) ∈ gra A) (∀(y, v) ∈ gra A)

〈x – y | u – v〉 ≥ ρ‖x – y‖2 (3)

and is maximally ρ-monotone if any proper extension of gra A will violate (3). In passing
we point out that A is (maximally) monotone (respectively ρ-hypomonotone, ρ-strongly
monotone) if ρ = 0 (respectively ρ < 0, ρ > 0) see, e.g., [2, Chap. 20], [4, Definition 6.9.1],
[7, Definition 2.2], and [23, Example 12.28].

Fact 2.1 Let A : X ⇒ X, let B : X ⇒ X, let λ ∈ R � {0}, and suppose that zer(A + B) =
(A + B)–1(0) �= ∅. Suppose that JA and JB are single-valued and that dom JA = dom JB = X.
Set

T = (1 – λ) Id +λRBRA. (4)

Then T is single-valued, dom T = X, and

zer(A + B) = JA(Fix RBRA) = JA(Fix T). (5)

Proof See [9, Lemma 4.1]. �

Proposition 2.2 Let A : X → X, let B : X ⇒ X, and suppose that zer(A+B) = (A+B)–1(0) �=
∅. Suppose that JB is single-valued and that dom JB = X. Set

T = JB(Id –A). (6)

Then T is single-valued, dom T = X, and

zer(A + B) = Fix T . (7)

Proof The proof is similar to the proof of [2, Proposition 26.1(iv)].6 Indeed, let x ∈ X. Then
x ∈ zer(A + B) ⇔ –Ax ∈ Bx ⇔ (Id –A)x ∈ (Id +B)x ⇔ x = JB(Id –A)x = Tx. �

Lemma 2.3 Let λ ∈ R, let R1 : X → X, let R2 : X → X, and set

R(λ) = (1 – λ) Id +λR2R1. (8)

Let (x, y) ∈ X × X. Then

〈
R(λ)x – R(λ)y | (Id –R(λ)

)
x –

(
Id –R(λ)

)
y
〉

= (1 – 2λ)
〈
x – y | (Id –R(λ)

)
x –

(
Id –R(λ)

)
y
〉

6In passing, we mention that [2, Proposition 26.1(iv)] assume that A and B are maximally monotone, which is not required
here. However, the proof is the same.
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+ λ2〈(Id +R1)x – (Id +R1)y | (Id –R1)x – (Id –R1)y
〉

+ λ2〈(Id +R2)R1x – (Id +R2)R1y | (Id –R2)R1x – (Id –R2)R1y
〉
. (9)

Proof See Appendix A. �

Proposition 2.4 Let α ∈ R, let β ∈ R, let N : X → X, and set T = αId + βN . Let (x, y) ∈
X × X. Then the following hold:

β2(‖x – y‖2 – ‖Nx – Ny‖2)

=
(
β2 – α2)‖x – y‖2 – ‖Tx – Ty‖2 + 2α〈x – y | Tx – Ty〉 (10a)

=
(
β2 – α2)‖x – y‖2 – (1 – 2α)‖Tx – Ty‖2 + 2α

〈
Tx – Ty | (Id –T)x – (Id –T)y

〉

(10b)

=
(
β2 – α(α – 1)

)‖x – y‖2 –
(
(1 – α)‖Tx – Ty‖2 + α

∥∥(Id –T)x – (Id –T)y
∥∥2). (10c)

Proof Indeed, we have

β2(‖x – y‖2 – ‖Nx – Ny‖2)

= β2‖x – y‖2 –
∥∥(Tx – αx) – (Ty – αy)

∥∥2 (11a)

= β2‖x – y‖2 –
(‖Tx – Ty‖2 + α2‖x – y‖2 – 2α〈Tx – Ty | x – y〉) (11b)

=
(
β2 – α2)‖x – y‖2 –

(‖Tx – Ty‖2 – 2α〈Tx – Ty | x – y〉) (11c)

=
(
β2 – α2 + α

)‖x – y‖2 –
(
(1 – α)‖Tx – Ty‖2

+ α‖Tx – Ty‖2 – 2α〈Tx – Ty | x – y〉 + α‖x – y‖2) (11d)

=
(
β2 – α(α – 1)

)‖x – y‖2 –
(
(1 – α)‖Tx – Ty‖2 + α

∥∥(Id –T)x – (Id –T)y
∥∥2). (11e)

This proves (10a) and (10c) in view of (11c) and (11e). Finally, note that (β2 – α2)‖x – y‖2 –
‖Tx – Ty‖2 + 2α〈x – y | Tx – Ty〉 = (β2 – α2)‖x – y‖2 – (1 – 2α)‖Tx – Ty‖2 – 2α‖Tx – Ty‖2 +
2α〈x–y | Tx–Ty〉 = (β2 –α2)‖x–y‖2 –(1–2α)‖Tx–Ty‖2 +2α〈Tx–Ty | (Id –T)x–(Id –T)y〉.
This proves (10b). �

Proposition 2.5 Let α ∈ R, let β ∈ R, let N : X → X, and set T = αId + βN . Let (x, y) ∈
X × X. Then the following are equivalent:

(i) N is nonexpansive.
(ii) ‖Tx – Ty‖2 – 2α〈x – y | Tx – Ty〉 ≤ (β2 – α2)‖x – y‖2.

(iii) (1 – 2α)‖Tx – Ty‖2 – 2α〈Tx – Ty | (Id – T)x – (Id – T)y〉 ≤ (β2 – α2)‖x – y‖2.
(iv) (2α – 1)‖(Id – T)x – (Id – T)y‖2 – 2(1 – α)〈Tx – Ty | (Id – T)x – (Id – T)y〉 ≤

(β2 – (1 – α)2)‖x – y‖2.
(v) (1 – α)‖Tx – Ty‖2 + α‖(Id – T)x – (Id – T)y‖2 ≤ (β2 – α(α – 1))‖x – y‖2.

Proof (i)⇔(ii)⇔(iii)⇔(v): This is a direct consequence of Proposition 2.4. (i)⇔(iv): Ap-
plying (10b) with (T ,α,β) replaced by (Id –T , 1 – α, –β) yields β2(‖x – y‖2 – ‖Nx – Ny‖2) =
(β2 – (1 – α)2)‖x – y‖2 – (2α – 1)‖(Id –T)x – (Id –T)y‖2 + 2(1 – α)〈Tx – Ty | (Id – T)x – (Id –
T)y〉. The proof is complete. �
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Proposition 2.6 Let α ∈ R, let N : X → X, and set T = (1 – α) Id +αN . Let (x, y) ∈ X × X.
Then the following are equivalent:

(i) N is nonexpansive.
(ii) ‖Tx – Ty‖2 – 2(1 – α)〈x – y | Tx – Ty〉 ≤ (2α – 1)‖x – y‖2.

(iii) (2α – 1)‖Tx – Ty‖2 – 2(1 – α)〈Tx – Ty | (Id – T)x – (Id – T)y〉 ≤ (2α – 1)‖x – y‖2.
(iv) (1 – 2α)‖(Id – T)x – (Id – T)y‖2 ≤ 2α〈Tx – Ty | (Id – T)x – (Id – T)y〉.
(v) (1 – α)‖(Id – T)x – (Id – T)y‖2 ≤ α‖x – y‖2 – α‖Tx – Ty‖2.

Proof Apply Proposition 2.5 with (α,β) replaced by (1 – α,α). �

Lemma 2.7 Let λ < 1. Then

‖x‖2 – λ‖y‖2 ≥ –
λ

1 – λ
‖x + y‖2. (12)

Proof Let δ > 0. By Young’s inequality, ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2 ≥ (1 – δ)‖x‖2 +
(1 – δ–1)‖y‖2. Equivalently, ‖x + y‖2 – (1 – δ)‖x‖2 ≥ (1 – δ–1)‖y‖2. Now, replace (x, y, δ) by
(–y, x + y, 1 – λ). �

Proposition 2.8 Let α ∈ ]0, 1[, let β > 0, and let T : X → X. Then T is α-averaged if and
only if T = (1 – β) Id +βM and M is α

β
-conically nonexpansive.

Proof Indeed, T is α-averaged if and only if there exists a nonexpansive mapping N : X →
X such that T = (1 – α)Id + αN . Equivalently,

T = (1 – α)Id + αN = (1 – β) Id +β

((
1 –

α

β

)
Id +

α

β
N

)
,

and the conclusion follows by setting M = (1 – α
β

) Id + α
β

N . �

The following three lemmas can be directly verified, hence we omit the proof.

Lemma 2.9 Let α > 0, and let T : X → X. Then T is α-conically nonexpansive ⇔ Id –T is
1

2α
-cocoercive ⇒ Id –T is maximally monotone.

Lemma 2.10 Let β > 0, let μ ∈ R, and let A : X → X. Suppose that A is maximally μ-
monotone and 1

β
-cocoercive. Then μ ≤ 1

β
.

Lemma 2.11 Let β > 0, let T : X → X, and let β ≥ β . Suppose that T is 1
β

-cocoercive. Then
T is 1

β
-cocoercive.

Lemma 2.12 Let β > 0, and let A : X → X. Suppose that A is β-Lipschitz continuous. Then
the following hold:

(i) A is maximally (–β)-monotone.
(ii) A + β Id is 1

2β
-cocoercive.

Proof See Appendix B. �
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Lemma 2.13 Let β > δ > 0, let T1 : X → X, and let T2 : X → X. Suppose that T1 (respec-
tively T2) is 1

β
-cocoercive (respectively 1

δ
-cocoercive). Then T1 – T2 is β-Lipschitz continu-

ous.

Proof See Appendix C. �

As a corollary, we obtain the following result which was stated in [27, page 4].

Corollary 2.14 Let f1 : X → R, f2 : X → R be Frechét differentiable convex functions, and
let β > δ > 0. Suppose that ∇f 1 (respectively ∇f 2) is β-Lipschitz continuous (respectively
δ-Lipschitz continuous). Then the following hold:

(i) ∇f 1 –∇f 2 is β-Lipschitz continuous.
(ii) Suppose that f1 – f2 is convex. Then ∇f 1 –∇f 2 is 1

β
-cocoercive.

Proof See Appendix D. �

Lemma 2.15 Let α ∈ ]0, 1[, let δ ∈ ]0, 1], and let T : X → X. Suppose that T is α-averaged.
Then the following hold:

(i) δT is (1 – δ(1 – α))-averaged.
(ii) Suppose that δ ∈ ]0, 1[. Then δT is a Banach contraction with constant δ.

Proof See Appendix E. �

Let A be maximally ρ-monotone, where ρ > –1. Then (see [9, Proposition 3.4] and [3,
Corollary 2.11 and Proposition 2.12]) we have

JA is single-valued and dom JA = X. (13)

The following result involves resolvents and reflected resolvents of ρ-monotone opera-
tors.

Proposition 2.16 Let A be ρ-monotone, where ρ > –1. Then the following hold:
(i) JA is (1 + ρ)- cocoercive, in which case JA is Lipschitz continuous with constant 1

1+ρ
.

(ii) –RA is 1
1+ρ

-conically nonexpansive.
(iii) Suppose that ρ ≤ 0. Then RA is Lipschitz continuous with constant 1–ρ

1+ρ
.

Proof (i): See [9, Lemma 3.3(ii)]. Alternatively, it follows from [3, Corollary 3.8(ii)] that
Id –T is 1

2(1+ρ) -averaged. Now apply Lemma 2.9 with T replaced by Id –JA. (ii): It follows
from (i) that there exists a nonexpansive operator N : X → X such that JA = 1

2(1+ρ) (Id +N).
Now, –RA = Id –2JA = Id – 1

1+ρ
(Id +N) = (1 – 1

1+ρ
) Id + 1

1+ρ
N . (iii): Indeed, let (x, y) ∈ X × X

and let N be as defined above. We have

‖RAx – RAy‖ =
∥∥∥∥–

ρ

1 + ρ
(x – y) –

1
1 + ρ

(Nx – Ny)
∥∥∥∥ ≤ –

ρ

1 + ρ
‖x – y‖ +

1
1 + ρ

‖Nx – Ny‖
(14a)

≤ 1 – ρ

1 + ρ
‖x – y‖. (14b)

The proof is complete. �
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3 Compositions
Definition 3.1 ((α,β)-I-N decomposition) Let R : X → X be Lipschitz continuous, and
let7 (α,β) ∈ R × R+. We say that R admits an (α,β)-identity-nonexpansive (I-N) decom-
position8 if there exists a nonexpansive operator N : X → X such that R = α Id +βN .

Throughout the rest of this paper, we assume that

R1 : X → X and R2 : X → X are Lipschitz continuous operators.

Proposition 3.2 Let α1 ∈ ]–∞, 1[, let α2 ∈ ]–∞, 1[, let β1 ∈ R+, let β2 ∈ R+, and suppose
that α2(α2 – 1) ≤ β2

2 . Set

δ1 =
α1

1 – α1

(
1 –

(1 – α2)2 – β2
2

1 – α2

)
, (15a)

δ2 =
α2

1 – α2
, (15b)

δ3 = 1 –
(

(1 – α1)2 – β2
1

1 – α1

(
1 –

(1 – α2)2 – β2
2

1 – α2

)
+

(1 – α2)2 – β2
2

(1 – α2)

)
. (15c)

Suppose that R1 admits an (α1,β1)-I-N decomposition and that R2 admits an (α2,β2)-I-N
decomposition. Then (∀(x, y) ∈ X × X) we have

‖R2R1x – R2R1y‖2 + δ1
∥∥(Id –R1)x – (Id –R1)y

∥∥2

+ δ2
∥∥(Id –R2)R1x – (Id –R2)R1y

∥∥2 ≤ δ3‖x – y‖2. (16)

Proof Set Ti = 1
2 (Id + Ri) = 1+αi

2 Id + βi
2 Ni, and observe that by Proposition 2.5 applied with

(T ,α,β) replaced by (Ti, 1+αi
2 , βi

2 ), i ∈ {1, 2}, we have (∀(x, y) ∈ X × X)

〈
Tix – Tiy | (Id –Ti)x – (Id –Ti)y

〉

≥ αi

1 – αi

∥∥(Id –Ti)x – (Id –Ti)y
∥∥2 +

(1 – αi)2 – β2
i

4(1 – αi)
‖x – y‖2. (17)

Equivalently,

〈
(Id +Ri)x – (Id +Ri)y | (Id –Ri)x – (Id –Ri)y

〉

≥ αi

1 – αi

∥∥(Id –Ri)x – (Id –Ri)y
∥∥2 +

(1 – αi)2 – β2
i

1 – αi
‖x – y‖2. (18)

Observe also that, because α2 < 1, we have

α2(α2 – 1) ≤ β2
2 ⇔ 1 –

(1 – α2)2 – β2
2

1 – α2
≥ 0. (19)

7Here and elsewhere, we use R+ to denote the interval [0, +∞[.
8The assumption that β ∈ R+ is not restrictive. Indeed, since N is nonexpansive, an operator admits an (α,β)-I-N decom-
position if and only if it admits an (α, –β)-I-N decomposition. This is the reason why we define it only for nonnegative
β .
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It follows from (18), applied with i = 2 and (x, y) replaced by (R1x, R1y) in (20c) and by i = 1
in (20f), in view of (19) that

‖x – y‖2 – ‖R2R1x – R2R1y‖2

= ‖x – y‖2 – ‖R1x – R1y‖2 + ‖R1x – R1y‖2 – ‖R2R1x – R2R1y‖2 (20a)

=
〈
(Id +R1)x – (Id +R1)y | (Id – R1)x – (Id – R1)y

〉

+
〈
(Id +R2)R1x – (Id +R2)R1y | (Id – R2)R1x – (Id – R2)R1y

〉
(20b)

≥ 〈
(Id +R1)x – (Id +R1)y | (Id – R1)x – (Id – R1)y

〉

+
α2

1 – α2

∥∥(Id –R2)R1x – (Id –R2)R1y
∥∥2 +

(1 – α2)2 – β2
2

1 – α2
‖R1x – R1y‖2 (20c)

=
〈
(Id +R1)x – (Id +R1)y | (Id – R1)x – (Id – R1)y

〉

+
α2

1 – α2

∥∥(Id –R2)R1x – (Id –R2)R1y
∥∥2

+
(1 – α2)2 – β2

2
1 – α2

(‖x – y‖2 –
〈
(Id +R1)x – (Id +R1)y | (Id – R1)x – (Id – R1)y

〉)

(20d)

=
(

1 –
(1 – α2)2 – β2

2
1 – α2

)〈
(Id +R1)x – (Id +R1)y | (Id – R1)x – (Id – R1)y

〉

+
α2

1 – α2

∥∥(Id –R2)R1x – (Id –R2)R1y
∥∥2 +

(1 – α2)2 – β2
2

1 – α2
‖x – y‖2 (20e)

≥
(

1 –
(1 – α2)2 – β2

2
1 – α2

)(
α1

1 – α1

∥∥(Id –R1)x – (Id –R1)y
∥∥2 +

(1 – α1)2 – β2
1

1 – α1
‖x – y‖2

)

+
α2

1 – α2

∥∥(Id –R2)R1x – (Id –R2)R1y
∥∥2 +

(1 – α2)2 – β2
2

1 – α2
‖x – y‖2 (20f)

=
α1

1 – α1

(
1 –

(1 – α2)2 – β2
2

1 – α2

)∥∥(Id –R1)x – (Id –R1)y
∥∥2

+
α2

1 – α2

∥∥(Id –R2)R1x – (Id –R2)R1y
∥∥2

+
(

(1 – α1)2 – β2
1

1 – α1

(
1 –

(1 – α2)2 – β2
2

1 – α2

)
+

(1 – α2)2 – β2
2

1 – α2

)
‖x – y‖2. (20g)

Rearranging yields the desired result. �

Theorem 3.3 Let α1 ∈ ]–∞, 1[, let α2 ∈ ]–∞, 1[, let β1 ∈R+, let β2 ∈R+, and suppose that
α2(α2 – 1) ≤ β2

2 . Let δ1, δ2, and δ3 be defined as in (15a)–(15c). Set

δ4 =
δ1δ2

δ1 + δ2
, (21)

and suppose that δ1 + δ2 > 0, that δ3 – δ4 + δ3δ4 ≥ 0, and that δ4 > –1. Suppose that R1

admits an (α1,β1)-I-N decomposition, and that R2 admits an (α2,β2)-I-N decomposition.
Then R2R1 admits an (α,β)-I-N decomposition, where

α =
δ4

1 + δ4
, β =

√
δ3 – δ4 + δ3δ4

1 + δ4
. (22)
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Proof Let δ := min(δ1, δ2), let δ̄ := max(δ1, δ2), and let λ := –δ/δ̄ (i.e., λ = –δ1/δ2 if δ1 ≤ δ2,
and λ = –δ2/δ1 if δ1 ≥ δ2). Then Proposition 3.2 and Lemma 2.7 imply that

δ3‖x – y‖2 – ‖R2R1x – R2R1y‖2

≥ δ1
∥∥(Id –R1)x – (Id –R1)y

∥∥2 + δ2
∥∥(Id –R2)R1x – (Id –R2)R1y

∥∥2 (23a)

= δ̄(
δ1

δ̄

∥∥(Id –R1)x – (Id –R1)y
∥∥2 +

δ2

δ̄

∥∥(Id –R2)R1x – (Id –R2)R1y
∥∥2 (23b)

≥ δ̄

(
–

λ

1 – λ

∥∥(Id –R1)x – (Id –R1)y + (Id –R2)R1x – (Id –R2)R1y
∥∥2

)
(23c)

= –
λδ̄

1 – λ

∥∥(Id – R2R1)x – (Id – R2R1)y
∥∥2 (23d)

=
δδ̄

δ̄ + δ

∥∥(Id – R2R1)x – (Id – R2R1)y
∥∥2 (23e)

= δ4
∥∥(Id – R2R1)x – (Id – R2R1)y

∥∥2. (23f)

Comparing (23a)–(23f) to Proposition 2.5 applied with T replaced by R2R1, we learn
that there exist a nonexpansive operator N : X → X and (α,β) ∈ R

2 such that R2R1 =
α Id +βN , where δ3 = β2+α(1–α)

1–α
and δ4 = α

1–α
. Equivalently, α = δ4

1+δ4
, hence β =

√
δ3–δ4+δ3δ4

1+δ4
,

as claimed. �

Theorem 3.4 Let α1 ∈ R, let α2 ∈ R, let β1 > 0, let β2 > 0, suppose that α1 + β1 > 0, that
α2 + β2 > 0, and that either β1β2

(α1+β1)(α2+β2) < 1 or max{ β1
α1+β1

, β2
α2+β2

} = 1. Set

κ = (α1 + β1)(α2 + β2), (24a)

θ =

⎧
⎨

⎩

β1α2+β2α1
α1α2+α1β2+α2β1

, β1β2
(α1+β1)(α2+β2) < 1;

1, max{ β1
α1+β1

, β2
α2+β2

} = 1.
(24b)

Suppose that R1 admits an (α1,β1)-I-N decomposition, and that R2 admits an (α2,β2)-I-N
decomposition. Then θ ∈ ]0, +∞[ and R2R1 admits a (κ(1 – θ ),κθ )-I-N decomposition, i.e.,
R2R1 is κ-scaled θ -conically nonexpansive. That is, there exists a nonexpansive operator
N : X → X such that

R2R1 = κ(1 – θ ) Id +κθN . (25)

Proof Let θi = βi
αi+βi

> 0, and observe that

Ri = (αi + βi)
(
(1 – θi) Id +θiNi

)
, i ∈ {1, 2}. (26)

Next, let Ñ2 = 1
α1+β1

N2 ◦ (α1 + β1) Id, and note that Ñ2 is nonexpansive. Now, set

R̃1 = (1 – θ1) Id +θ1N1, R̃2 = (1 – θ2) Id +θ2Ñ2. (27)
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Then (26) and (27) yield

R2R1 =
(
(α2 + β2)

(
(1 – θ2)Id + θ2N2

))(
(α1 + β1)

(
(1 – θ1)Id + θ1N1

))
(28a)

= (α1 + β1)(α2 + β2)
(

1
α1 + β1

(
(1 – θ2)Id + θ2N2

))(
(α1 + β1)̃R1

)
(28b)

= (α1 + β1)(α2 + β2)̃R2R̃1. (28c)

We proceed by cases. Case I: α1α2 = 0. Observe that 0 ∈ {α1,α2} ⇔ max{ β1
α1+β1

, β2
α2+β2

} =
max{θ1, θ2} = 1. The conclusion follows by observing that R̃i is nonexpansive, i ∈ {1, 2}.

Case II: α1α2 �= 0. By assumption we must have β1
α1+β1

β2
α2+β2

= θ1θ2 < 1. We claim that
R̃i, i ∈ {1, 2}, satisfy the conditions of Theorem 3.3 with (αi,βi) replaced by (1 – θi, θi).
Indeed, observe that (1 – θ2)(1 – θ2 – 1) ≤ θ2

2 ⇔ θ2(θ2 – 1) ≤ θ2
2 ⇔ θ2 – 1 ≤ θ2, which is

always true. Moreover, replacing (αi,βi) by (1 – θi, θi) yields δ1 = 1–θ1
θ1

, δ2 = 1–θ2
θ2

, δ3 = 1, and,
consequently, δ4 = θ2(1–θ1)+θ1(1–θ2)

(1–θ1)(1–θ2) . We claim that

θ1 + θ2 – 2θ1θ2 > 0. (29)

Indeed, recall that θ1 +θ2 –2θ1θ2 = θ1θ2( 1
θ1

+ 1
θ2

–2) > θ1θ2( 1
θ1

+θ1 –2) = θ1θ2(
√

θ1 – 1√
θ1

)2 > 0.
This implies that δ1 + δ2 = θ1+θ2–2θ1θ2

θ1θ2
> 0. Moreover,

δ4 =
(1 – θ1)(1 – θ2)

θ2(1 – θ1) + θ1(1 – θ2)
=

1 – θ1 – θ2 + θ1θ2

θ1 + θ2 – 2θ1θ2
= –1 +

1 – θ1θ2

θ1 + θ2 – 2θ1θ2
> –1. (30)

Therefore, by Theorem 3.3, we conclude that there exists a nonexpansive operator
N : X → X such that R̃2R̃1 = α Id +βN , α = δ4

1+δ4
= 1–θ1–θ2+θ1θ2

1–θ1θ2
= α1α2

α1α2+α1β2+α2β1
, and β =

1
1+δ4

= θ1+θ2–2θ1θ2
1–θ1θ2

= β1α2+β2α1
α1α2+α1β2+α2β1

. Now combine with (28a)–(28c). �

4 Applications to special cases
We start this section by recording the following simple lemma which can be easily verified,
hence we omit the proof.

Lemma 4.1 Set (̃R1, R̃2) = (–R1, R2 ◦ (– Id)). Then the following hold:
(i) R2R1 = R̃2R̃1.

(ii) Let αi > 0, let δi ∈R� {0}, and suppose that – 1
δi

Ri is αi-conically nonexpansive.
Then 1

δi
R̃i is αi-conically nonexpansive.

Theorem 4.2 Let i ∈ {1, 2}, let αi > 0, let δi ∈ R� {0}, let Ri : X → X be such that 1
δi

Ri is
αi-conically nonexpansive. Suppose that either α1α2 < 1 or max{α1,α2} = 1. Set

⎧
⎨

⎩

α1+α2–2α1α2
1–α1α2

, α1α2 < 1;

1, max{α1,α2} = 1.
(31)

Then there exists a nonexpansive operator N : X → X such that

R2R1 = δ1δ2
(
(1 – α) Id +αN

)
. (32)

Furthermore, α < 1 ⇔ [α1 < 1 and α2 < 1].
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Proof Set (̃R1, R̃2) = (–R1, R2 ◦ (– Id)) and set R = R2R1. The proof proceeds by cases.
Case I: δi > 0, i ∈ {1, 2}. By assumption, there exist nonexpansive operators Ni : X → X

such that Ri = δi(1 – αi) Id +δiαiNi. Moreover, one can easily check that Ri satisfy the as-
sumptions of Theorem 3.4 with (αi,βi) replaced by (δi(1 –αi), δiαi). Applying Theorem 3.4,
with (αi,βi) replaced by (δi(1 – αi), δiαi), we learn that there exists a nonexpansive op-
erator N : X → X such that R = (δ1(1 – α1) + δ1α1)(δ2(1 – α2) + δ2α2)((1 – α) Id +αN) =
δ1δ2((1 – α) Id +αN), where

α =
δ1(1 – α1)δ2α2 + δ2(1 – α2)δ1α1

δ1(1 – α1)δ2α2 + δ2(1 – α2)δ1α1 + δ1(1 – α1)δ2(1 – α2)
=

α1 + α2 – 2α1α2

1 – α1α2
. (33)

Finally, observe that α < 1 ⇔ [α1α2 < 1 and α1+α2–2α1α2
1–α1α2

< 1] ⇔ [α1α2 < 1 and 1 – α1α2 >
α1 + α2 – 2α1α2] ⇔ [α1α2 < 1 and (1 – α1)(1 – α2) > 0] ⇔ [α1 < 1 and α2 < 1].

Case II: δi < 0, i ∈ {1, 2}. Observe that 1
δi

Ri = – 1
|δi| Ri is αi-conically nonexpansive. There-

fore, Lemma 4.1(ii), applied with δi replaced by |δi|, implies that 1
|δi| R̃i are αi-conically

nonexpansive. Now combine Lemma 4.1(i) and Case I applied with (Ri, δi) replaced by
(̃Ri, |δi|).

Case III: δ1 < 0 and δ2 > 0: Observe that 1
δ1

R1 = – 1
|δ1| R1 is α1-conically nonexpan-

sive. Now, using Lemma 4.1(i)&(ii), we have –R = –R2R1 = –R̃2R̃1, and – 1
δ2

R̃2 is α2-
conically nonexpansive. Now combine with Case II, applied with (R1, R2, δ1) replaced by
(̃R1, –R̃2, |δ1|), to learn that there exists a nonexpansive mapping N : X → X such that
–R = |δ1|δ2((1 – α) Id +αN), and the conclusion follows.

Case IV: δ1 > 0 and δ2 < 0: Indeed, –R = –R2R1. Now combine with Case I applied with
R2 replaced by –R2, in view of Lemma 4.1(ii). �

Corollary 4.3 Let α ∈ ]0, 1[, let β > 0, let δ ∈R� {0}, let {i, j} = {1, 2}, and suppose that 1
δ
Ri

is α-averaged, and that Rj is 1
β

-cocoercive. Set α = 1
2–α

. Then α ∈ ]0, 1[, and there exists a
nonexpansive operator N : X → X such that

R2R1 = βδ
(
(1 – α) Id +αN

)
. (34)

Proof Suppose first that (i, j) = (1, 2), and observe that there exists a nonexpansive operator
N such that R2 = β

2 (Id +N). Applying Theorem 4.7 with m = 2, (α1,α2, δ1, δ2) replaced by
(α, 1/2, δ,β) yields that there exists a nonexpansive operator N such that R2R1 = βδ((1 –
α) Id +αN), where

α =
α + 1

2 – 2 α
2

1 – α
2

=
1

2 – α
∈ ]0, 1[. (35)

The case (i, j) = (2, 1) follows similarly. �

The assumption α1α2 < 1 is critical in the conclusion of Theorem 4.2 as we illustrate
below.

Example 4.4 (α1 = α2 > 1) Let α > 1, and set R1 = R2 = (1 – α)Id – αId = (1 – 2α)Id. Then

R2R1 = (1 – 2α)2Id =
(
1 – 4α + 4α2)Id. (36)
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Hence, Id –R2R1 = 4α(1 – α) Id. That is, Id –R2R1 is not monotone; hence, R2R1 is not con-
ically nonexpansive by Lemma 2.9 applied with T replaced by R2R1.

The following proposition provides an abstract framework to construct a family of oper-
ators R1 and R2 such that R1 is α1-conically nonexpansive, R2 is α2-conically nonexpansive,
α1α2 > 1, and the composition R2R1 fails to be conically nonexpansive.

Proposition 4.5 Let θ ∈R, let α1 > 0, let α2 > 0, let

Rθ =

[
cos θ – sin θ

sin θ cos θ

]

, (37)

set

R1 = (1 – α1) Id +α1Rθ , R2 = (1 – α2) Id –α2Rθ , (38)

and set

κ = α1 + α2 – 2α1α2 sin2 θ – (α1 – α2) cos θ . (39)

Then R1 is α1-conically nonexpansive, and R2 is α2-conically nonexpansive. Moreover, we
have the implication κ < 0 ⇒ R2R1 is not conically nonexpansive.

Proof Set S = Rπ/2, and observe that S2 = – Id and that Rθ = (cos θ ) Id +(sin θ )S. Now,

R2R1 =
(
(1 – α1) Id +α1Rθ

)(
(1 – α2) Id –α2Rθ

)
(40a)

= (1 – α1 – α2 + α1α2) Id +(α1 – α2)Rθ – α1α2R2θ (40b)

=
(
1 – α1 – α2 + α1α2 + (α1 – α2) cos θ – α1α2 cos(2θ )

)
Id

+
(
(α1 – α2) sin θ – α1α2 sin(2θ )

)
S (40c)

=
(
1 – α1 – α2 + α1α2 + (α1 – α2) cos θ – α1α2

(
2 cos2 θ – 1

))
Id

+
(
(α1 – α2) sin θ – α1α2 sin(2θ )

)
S (40d)

=
(
1 – α1 – α2 + 2α1α2 sin2 θ + (α1 – α2) cos θ

)
Id

+
(
(α1 – α2) sin θ – α1α2 sin(2θ )

)
S. (40e)

Consequently,

Id –R2R1 =
(
α1 + α2 – 2α1α2 sin2 θ – (α1 – α2) cos θ

)
Id

–
(
(α1 – α2) sin θ – α1α2 sin(2θ )

)
S. (41)

Hence, (∀x ∈R
2)

〈
(Id –R2R1)x | x

〉
=

(
α1 + α2 – 2α1α2 sin2 θ – (α1 – α2) cos θ

)‖x‖2 = κ‖x‖2. (42)
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Now, R2R1 is conically nonexpansive ⇒ Id –R2R1 is monotone by Lemma 2.9, and the
conclusion follows in view of (42). �

The following example provides two concrete instances where: (i) α1 > 1, α2 > 1, hence
α1α2 > 1, (ii) α1 > 1, α2 < 1, α1α2 > 1. In both cases, R2R1 is not conically nonexpansive.

Example 4.6 Suppose that one of the following holds:
(i) θ ∈ ]0,π/2[, ε ≥ 0, δ ≥ 0, α1 = 1+ε

sin2 θ
, and α2 = 1+δ

sin2 θ
.

(ii) θ ∈ ]π/4,π/2[, ε > cos2 θ (2–cos2 θ )
(1–2 cos2 θ )(1+cos θ )+cos θ

, α1 = 1+ε

sin2 θ
, and α2 = sin2 θ .

Let Rθ be defined as in (37), let R1 = (1 – α1) Id +α1Rθ , and let R2 = (1 – α2) Id –α2Rθ . Then
α1α2 > 1, and R2R1 is not conically nonexpansive.

Proof Let κ be defined as in (39). In view of Proposition 4.5, it is sufficient to show that
κ < 0. (i): Note that κ < 0 ⇔ κ sin2 θ < 0. Now,

κ sin2 θ = 2 + ε + δ – (ε – δ) cos θ – 2 – 2ε – 2δ – 2εδ (43a)

= –
(
ε(1 + cos θ ) + δ(1 – cos θ ) + 2εδ

)
< 0. (43b)

(ii): We have

κ =
1 + ε + sin4 θ

sin2 θ
– 2(1 + ε) sin2 θ –

1 + ε – sin4 θ

sin2 θ
cos θ (44a)

= –
1

sin2 θ

(
2(1 + ε) sin4 θ –

(
1 + ε + sin4 θ

)
+

(
1 + ε – sin4 θ

)
cos θ

)
(44b)

= –
1

1 – cos2 θ

((
2 sin4 θ + cos θ – 1

)
ε + sin4 θ (1 – cos θ ) – (1 – cos θ )

)
(44c)

= –
1 – cos θ

1 – cos2 θ

((
2(1 + cos θ )

(
1 – cos2 θ

)
– 1

)
ε + 1 – 2 cos2 θ + cos4 θ – 1

)
(44d)

= –
1

1 + cos θ

((
1 + 2 cos θ – 2 cos2 θ – 2 cos3 θ

)
ε – cos2 θ

(
2 – cos2 θ

))
(44e)

= –
1

1 + cos θ

((
1 – 2 cos2 θ

)
(1 + cos θ ) + cos θ

)
ε – cos2 θ

(
2 – cos2 θ

)
). (44f)

Now, observe that (∀θ ∈ ] π
4 , π

2 [) 1 – 2 cos2 θ = – cos(2θ ) > 0. Consequently, (1 – 2 cos2 θ )(1 +
cos θ ) + cos θ > cos θ > 0. Now use the assumption ε > cos2 θ (2–cos2 θ )

(1–2 cos2 θ )(1+cos θ )+cos θ
to learn that

(1 – 2 cos2 θ )(1 + cos θ ) + cos θ )ε – cos2 θ (2 – cos2 θ ) > 0, hence κ < 0, and the conclusion
follows. �

Theorem 4.7 (composition of m scaled conically nonexpansive operators) Let m ≥ 2 be
an integer, set I = {1, . . . , m}, let (Ri)i∈I be a family of operators from X to X, let r ∈ I , let
αi be real numbers such that {αi | i ∈ I � {r}} ⊆]0, 1[ and αr > 0, let δi be real numbers in
R� {0}, and suppose that, for every i ∈ I , 1

δi
Ri is αi-conically nonexpansive. Set

α =

∑m
i=1
i�=r

αi
1–αi

1 +
∑m

i=1
i�=r

αi
1–αi

. (45)
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Suppose that αrα < 1, and set

α =

⎧
⎪⎨

⎪⎩

∑m
i=1

αi
1–αi

1+
∑m

i=1
αi

1–αi
, αr �= 1;

1, αr = 1.
(46)

Then there exists a nonexpansive operator N : X → X such that

Rm · · ·R1 = δm · · · δ1
(
(1 – α) Id +αN

)
. (47)

Proof First, observe that (∀i ∈ I � {r}), 1
δi

Ri is nonexpansive. If αr = 1, then (∀i ∈ {1, . . . , m})
Ri is |δi|-Lipschitz continuous and the conclusion readily follows. Now, suppose that αr �=
1. We proceed by induction on k ∈ {2, . . . , m}. At k = 2, the claim holds by Theorem 4.2.
Now, suppose that the claim holds for some k ∈ {2, . . . , m – 1}. Let (Ri)1≤i≤k+1 be a family
of operators from X to X, let r ∈ {1, . . . , k, k + 1}, let αi be real numbers such that {αi |
i ∈ {1, . . . , k, k + 1}� {r}} ⊆]0, 1[ and αr ∈ ]0, +∞[�{1}, let δi be real numbers in R � {0},
and suppose that, for every i ∈ {1, . . . , k + 1}, 1

δi
Ri is αi-conically nonexpansive. Set β =

∑k+1
i=1
i�=r

αi
1–αi

1+
∑k+1

i=1
i�=r

αi
1–αi

, and suppose that αrβ < 1. We examine two cases.

Case I: αk+1 = αr . In this case the conclusion follows by applying Theorem 4.2 in view
of the inductive hypothesis with (R1, R2) replaced by (Rk . . . R1, Rk+1) and (δ1, δ2,α1,α2) re-
placed by (δ1 . . . δk , δk+1, (

∑k
i=1

αi
1–αi

)/(1 +
∑k

i=1
αi

1–αi
),αk+1).

Case II: αk+1 �= αr . We claim that

αk+1

∑k
i=1

αi
1–αi

1 +
∑k

i=1
αi

1–αi

< 1. (48)

To this end, set α̂ =

∑k
i=1
i�=r

αi
1–αi

1+
∑k

i=1
i�=r

αi
1–αi

, and observe that α̂ < β . By assumption we have αrβ < 1.

Altogether, we conclude that αrα̂ < 1. It follows from the inductive hypothesis that

1
δ1 . . . δk

(Rk . . . R1) is
∑k

i=1
αi

1–αi

1 +
∑k

i=1
αi

1–αi

-conically nonexpansive. (49)

Next note that

∑k
i=1

αi
1–αi

1 +
∑k

i=1
αi

1–αi

=

∑k
i=1
i�=r

αi
1–αi

+ αr
1–αr

1+
∑k

i=1
i�=r

αi
1–αi

1+
∑k

i=1
i�=r

αi
1–αi

+ αr
1–αr

1+
∑k

i=1
i�=r

αi
1–αi

=

α̂ + αr
(1–αr)(1+

∑k
i=1
i�=r

αi
1–αi

)

1 + αr
(1–αr)(1+

∑k
i=1
i�=r

αi
1–αi

)

(50a)

=
α̂(1 – αr)(1 +

∑k
i=1
i�=r

αi
1–αi

) + αr

(1 – αr)(1 +
∑k

i=1
i�=r

αi
1–αi

) + αr
(50b)
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=
αr(1 – α̂(1 +

∑k
i=1
i�=r

αi
1–αi

)) + α̂(1 +
∑k

i=1
i�=r

αi
1–αi

)

1 + (1 – αr)
∑k

i=1
i�=r

αi
1–αi

. (50c)

Because αrβ < 1, we learn that 1 + (1 – αr)
∑k

i=1
i�=r

αi
1–αi

> 0. Moreover, because α̂ < 1, we have

αk+1α̂ < 1. Therefore, (50a)–(50c) implies

αk+1

∑k
i=1

αi
1–αi

1 +
∑k

i=1
αi

1–αi

< 1 (51a)

⇔ αk+1

(

αr

(

1 – α̂

(

1 +
k∑

i=1
i�=r

αi

1 – αi

))

+ α̂

(

1 +
k∑

i=1
i�=r

αi

1 – αi

))

< 1 + (1 – αr)
k∑

i=1
i�=r

αi

1 – αi
(51b)

⇔ αr

(

αk+1

(

1 – α̂

(

1 +
k∑

i=1
i�=r

αi

1 – αi

))

+
k∑

i=1
i�=r

αi

1 – αi

)

<

(

1 +
k∑

i=1
i�=r

αi

1 – αi

)

(1 – αk+1α̂) (51c)

⇔ αr

(

αk+1

(

1 –
k∑

i=1
i�=r

αi

1 – αi

)

+
k∑

i=1
i�=r

αi

1 – αi

)

<

(

1 +
k∑

i=1
i�=r

αi

1 – αi

)

(1 – αk+1α̂) (51d)

⇔ αr

αk+1(1 –
∑k

i=1
i�=r

αi
1–αi

) +
∑k

i=1
i�=r

αi
1–αi

(1 +
∑k

i=1
i�=r

αi
1–αi

)(1 – αk+1α̂)
< 1. (51e)

Now, observe that

αk+1

(

1 –
k∑

i=1
i�=r

αi

1 – αi

)

+
k∑

i=1
i�=r

αi

1 – αi
=

( k∑

i=1
i�=r

αi

1 – αi
+

αk+1

1 – αk+1

)

(1 – αk+1)

=
k+1∑

i=1
i�=r

αi

1 – αi
(1 – αk+1) (52)
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and

(

1 +
k∑

i=1
i�=r

αi

1 – αi

)

(1 – αk+1α̂) = 1 +
k∑

i=1
i�=r

αi

1 – αi
– αk+1

k∑

i=1
i�=r

αi

1 – αi
(53a)

=

(

1 +
k∑

i=1
i�=r

αi

1 – αi
+

αk+1

1 – αk+1

)

(1 – αk+1) (53b)

=

(

1 +
k+1∑

i=1
i�=r

αi

1 – αi

)

(1 – αk+1). (53c)

In view of (52) and (53a)–(53c), (51a)–(51e) becomes

αk+1

∑k
i=1

αi
1–αi

1 +
∑k

i=1
αi

1–αi

< 1 ⇔ αr

∑k+1
i=1

α1
1–αi

1 +
∑k+1

i=1
α1

1–αi

= αrβ < 1. (54)

This proves (48). Now proceed similar to Case I in view of (48) and (49). �

The assumption αrα < 1 is critical in the conclusion of the above theorem as we illustrate
in the following example.

Example 4.8 Let ε > 0, let δ > 1, let α1 ∈ ]0, 1
2 (

√
(ε + δ)2 + 4 – (ε + δ))[, let α2 = α1 + δ + ε,

and let

S =

[
0 –1
1 0

]

. (55)

Set R1 = (1 – α1) Id –α1S, R2 = (1 – α2) Id +α2S, R3 = – 1
δ
S, and

R = R3R2R1. (56)

Then R = R3R1R2 = R1R2R3 = R1R3R2 = R2R3R1 = R2R1R3. Moreover, the following hold:
(i) α1 ∈ ]0, 1[, α2 > 1, and α1α2 < 1.

(ii) R3 is α3-conically nonexpansive where α3 = 1+δ
2δ

∈ ]1/2, 1].
(iii) α1+α2–2α1α2

1–α1α2
α3 > 1.

(iv) R = ( ε+δ
δ

) Id +( α1+α2–2α1α2–1
δ

)S.
(v) Id –R = – ε

δ
Id –( α1+α2–2αα2–1

δ
)S. Hence, Id –R is not monotone.

(vi) R is not conically nonexpansive.

Proof It is straightforward to verify that R = R3R1R2 = R1R2R3 = R1R3R2 = R2R3R1 =
R2R1R3. (i): It is clear that α1 ∈ ]0, 1[ and that α2 > 1. Note that α1α2 < 1 ⇔ α2

1 + (ε + δ)α1 –
1 < 0 ⇔ α1 lies between the roots of the quadratic x2 + (ε + δ)x – 1, and the conclusion fol-
lows from the quadratic formula. (ii): This follows from [2, Proposition 4.38]. (iii): Indeed,
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in view of (i) we have

α1 + α2 – 2α1α2

1 – α1α2
α3 > 1

⇔ (α1 + α2 – 2α1α2)α3 > 1 – α1α2 (57a)

⇔ (α1 + α2 – 2α1α2)(1 + δ) > 2(1 – α1α2)δ (57b)

⇔ (α1 + α2)(1 + δ) – 2α1α2 – 2α1α2δ > 2δ – 2α1α2δ (57c)

⇔ (α1 + α2)(1 + δ) – 2α1α2 > 2δ (57d)

⇔ (2α1 + ε + δ)(1 + δ) – 2α1(α1 + ε + δ) > 2δ (57e)

⇔ 2α1(1 + δ – α1 – ε – δ) + δ2 + δ(1 + ε) + ε > 2δ (57f)

⇔ 2α1(α1 – 1 + ε) < δ2 – δ + εδ + ε = δ2 – δ + (1 + δ)ε. (57g)

Now, because α1 < 1, δ ≥ 1, we learn that 2α1(α1 – 1 + ε) < 2α1ε < (1 + δ)ε < (1 + δ)ε +
δ2 – δ, and the conclusion follows. (iv): It is straightforward, by noting that S2 = – Id, to
verify that R2R1 = R1R2 = (1 – α1 – α2 + α1α2) Id +(α2(1 – α1) – α1(1 – α2))S – α1α2S2 =
(1 – α1 – α2 + 2α1α2) Id +(α2 – α1)S. Consequently, R3R2R1 = 1

δ
(–(1 – α1 – α2 + 2α1α2)S –

(α2 – α1)S2) = 1
δ
((α2 – α1) Id –(1 – α1 – α2 + 2α1α2)S) = ε+δ

δ
Id + α1+α2–2α1α2–1

δ
S. (v): This is a

direct consequence of (iv). (vi): Combine (v) and Lemma 2.9. �

Theorem 4.9 (Composition of cocoercive operators) Let m ≥ 1 be an integer, set I =
{1, . . . , m}, let (Ri)i∈I be a family of operators from X to X, let βi be real numbers in ]0, +∞[,
and suppose that, for every i ∈ I , Ri is 1

βi
-cocoercive. Then there exists a nonexpansive op-

erator N : X → X such that

Rm · · ·R1 = βm · · ·β1

(
1

1 + m
Id +

m
1 + m

N
)

. (58)

Proof Apply Theorem 4.7 with (αi, δi) replaced by (1/2,βi), i ∈ {1, . . . , m}. �

5 Application to the Douglas–Rachford algorithm
Theorem 5.1 (Averagedness of the Douglas–Rachford operator) Let μ > ω ≥ 0, and let
γ ∈ ]0, (μ – ω)/(2μω)[. Suppose that one of the following holds:

(i) A is maximally (–ω)-monotone and B is maximally μ-monotone.
(ii) A is maximally μ-monotone and B is maximally (–ω)-monotone.

Set

T =
1
2

(Id +Rγ BRγ A), and α =
μ – ω

2(μ – ω – γμω)
. (59)

Then α ∈ ]0, 1[ and T is α-averaged.

Proof Suppose that (i) holds. Note that γ A is –γω-monotone, and

–γω > –
μ – ω

2μ
≥ –

μ

2μ
> –1. (60)
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Using (13) and Fact 2.1 we learn that Jγ A and, in turn, T are single-valued and dom Jγ A =
dom T = X. It follows from [3, Proposition 4.3 and Table 1] that –Rγ A is 1

1+γμ
-conically

nonexpansive and –Rγ B is 1
1–γω

-conically nonexpansive. It follows from Theorem 4.2,
applied with (α1,β1, δ1,α2,β2, δ2) replaced by (1 – 1

1+γμ
, 1

1+γμ
, –1, 1 – 1

1–γω
, 1

1–γω
, –1), that

Rγ BRγ A is μ–ω

μ–ω–γμω
-conically nonexpansive. Therefore, there exists a nonexpansive map-

ping N : X → X such that

Rγ BRγ A = (1 – δ) Id +δN , δ =
μ – ω

μ – ω – γμω
. (61)

The conclusion now follows by applying Proposition 2.8 with (β , N) replaced by ( α
δ

,
Rγ BRγ A). Finally, notice that γ < μ–ω

2μω
, which implies that 0 < μ – ω < 2(μ – ω – γμω).

Therefore,

α =
μ – ω

2(μ – ω – γμω)
∈ ]0, 1[. (62)

The proof of (ii) follows similarly. �

Corollary 5.2 ([9, Theorem 4.5(ii)]) Let μ > ω ≥ 0, and let γ ∈ ]0, (μ – ω)/(2μω)[. Suppose
that one of the following holds:

(i) A is maximally (–ω)-monotone and B is maximally μ-monotone.
(ii) A is maximally μ-monotone and B is maximally (–ω)-monotone.

Set T = 1
2 (Id +Rγ BRγ A) and let x0 ∈ X. Then (∃x ∈ Fix T = Fix Rγ BRγ A) such that Tnx0 ⇀ x.

Proof Combine Theorem 5.1 and [2, Theorem 5.15]. �

Remark 5.3 In view of (13), one might think that the scaling factor γ is required only to
guarantee the single-valuedness and the full domain of T . However, it is actually critical
to guarantee convergence as well, as we illustrate in Example 5.4.

Example 5.4 Let μ > ω ≥ 0, let U be a closed linear subspace of X, suppose that9

A = NU + μ Id, B = –ω Id . (63)

Then A is μ-monotone, B is –ω-monotone, and (∀γ ∈ [1/(2ω), 1/ω[) Jγ B is single-valued.
Furthermore, we have

T =
1
2

(Id +Rγ BRγ A) =
1 + γω

(1 – γω)(1 + γμ)
PU –

γω

1 – γω
Id, (64)

and (∀x0 ∈ U⊥) (Tnx0)n∈N does not converge.

Proof Indeed, one can verify that

Jγ A =
1

1 – γω
Id, Jγ B =

1
1 + γμ

PU . (65)

9Let C be a nonempty, closed convex subset of X . Here and elsewhere, we shall use NC to denote the normal cone operator
associated with C, defined by NC (x) = {u ∈ X | sup〈C – x | u〉 ≤ 0} if x ∈ C; and NC (x) =∅, otherwise.
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Consequently,

Rγ A =
1 + γω

1 – γω
Id, Rγ B =

2
1 + γμ

PU – Id, (66)

and (64) follows. Therefore,

T|U⊥ = –
γω

1 – γω
Id and –

γω

1 – γω
∈ ]–∞, –1]. (67)

Hence, (∀x0 ∈ U⊥) (Tnx0)n∈N does not converge. �

Before we proceed to the convergence analysis, we recall that if T is averaged and Fix T �=
∅ then (∀x ∈ X) we have (see, e.g., [22, Theorem 3.7])

Tnx – Tn+1x → 0. (68)

We conclude this section by proving the strong convergence of the shadow sequence of
the Douglas–Rachford algorithm.

Theorem 5.5 (Convergence analysis of the Douglas–Rachford algorithm) Let μ > ω ≥ 0,
and let γ ∈ ]0, (μ – ω)/(2μω)[. Suppose that one of the following holds:

(i) A is maximally μ-monotone and B is maximally (–ω)-monotone.
(ii) A is maximally (–ω)-monotone and B is maximally μ-monotone.

Set

T =
1
2

(Id +Rγ BRγ A), (69)

and let x0 ∈ X. Then zer(A + B) �= ∅. Moreover, there exist x ∈ Fix T = Fix Rγ BRγ A, zer(A +
B) = {Jγ Ax} = {Jγ BRγ Ax}, Tnx0 ⇀ x, Jγ ATnx0 → Jγ Ax, and Jγ BRγ ATnx0 → Jγ BRγ Ax.

Proof Suppose that (i) holds. Since A + B is (μ – ω)-monotone and μ – ω > 0, we conclude
from [2, Proposition 23.35] that zer(A + B) is a singleton. Combining with Fact 2.1 with
(A, B) replaced by (γ A,γ B) yields zer(A + B) = zer(γ A + γ B) = {Jγ Ax} = {Jγ BRγ Ax}. The
claim that Tnx0 ⇀ x follows from Corollary 5.2. It remains to show that Jγ ATnx0 → Jγ Ax
and Jγ BRγ ATnx0 → Jγ BRγ Ax. To this end, note that (Tnx0)n∈N is bounded; consequently,
since Jγ A and Jγ BRγ A are Lipschitz continuous (see Proposition 2.16(i)&(ii)), we learn that

(
Jγ ATnx0

)
n∈N and

(
Jγ BRγ ATnx0

)
n∈N are bounded. (70)

On the one hand, in view of (68) we have

(Id –T)Tnx0 = Tnx0 – Tn+1x0 = Jγ ATnx0 – Jγ BRγ ATnx0 → 0. (71)

Combining (70) and (71) yields

∥∥Jγ ATnx0 – Jγ Ax
∥∥2 –

∥∥Jγ BRγ ATnx0 – Jγ BRγ Ax
∥∥2 (72a)

=
〈
Jγ ATnx0 – Jγ BRγ ATnx0 | Jγ ATnx0 + Jγ BRγ ATnx0 – Jγ Ax – Jγ BRγ Ax

〉
(72b)

=
〈
Tnx0 – Tn+1x0 | Jγ ATnx0 + Jγ BRγ ATnx0 – Jγ Ax – Jγ BRγ Ax

〉 → 0. (72c)
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On the other hand, combining Lemma 2.3, applied with (R1, R2, R(λ),λ) replaced by
(Rγ A, Rγ B, T , 1/2) and (x, y) replaced by (Tnx0, x), in view of (68) yields

0 ← 〈
Tn+1x0 – x | Tnx0 – Tn+1x0

〉
(73a)

≥ γμ

(∥∥Jγ ATnx0 – Jγ Ax
∥∥2 –

ω

μ

∥∥Jγ BRγ ATnx0 – Jγ BRγ Ax
∥∥2

)
(73b)

≥ –
γμω

μ – ω

∥∥Tnx0 – Tn+1x0
∥∥2 → 0. (73c)

Therefore,

∥∥Jγ ATnx0 – Jγ Ax
∥∥2 –

ω

μ

∥∥Jγ BRγ ATnx0 – Jγ BRγ Ax
∥∥2 → 0. (74)

Combining (72a)–(72c) and (74) and noting that ω
μ

< 1 yields ‖Jγ ATnx0 – Jγ Ax‖2 → 0 and
‖Jγ BRγ ATnx0 – Jγ BRγ Ax‖2 → 0, which proves (i). The proof of (ii) proceeds similarly. �

Remark 5.6 (Relaxed Douglas–Rachford algorithm) A careful look at the proofs of Theo-
rem 5.1 and Theorem 5.5 reveals that analogous conclusions can be drawn for the relaxed
Douglas–Rachford operator defined by Tλ = (1 –λ) Id +λRγ BRγ A, λ ∈ ]0, 1[. In this case, we
choose γ ∈ ]0, ((1 – λ)(μ – ω))/(μω)[. One can verify that the corresponding averagedness
constant is α = λ(μ–ω)

μ–ω–γμω
∈]0, 1[.

6 Application to the forward–backward algorithm
Throughout this section we assume that

A : X → X, B : X ⇒ X, μ ≥ 0, ω ≥ 0, and β > 0.

In the rest of this section, we prove that the forward–backward operator is averaged, hence
its iterates form a weakly convergent sequence in each of the following situations:

• A is maximally μ-monotone, A – μ Id is 1
β

-cocoercive, B is maximally
(–ω)-monotone, and μ ≥ ω.

• A is maximally (–ω)-monotone, A + ω Id is 1
β

-cocoercive, B is maximally
μ-monotone, and μ ≥ ω.

• A is β-Lipschitz continuous, B is maximally μ-monotone, and μ ≥ β .
That is, we do not require A and B to be monotone. Instead, it is enough that the sum
A + B is monotone to have an averaged forward–backward map. In addition, we show that
the forward–backward map is contractive if the sum A + B is strongly monotone, and we
prove the tightness of our contraction factor.

Theorem 6.1 (Case I: A is μ-monotone) Let μ ≥ ω ≥ 0, and let β > 0. Suppose that A is
maximally μ-monotone, A – μ Id is 1

β
-cocoercive, and B is maximally (–ω)-monotone. Let

γ ∈ ]0, 2/(β + 2μ)[. Set T = Jγ B(Id –γ A), set ν = γβ/(2(1 – γμ)), set δ = (1 – γμ)/(1 – γω),
and let x0 ∈ X. Then δ ∈ ]0, 1] and ν ∈ ]0, 1[. Moreover, the following hold:

(i) T = δ((1 – ν) Id +νN), N is nonexpansive.
(ii) T is (1 – (δ(1 – ν))/(2 – ν))-averaged.

(iii) T is δ-Lipschitz continuous.
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(iv) There exists x ∈ Fix T = zer(A + B) such that Tnx0 ⇀ x.
Suppose that μ > ω. Then we additionally have:

(v) T is a Banach contraction with a constant δ < 1.
(vi) zer(A + B) = {x} and Tnx0 → x with a linear rate δ < 1.

Proof Clearly, δ ∈ ]0, 1] and ν > 0. Moreover, we have ν < 1 ⇔ γβ < 2(1 – γμ) ⇔ γ <
2/(β + 2μβ). Hence, ν ∈ ]0, 1[ as claimed. Next note that μ < (β + 2μ)/2, hence γω < γμ <
(2γ )/(β + 2μ) < 1. It follows from Proposition 2.2 that Jγ B and, in turn, T are single-valued
and dom Jγ B = dom T = X. The assumption on A implies that there exists N : X → X, N is
nonexpansive, such that A – μ Id = β

2 Id + β

2 N . Therefore,

Id –γ A = Id –γ (A – μ Id) – γμ Id = (1 – γμ) Id –
γβ

2
(Id +N) (75a)

= (1 – γμ)
(
(1 – ν) Id +ν(–N)

)
. (75b)

Moreover, Proposition 2.16(i) implies that

Jγ B is (1 – γω)-cocoercive. (76)

(i): It follows from Corollary 4.3 applied with (R1, R2) replaced by (Id –γ A, Jγ B) and
(α,β , δ) replaced by (ν, 1/(1–γω), 1–γμ), in view of (75a)–(75b) and (76), that there exists
a nonexpansive operator N such that T = Jγ B(Id –γ A) = δ((1 – ν) Id +νN). (ii): Combine (i)
and Lemma 2.15(i). (iii): Combine (i) and (ii). (iv): Applying Proposition 2.2 with (A, B)
replaced by (γ A,γ B) yields zer(A + B) = zer(γ A + γ B) = Fix T . The claim that Tnx0 ⇀ x
follows from combining (ii) and [2, Theorem 5.15]. (v): Observe that δ < 1 ⇔ μ > ω. Now,
combine with (iii). (vi): Note that A + B is maximally (μ – ω)-monotone and μ – ω > 0, we
conclude from [2, Proposition 23.35] that zer(A + B) is a singleton. Alternatively, use (iii)
to learn that T is a Banach contraction with a constant δ < 1, hence zer(A + B) = Fix T is a
singleton, and the conclusion follows. �

Theorem 6.2 Let μ > ω ≥ 0, and let β > 0. Suppose that A is maximally μ-monotone,
A–μ Id is 1

β
-cocoercive, and B is maximally (–ω)-monotone. Let γ ∈ [2/(β +2μ), 2/(β +μ)[.

Set T = Jγ B(Id –γ A), set ν = γβ/(2(γ (μ + β) – 1)), set δ = (1 – γ (μ + β))/(1 – γω), and let
x0 ∈ X. Then δ ∈ ]–1, 0] and ν ∈ ]0, 1[. Moreover, the following hold:

(i) T = δ((1 – ν) Id +νN), N is nonexpansive.
(ii) T is a Banach contraction with a constant |δ| < 1.

(iii) There exists x ∈ X such that Fix T = zer(A + B) = {x} and Tnx0 → x with a linear
rate |δ| < 1.

Proof We proceed similar to the proof of Theorem 6.1 to verify that T is single-valued,
dom T = X, ν ∈ ]0, 1[, and δ ∈ ]–1, 0]. The assumption on A implies that there exists
N : X → X, N is nonexpansive such that A – μ Id = β

2 Id + β

2 N . Therefore,

Id –γ A = Id –γ (A – μ Id) – γμ Id = (1 – γμ) Id –
γβ

2
(Id +N) (77a)

=
(
1 – γ (μ + β)

)(
(1 – ν) Id +ν(N)

)
. (77b)

Now, proceed similar to the proof of Theorem 6.1(i), (v), and (vi) in view of (76). �
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Corollary 6.3 Let μ > ω ≥ 0, and let β > 0. Suppose that A is maximally μ-monotone,
A – μ Id is 1

β
-cocoercive, and B is maximally (–ω)-monotone. Let γ ∈ ]0, 2/(β + μ)[. Set

T = Jγ B(Id –γ A), set δ = max(1 – γμ,γ (μ + β) – 1)/(1 – γω), and let x0 ∈ X. Then δ ∈ [0, 1[,
T is a Banach contraction with a constant δ, and there exists x ∈ X such that Fix T = zer(A+
B) = {x} and Tnx0 → x.

Proof Combine Theorem 6.1 and Theorem 6.2. �

Remark 6.4 (Tightness of the Lipschitz constant)
(i) Suppose that the setting of Theorem 6.1 holds. Set (A, B) = (μ Id, –ω Id). Then

T = 1–γμ

1–γω
Id. Hence, the claimed Lipschitz constant is tight.

(ii) Suppose that the setting of Theorem 6.2 holds. Set (A, B) = ((μ + β) Id, –ω Id). Then
T = γ (μ+β)–1

1–γω
Id. Hence, the claimed contraction factor is tight.

Note in particular that the worst cases are subgradients of convex functions. Hence, the
worst cases are attained by the proximal gradient method.

Theorem 6.5 (Case II: A + ω Id is cocoercive) Let μ ≥ ω ≥ 0, let β > 0, and let β ∈
] max{β ,μ+ω}, +∞[. Suppose that A is maximally (–ω)-monotone, A+ω Id is β-cocoercive,
and B is maximally μ-monotone. Let γ ∈ ]0, 2/(β – 2ω)[. Set T = Jγ B(Id –γ A), set ν =
γβ/(2(1 + γω)), set δ = (1 + γω)/(1 + γμ), and let x0 ∈ X. Then δ ∈ ]0, 1] and ν ∈ ]0, 1[.
Moreover, the following hold:

(i) T = δ((1 – ν) Id +νN), N is nonexpansive.
(ii) T is (1 – (δ(1 – ν))/(2 – ν))-averaged.

(iii) T is δ-Lipschitz continuous.
(iv) There exists x ∈ Fix T = zer(A + B), and Tnx0 ⇀ x.

Suppose that μ > ω. Then we additionally have:
(v) T is a Banach contraction with a constant δ < 1.

(vi) zer(A + B) = {x} and Tnx0 → x with a linear rate δ < 1.

Proof Observe that the assumption on A and Lemma 2.11 applied with T replaced by A +
ω Id imply that there exists N : X → X, N is nonexpansive, such that A + ω Id = β

2 Id + β

2 N .

Id –γ A = Id –γ (A + ω Id) + γω Id = (1 + γω) Id –
γβ

2
(Id +N) (78a)

= (1 + γω)
(
(1 – ν) Id +ν(–N)

)
. (78b)

Moreover, Proposition 2.16(i) implies that

Jγ B is (1 + γμ)-cocoercive. (79)

Now proceed similar to the proof of Theorem 6.1 but use (78a)–(78b) and (79). �

Theorem 6.6 Let μ > ω ≥ 0, let β > 0, and let β ∈ ] max{β ,μ + ω}, +∞[. Suppose that A
is maximally (–ω)-monotone, A + ω Id is β-cocoercive, and B is maximally μ-monotone.
Let γ ∈ [2/(β – 2ω), 2/(β – μ – ω)[. Set T = Jγ B(Id –γ A), set ν = γβ/(2(γβ – γω – 1)), set
δ = (1 + γω – γβ)/(1 + γμ), and let x0 ∈ X. Then δ ∈ ]–1, 0] and ν ∈ ]0, 1[. Moreover, the
following hold:



Giselsson and Moursi Fixed Point Theory Algorithms Sci Eng         (2021) 2021:25 Page 24 of 38

(i) T = δ((1 – ν) Id +νN), N is nonexpansive.
(ii) T is a Banach contraction with a constant |δ| < 1.

(iii) There exists x ∈ X such that Fix T = zer(A + B) = {x} and Tnx0 → x with a linear
rate |δ| < 1.

Proof Observe that the assumption on A and Lemma 2.11 applied with T replaced by A +
ω Id implies that there exists N : X → X, N is nonexpansive, such that A +ω Id = β

2 Id + β

2 N .

Id –γ A = Id –γ (A + ω Id) + γω Id = (1 + γω) Id –
γβ

2
(Id +N) (80a)

= (1 + γω – γβ)
(
(1 – ν) Id +νN

)
. (80b)

Now proceed similar to the proof of Theorem 6.5 in view of (79). �

Corollary 6.7 Let μ > ω ≥ 0, let β > 0, and let β ∈ ] max{β ,μ + ω}, +∞[. Suppose that A is
maximally (–ω)-monotone, A + ω Id is β-cocoercive, and B is maximally μ-monotone. Let
γ ∈ [0, 2/(β – μ – ω)[. Set T = Jγ B(Id –γ A), set δ = max{1 + γμ,γβ – γω – 1}/(1 + γμ), and
let x0 ∈ X. Then δ ∈ ]–1, 0] and ν ∈ ]0, 1[. Then δ ∈ [0, 1[, T is a Banach contraction with a
constant δ, and there exists x ∈ X such that Fix T = zer(A + B) = {x} and Tnx0 → x.

Proof Combine Theorem 6.5 and Theorem 6.6. �

Theorem 6.8 (Case III: A is β-Lipschitz continuous) Let μ ≥ β > 0. Suppose that A is
β-Lipschitz continuous and that B is maximally μ-monotone. Let β ∈ ]2β , +∞[, and let
γ ∈ ]0, 2/(β – 2β)}[. Set T = Jγ B(Id –γ A), set ν = γ β/(2(1 + γβ)), set δ = (1 + γβ)/(1 + γμ),
and let x0 ∈ X. Then δ ∈ ]0, 1] and ν ∈ ]0, 1[. Moreover, the following hold:

(i) T = δ((1 – ν) Id +νN), N is nonexpansive.
(ii) T is (1 – (δ(1 – ν))/(2 – ν))-averaged.

(iii) T is δ-Lipschitz continuous.
(iv) There exists x ∈ Fix T = zer(A + B), and Tnx0 ⇀ x.

Suppose that μ > 1/β . Then we additionally have:
(v) T is a Banach contraction with a constant δ < 1.

(vi) zer(A + B) = {x} and Tnx0 → x with a linear rate δ < 1.

Proof Combine Lemma 2.12 and Theorem 6.5 applied with (ω,β) replaced by (β , 2β). �

Theorem 6.9 Let μ > β > 0. Suppose that A is β-Lipschitz continuous and that B is max-
imally μ-monotone. Let β ∈ ]μ + β , +∞[, and let γ ∈ [2/(β – 2β), 2/(β – μ – β)[. Set
T = Jγ B(Id –γ A), set ν = γβ/(2(γβ – γβ – 1)), set δ = (1+γβ –γβ)/(1+γμ), and let x0 ∈ X.
Then δ ∈ ]–1, 0] and ν ∈ ]0, 1[. Moreover, the following hold:

(i) T = δ((1 – ν) Id +νN), N is nonexpansive.
(ii) T is a Banach contraction with a constant |δ| < 1.

(iii) There exists x ∈ X such that Fix T = zer(A + B) = {x} and Tnx0 → x with a linear
rate |δ| < 1.

Proof Combine Lemma 2.12 and Theorem 6.6 applied with (ω,β) replaced by (β , 2β). �
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7 Applications to optimization problems
Let f : X →]–∞, +∞], and let g : X →]–∞, +∞]. Throughout this section, we shall as-
sume that

f and g are proper lower semicontinuous functions.

We shall use ∂f to denote the subdifferential mapping from convex analysis.

Definition 7.1 (see [3, Definition 6.1]) An abstract subdifferential ∂# associates a subset
∂#f (x) of X with f at x ∈ X, and it satisfies the following properties:

(i) ∂#f = ∂f if f is a proper lower semicontinuous convex function;
(ii) ∂#f = ∇f if f is continuously differentiable;

(iii) 0 ∈ ∂#f (x) if f attains a local minimum at x ∈ dom f ;
(iv) for every β ∈R,

∂#

(
f + β

‖ · –x‖2

2

)
= ∂#f + β(Id –x).

The Clarke–Rockafellar subdifferential, Mordukhovich subdifferential, and Frechét sub-
differential all satisfy Definition 7.1(i)–(iv), see, e.g., [5, 19, 20], so they are ∂#.

Let λ > 0. Recall that f is λ-hypoconvex (see [23, 26]) if

f
(
(1 – τ )x + τy

) ≤ (1 – τ )f (x) + τ f (y) +
λ

2
τ (1 – τ )‖x – y‖2 (81)

for all (x, y) ∈ X × X and τ ∈ ]0, 1[ or, equivalently,

f +
λ

2
‖ · ‖2 is convex. (82)

For γ > 0, the proximal mapping Proxγ f is defined at x ∈ X by

Proxγ f (x) = argmin
y∈X

(
f (y) +

γ

2
‖x – y‖2

)
. (83)

Fact 7.2 Suppose that f : X →]–∞, +∞] is a proper lower semicontinuous λ-hypoconvex
function. Then

∂#f = ∂

(
f +

λ

2
‖ · ‖2

)
– λ Id . (84)

Moreover, we have:
(i) The Clarke–Rockafellar, Mordukhovich, and Frechét subdifferential operators of f

all coincide.
(ii) ∂#f is maximally –λ-monotone.

(iii) (∀γ ∈ ]0, 1/λ[) Proxγ f is single-valued and dom Proxγ f = X .

Proof See [3, Proposition 6.2 and Proposition 6.3]. �
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Proposition 7.3 Let μ ≥ ω ≥ 0. Suppose that argmin(f + g) �= ∅ and that one of the follow-
ing conditions is satisfied:

(i) f is μ- strongly convex, g is ω- hypoconvex.
(ii) f is ω- hypoconvex, and g is μ- strongly convex.

Then f + g is convex and ∂#(f + g) = ∂(f + g).
If, in addition, one of the following conditions is satisfied:
(a) 0 ∈ sri(dom f – dom g).
(b) X is finite dimensional and 0 ∈ ri(dom f – dom g).
(c) X is finite dimensional, f and g are polyhedral, and dom f ∩ dom g �= ∅.

Then

∂#(f + g) = ∂(f + g) = ∂#f + ∂#g, (85)

and

zer ∂#(f + g) = zer(∂#f + ∂#g) = argmin(f + g). (86)

Proof It is clear that either (i) or (ii) implies that f + g is convex, and the identity follows
in view of Definition 7.1(i). Now, suppose that (i) holds along with one of the assumptions
(a)–(c). Rewrite f and g as (f , g) = (f + μ

2 ‖ · ‖2, g – ω
2 ‖ · ‖2) and observe that both f and g

are convex, as is f + g . Moreover, we have dom f = dom f and dom g = dom g . Now,

∂#(f + g) = ∂#

(
f + g +

μ – ω

2
‖ · ‖2

)
(87a)

= ∂#(f + g) + (μ – ω) Id = ∂(f + g) + (μ – ω) Id (87b)

= ∂f + ∂g + (μ – ω) Id = ∂f + μ Id +∂g – ω Id (87c)

= ∂f + ∂#g = ∂#f + ∂#g. (87d)

Here, (87b) follows from applying Definition 7.1(iv) to f + g , (87c) follows from [2, The-
orem 16.47] applied to f and g, and (87c) follows from applying Fact 7.2 to f and g and
using Definition 7.1(i), which verify (85). Finally, (86) follows from combining (85) and [2,
Theorem 16.3]. �

The following theorem provides an alternative proof to [17, Theorem 4.4] and [9, The-
orem 5.4(ii)].

Theorem 7.4 Let μ > ω ≥ 0, and let γ ∈ ]0, (μ – ω)/(2μω)[. Suppose that one of the fol-
lowing holds:

(i) f is μ- strongly convex, g is ω- hypoconvex.
(ii) f is ω-hypoconvex, and g is μ-strongly convex,

and that 0 ∈ ∂#f + ∂#g (see Proposition 7.3 for sufficient conditions). Set

T =
1
2
(
Id +(2 Proxγ g – Id)(2 Proxγ f – Id)

)
and α =

μ – ω

2(μ – ω – γμω)
, (88)

and let x0 ∈ X. Then α ∈ ]0, 1[, and T is α-averaged. Moreover, (∃x ∈ Fix T) such that
Tnx0 ⇀ x, argmin(f + g) = {Proxf x}, and Proxf Tnx0 → Proxf x.
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Proof Suppose that (i) holds. Then [2, Example 22.4] (respectively Fact 7.2(ii)) implies
that ∂#f = ∂f (respectively ∂#g) is maximally μ-monotone (respectively maximally (–ω)-
monotone). The conclusion follows from applying Theorem 5.5(i) with (A, B) replaced by
(∂#f , ∂#g). The proof for (ii) follows similarly by using Theorem 5.5(ii). �

Before we proceed further, we recall the following useful fact.

Fact 7.5 (Baillon–Haddad) Let f : X → R be a Frechét differentiable convex function, and
let β > 0. Then ∇f is β-Lipschitz continuous if and only if ∇f is 1

β
-cocoercive.

Proof See, e.g., [2, Corollary 18.17]. �

Lemma 7.6 Let μ ≥ 0, let β > 0, and let f : X → R be a Frechét differentiable function.
Suppose that f is μ-strongly convex with a β-Lipschitz continuous gradient. Then the fol-
lowing hold:

(i) f – μ

2 ‖ · ‖2 is convex.
(ii) ∇f is maximally μ-monotone.

(iii) ∇f –μ Id is 1
β

-cocoercive.

Proof (i): See, e.g., [2, Proposition 10.8]. (ii): See, e.g., [2, Example 22.4(iv)]. (iii): Combine
(i), Lemma 2.10, and Corollary 2.14(ii) applied with (f1, f2) replaced by (f , μ

2 ‖ · ‖2). �

Theorem 7.7 (The forward–backward algorithm when f is μ-strongly convex) Let μ ≥
ω ≥ 0, and let β > 0. Let f be μ-strongly convex and Frechét differentiable with a β-Lipschitz
continuous gradient, and let g be ω-hypoconvex. Suppose that argmin(f + g) �= ∅. Let γ ∈
]0, 2/(β + 2μ)[, and set δ = (1 – γμ)/(1 – γω). Set T = Proxγ g(Id –γ ∇f ), and let x0 ∈ X.
Then the following hold:

(i) There exists x ∈ Fix T = zer(A + B) = argmin(f + g) such that Tnx0 ⇀ x.
Suppose that μ > ω. Then we additionally have:

(ii) Fix T = argmin(f + g) = {x} and Tnx0 → x with a linear rate δ < 1.

Proof Note that Definition 7.1(ii) implies that ∂#f = ∇f . Set (A, B) = (∇f , ∂#g) and observe
that Proposition 7.3 and Proposition 2.2 imply that Fix T = zer(A + B) = argmin(f + g). It
follows from [2, Example 22.4] (respectively Fact 7.2(ii)) that A (respectively B) is max-
imally μ-monotone (respectively maximally (–ω)-monotone). Moreover, Lemma 7.6(iii)
implies that A – μ Id is 1

β
-cocoercive. (i)–(ii): Apply Theorem 6.1(iv)&(vi). �

To proceed to the next result, we need the following lemma.

Lemma 7.8 Let ω ≥ 0, let β > 0, and let f : X → R be a Frechét differentiable function.
Suppose that g is ω-hypoconvex with a 1

β
-Lipschitz continuous gradient. Then ∇f +ω Id is

β/(1 + ωβ)-cocoercive.

Theorem 7.9 (The forward–backward algorithm when f is ω-hypoconvex) Let μ ≥
ω ≥ 0, let β > 0, and let β ∈ ] max{β , 2ω}, +∞[. Let f be ω-hypoconvex, and let g be μ-
strongly convex and Frechét differentiable with a β-Lipschitz continuous gradient. Sup-
pose that argmin(f + g) �= ∅. Let γ ∈ ]0, 2/(β – 2ω)[, and set δ = (1 + γω)/(1 + γμ). Set
T = Proxγ g(Id –γ ∇f ), and let x0 ∈ X. Then the following hold:

(i) There exists x ∈ Fix T = argmin(f + g) such that Tnx0 ⇀ x.
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Suppose that μ > ω. Then we additionally have:
(ii) Fix T = argmin(f + g) = {x} and Tnx0 → x with a linear rate δ < 1.

Proof Proceed similar to the proof of Theorem 7.7 but use Theorem 6.5(iv)&(vi). �

Theorem 7.10 (The forward–backward algorithm when f is 1/β-hypoconvex) Let μ ≥
β > 0, and let β ∈ ]2β , +∞[. Let f be μ-strongly convex, and let g be Frechét differentiable
with a β-Lipschitz continuous gradient. Suppose that argmin(f + g) �= ∅. Let γ ∈ ]0, 2/(β –
2β)}[, and set δ = (1 + γβ)/(1 + γμ). Set T = Proxγ g(Id –γ ∇f ), and let x0 ∈ X. Then the
following hold:

(i) There exists x ∈ Fix T = argmin(f + g) such that Tnx0 ⇀ x.
Suppose that μ > 1/β . Then we additionally have:

(ii) Fix T = argmin(f + g) = {x} and Tnx0 → x with a linear rate δ < 1.

Proof Combine Lemma 2.12 applied with A replaced by ∇f and Theorem 7.9 applied with
(ω,β) replaced by (β , 2β). �

Remark 7.11 The results of Theorem 6.2, Theorem 6.6, and Theorem 6.9 can be directly
applied to optimization settings in a similar fashion à la Theorem 7.7, Theorem 7.9, and
Theorem 7.10.

8 Graphical characterizations
This section contains 2D-graphical representations of different Lipschitz continuous op-
erator classes that admit I-N decompositions and of their composition classes. We illus-
trate exact shapes of the composition classes in 2D and conservative estimates from The-
orem 3.4 and Theorem 4.2. Similar graphical representations have appeared before in the
literature. In [10, 11], nonexpansiveness and firm nonexpansiveness ( 1

2 -averagedness) are
characterized. Early preprints of [15] have more 2D graphical representations, and the
lecture notes [14] contain many such characterizations with the purpose of illustrating
how different properties relate to each other and to provide intuition on why different al-
gorithms converge. This has been further extended and formalized in [24]. Not only do
these illustrations provide intuition. Indeed, it is a straightforward consequence of, e.g.,
[24, 25] that for compositions of two operator classes that admit I-N decompositions, there
always exists a 2D-worst case. Hence, if the 2D illustration implies that the composition
class admits a specific (α,β)-I-N decomposition, so does the full operator class.

In Sect. 8.1, we characterize many well-known special cases of operator classes that ad-
mit I-N decompositions. In Sect. 8.2, we characterize classes obtained by compositions of
such operator classes and highlight differences between the true composition classes and
their characterizations using Theorem 3.4.

8.1 Single operators
We consider classes of (α,β)-I-N decomposition of Lipschitz continuous operators. We
graphically illustrate properties of some special cases. The illustrations should be read as
follows. Assume that x – y is represented by the marker in the figure. The diagram then
shows where Rx – Ry can end up in relation to x – y. If the point x – y is rotated in the
picture, the rest of the picture rotates with it. The characterization is, by construction of
(α,β)-I-N decompositions, always a circle of radius β‖x – y‖ shifted α‖x – y‖ along the
line defined by the origin and the point x – y.
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Lipschitz continuous operators Let β > 0 and let R : X → X. Then R is β-Lipschitz con-
tinuous if and only if R admits an (α,β)-I-N decomposition, with α chosen as 0. Figure 1
shows the case β = 0.8. The radius of the Lipschitz circle is β‖x – y‖.

Figure 1 Illustration of β -Lipschitz continuous operator with β = 0.8

Cocoercive operators Let β > 0, and let R : X → X. Then R is 1
β

-cocoercive if and only
if R admits an (α,β)-I-N decomposition, with (α,β) chosen as ( β

2 , β

2 ). Figure 2 shows the
cases β = 1.4 and β = 0.7. The diameter is β‖x – y‖. The figure clearly illustrates that 1

β
-

cocoercive operators are also β-Lipschitz (but not necessarily the other way around).

Figure 2 Illustration of 1
β -cocoercive operators with β = 0.7 and β = 1.4

Averaged operators Let α ∈ ]0, 1[, and let R : X → X. Then R is α-averaged if and only if
R admits an (α,β)-I-N decomposition, with (α,β) chosen as (1 – α,α). Figure 3 shows the
cases α = 0.25 and α = 0.5, and α = 0.75. All averaged operators are nonexpansive.
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Figure 3 Illustration of α-averaged operators with α = 0.25, α = 0.5, and α = 0.75

Conic operators Let α > 0, and let R : X → X. Then R is α-conically nonexpansive if and

only if R admits an (α,β)-I-N decomposition, with (α,β) chosen as (1 – α,α). Figure 4

shows the cases α = 1.2 and α = 1.5. Conically nonexpansive operators fail to be nonex-

pansive for α > 1.

Figure 4 Illustration of α-conically nonexpansive operators with α = 1.2 and α = 1.5

μ-Monotone operators Let μ ∈ R, and suppose that A : X ⇒ X is μ-monotone. The

shortest distance between the vertical line and the origin in the illustration is |μ|‖x – y‖.

Figure 5 shows the case μ = 0.2.
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Figure 5 Illustration of μ-monotone operator with μ = 0.2

8.2 Compositions of two operators
In this section, we provide illustrations of compositions of different classes of Lipschitz
continuous operators. We consider compositions of the form

R = R2R1, where Ri admits an (αi,βi)-I-N decomposition,

∀i ∈ {1, 2}. Let (x, y) ∈ X × X. We illustrate the regions within which R2R1x – R2R1y can
end up. For most considered composition classes, we provide two illustrations. The left il-
lustration explicitly shows how the composition is constructed. It shows the region within
which R1x – R1y must end up. The second operator R2 is applied at a subset, marked by
crosses, of boundary points of that region. Given these as starting points for R2 applica-
tion, the dashed circles show where R2R1x – R2R1y can end up for this subset. The right
illustration shows, in gray, the resulting exact shape of the composition. It also contains
the estimate from Theorem 3.4 that provides an I-N decomposition of the composition.
From these illustrations, it is obvious that many different I-N decomposition are valid. The
illustrations also reveal that the specific I-N decompositions provided in Theorem 3.4 in-
deed are suitable for our purpose of characterizing the composition as averaged, conic, or
contractive.

Averaged-averaged composition We first consider αi-averaged Ri with αi ∈]0, 1[. A spe-
cial case is the forward–backward splitting operator T = Jγ B(Id – γ A) with 1

β
-cocoercive

A and maximally monotone B. This implies that (Id – γ A) is γβ

2 -averaged for γ ∈ ]0, 2
β

[
and that Jγ B is 1

2 -averaged. The example in Fig. 6 has individual averagedness parameters
α1 = 0.5 and α2 = 0.5, i.e., R = R2R1 with R1 = 0.5Id + 0.5N1 and R2 = 0.5Id + 0.5N2. Theo-
rem 3.4 shows that the composition is of the form 0.33Id + 0.67N , where N is nonexpan-
sive, i.e., it is 0.67-averaged. The fact that the composition is averaged is already known,
see [8, 12].
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Figure 6 Illustration of composition of α1-averaged and α2-averaged operators with α1 = α2 = 0.5

The example in Fig. 7 shows α1 = 0.7 and α2 = 0.6. Theorem 3.4 shows that the compo-

sition is of the form 0.21Id + 0.79N , where N is nonexpansive, i.e., it is 0.79-averaged.

Figure 7 Illustration of composition of α1-averaged and α2-averaged operators with α1 = 0.7 and α2 = 0.6

Conic-conic composition We consider αi-averaged Ri with αi > 0. Several examples with

this setting are considered in for Douglas-Rachford splitting and forward–backward split-

ting in Sect. 5 and Sect. 6. We know from Theorem 4.2 that the composition is conic if

α1α2 < 1. The example in Fig. 8 has α1 = 1.7 and α2 = 0.45, that satisfies α1α2 = 0.76 < 1.

Theorem 4.2 shows that the composition is of the form –1.64Id + 2.64N , where N is non-

expansive, i.e., it is 2.64-conic.
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Figure 8 Illustration of composition of α1-conic operator and α2-averaged operator with α1 = 1.7 and
α2 = 0.45

In Example 4.6, we have shown that the assumption α1α2 < 1 is critical for the com-
position to be conic. Figure 9 illustrates the case α1 = 1.7 and α2 = 0.7, which satisfies
α1α2 = 1.19 > 1, hence Theorem 4.2 cannot be used to deduce that the composition is
conic. Indeed, we see from the figure that the composition is not conic. It is impossible to
draw a circle that touches the marker at x – y and extends only to the left.

Figure 9 Illustration of composition of α1-conic operator and α2-averaged operator with α1 = 1.7 and
α2 = 0.7

We conclude the conic composed with conic examples with a forward–backward ex-
ample. The forward–backward splitting operator Jγ B(Id – γ A) with A 1

β
-cocoercive and

B (maximally) monotone is composed of 1
2 -averaged resolvent Jγ B and γβ

2 -conic forward
step (Id–γ A). The composition R = R2R1 with Ri αi-conic is conic if α1α2 < 1, Theorem 4.2.
In the forward–backward setting, this corresponds to γ ∈ (0, 4

β
), which doubles the al-

lowed range compared to guaranteeing an averaged composition. This extended range
has been shown before, e.g., in [13, 18].

In Fig. 10, we illustrate the forward–backward setting with γ = 3.9
β

. This corresponds to
conic parameters α1 = 1.95 and α2 = 0.5, i.e., R = R2R1 with R1 = –0.95Id + 1.95N1 and R2 =
0.5Id+0.5N2. The composition is of the form –18.99Id+19.99N , where N is nonexpansive,
i.e., it is 19.99-conic, Theorem 4.2. The left figure shows the resulting composition and
(parts of ) the conic approximation. The conic approximation is very large compared to
the actual region. This is due to the local behavior around the point x – y, where it is
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almost vertical. As γ ↗ 4β , the exact shape approaches being vertical around x – y and
the conic circle approaches to have an infinite radius. For γ > 4β , the exact shape extends
to the right of x – y (as in the figure above), and the composition will not be conic.

In the right figure, we consider the relaxed forward–backward map (1 – θ )Id + θ Jγ B(Id –
γ A) with θ > 0. If the composition Jγ B(Id – γ A) is α-conic, it is straightforward to verify
that the relaxed map is θα-conic. Therefore, any θ ∈ (0,α–1) gives an θα-averaged re-
laxed forward–backward map. An averaged map is needed to guarantee convergence to
a fixed-point when iterated. In the figure, we let θ = 0.04, which satisfies θ < α–1 ≈ 0.05.
The approximation is indeed averaged, but the region within which the composition can
end up is very small compared to the conic approximation.

Figure 10 To the left is an illustration of the forward–backward composition Jγ B(Id – γ A) with γ = 3.9
β , where

1
β is the cocoercivity constant of A. It is a composition between an α1-conic operator and an α2-averaged
operator with α1 = 1.95 and α2 = 0.5. To the right is an illustration of a θ -relaxation of the same
forward-backward map with θ = 0.04

Scaled averaged and cocoercive compositions Compositions of scaled averaged and co-
coercive operators are also special cases of scaled conic composed with scaled conic op-
erators treated in Theorem 4.2. It covers the forward backward examples in Sect. 6, where
identity is shifted between the operators and the sum is (strongly) monotone. The oper-
ators in the composition are of the form R1 = δ1((1 – α1)Id + α1N1) and R2 = β2

2 (Id + N2),
where α1 ∈ (0, 1), δ1 > 0, and β2 > 0.

In Fig. 11, we consider the forward–backward setting in Theorem 6.5. The forward
backward map is Jγ B(Id – γ A) and we let A + 0.3Id be 1-cocoercive, B be maximally 0.3-
monotone. That is, we have shifted 0.3Id from A to B and the sum is monotone. We use
step-length γ = 2. The proof of Theorem 6.5 shows that, in our setting, R1 is 1.6-scaled
0.62-averaged and that R2 is 1.6-cocoercive. Theorem 3.4 implies that the composition is
of the form 0.27Id + 0.73N , where N is nonexpansive, i.e., it is 0.73-averaged.
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Figure 11 Illustration of composition of 1.6-scaled 0.62-averaged operator with 1.6-cocoercive operator. The
composition comes from the forward–backward map Jγ B(Id – γ A) with A + 0.3Id 1-cocoercive, B
0.3-monotone, and γ = 2

Figure 12 considers a similar forward–backward setting, but with a strongly monotone
sum. We let A + 0.2Id be 1-cocoercive, B be maximally 0.3-monotone, which implies that
the sum is 0.1-strongly monotone. We keep step-length γ = 2. The proof of Theorem 6.5
shows that, in our setting, R1 is 1.4-scaled 0.62-averaged and that R2 is 1.6-cocoercive.
Theorem 3.4 implies that the composition is of the form 0.19Id + 0.68N , where N is non-
expansive, i.e., it is 0.87-contractive.

Figure 12 Illustration of composition of 1.4-scaled 0.62-averaged operator with 1.6-cocoercive operator. The
composition comes from the forward–backward map Jγ B(Id – γ A) with A + 0.2Id 1-cocoercive, B
0.3-monotone, and γ = 2

The final example in Fig. 13 considers a similar forward–backward setting where the
sum is not monotone. We let A + 0.4Id be 1-cocoercive, B be maximally 0.3-monotone,
which implies that the sum is –0.1-monotone, i.e., it is not monotone. We use step-length
γ = 2. The proof of Theorem 6.5 shows that, in our setting, R1 is 1.8-scaled 0.62-averaged
and that R2 is 1.6-cocoercive. Theorem 3.4 implies that the composition is of the form
0.35Id + 0.78N , where N is nonexpansive, i.e., it is 1.12-Lipschitz and not conic, averaged,
or contractive.
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Figure 13 Illustration of composition of 1.8-scaled 0.62-averaged operator with 1.6-cocoercive operator. The
composition comes from the forward–backward map Jγ B(Id – γ A) with A + 0.4Id 1-cocoercive, B
0.3-monotone, and γ = 2

Appendix A
Proof of Lemma 2.3 Indeed, observe that

R(λ) = (1 – 2λ) Id +λ(Id +R2R1) (89)

and

Id –R(λ) = λ(Id –R2R1). (90)

In view of (89) and (90) we have

〈
R(λ)x – R(λ)y | (Id –R(λ)

)
x –

(
Id –R(λ)

)
y
〉

= (1 – 2λ)
〈
x – y | Id –R(λ))x –

(
Id –R(λ)

)
y
〉

+ λ2〈(x – y) – (R2R1x – R2R1y) | (x – y) + (R2R1x – R2R1y)
〉

= (1 – 2λ)
〈
x – y | Id –R(λ))x –

(
Id –R(λ)

)
y
〉
+ λ2(‖x – y‖2 – ‖R2R1x – R2R1y‖2)

= (1 – 2λ)
〈
x – y | Id –R(λ))x –

(
Id –R(λ)

)
y
〉

+ λ2(‖x – y‖2 – ‖R1x – R1y‖2 + ‖R1x – R1y‖2 – ‖R2R1x – R2R1y‖2)

= (1 – 2λ)
〈
x – y | (Id –R(λ)

)
x –

(
Id –R(λ)

)
y
〉

+ λ2〈(Id +R1)x – (Id +R1)y | (Id –R1)x – (Id –R1)y
〉

+ λ2〈(Id +R2)R1x – (Id +R2)R1y | (Id –R2)R1x – (Id –R2)R1y
〉
,

and the conclusion follows. �

Appendix B
Proof of Lemma 2.12 (i): Because 1

β
A is nonexpansive, we learn from [2, Example 20.7]

that Id + 1
β

A, as is β Id +A, is maximally monotone. The conclusion now follows in view of
e.g., [3, Lemma 2.5]. (ii): This is clear by observing that 1

2β
(β Id +A) = 1

2 (Id + 1
β

A). �
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Appendix C
Proof of Lemma 2.13 Indeed, by assumption, there exist nonexpansive mappings N1 : X →
X and N2 : X → X such that

T1 =
β

2
Id +

β

2
N1, T2 =

δ

2
Id +

δ

2
N2. (91)

Now,

1
β

(T1 – T2) =
1
β

T1 –
1
β

T2 =
1
2

Id +
1
2

N1 –
δ

2β
Id –

δ

2β
N2 (92a)

=
β – δ

2β
Id +

1
2

N1 –
δ

2β
N2. (92b)

Using the triangle inequality, one can directly verify that 1
β

(T1 –T2) is Lipschitz continuous
with a constant β–δ

2β
+ 1

2 + δ
2β

= 1. The proof is complete. �

Appendix D
Proof of Corollary 2.14 (i): It follows from Fact 7.5 that ∇f 1 (respectively ∇f 2) is 1

β
-

cocoercive (respectively 1
δ

-cocoercive). Now apply Lemma 2.13 with (T1, T2) replaced by
(∇f 1,∇f 2). (ii): Combine (i) with Fact 7.5 applied with f replaced by f1 – f2. �

Appendix E
Proof of Lemma 2.15 (i): Indeed, we have δT = (1 – (1 – δ(1 – α))) Id +δαN = (1 – (1 – δ(1 –
α))) Id +(1 – δ(1 – α))Ñ , where Ñ = ((δα)/(1 – δ(1 – α)))N . Note that (δα)/(1 – δ(1 – α) ≤ 1,
hence Ñ is nonexpansive and the conclusion follows. (ii): Clear. �
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