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Abstract
The circumcentered-reflection method (CRM) has been applied for solving convex
feasibility problems. CRM iterates by computing a circumcenter upon a composition
of reflections with respect to convex sets. Since reflections are based on exact
projections, their computation might be costly. In this regard, we introduce the
circumcentered approximate-reflection method (CARM), whose reflections rely on
outer-approximate projections. The appeal of CARM is that, in rather general
situations, the approximate projections we employ are available under low
computational cost. We derive convergence of CARM and linear convergence under
an error bound condition. We also present successful theoretical and numerical
comparisons of CARM to the original CRM, to the classical method of alternating
projections (MAP), and to a correspondent outer-approximate version of MAP, referred
to as MAAP. Along with our results and numerical experiments, we present a couple
of illustrative examples.
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1 Introduction
We consider the convex feasibility problem (CFP) consisting of finding a point in the inter-
section of a finite number of closed convex sets. We are going to employ Pierra’s product
space reformulation [1] in order to reduce CFP to seeking a point common to a closed
convex set and an affine subspace.

Projection-based methods are usually utilized for solving CFP. Widely known are the
method of alternating projections (MAP) [2, 3], the Douglas–Rachford method (DRM)
[4, 5], and the Cimmino method [3, 6]. Recently, the circumcentered-reflection method
(CRM) has been developed as a powerful new tool for solving CFP, outperforming MAP
and DRM. It was introduced in [7, 8] and further enhanced in [9–18]. In particular, CRM
was shown in [15] to converge to a solution of CFP, and it was proven in [9] that linear
convergence is obtained in the presence of an error bound condition.

Computing exact projections onto general convex sets can be, context depending, too
demanding in comparison to solving the given CFP itself. Bearing this in mind, we present
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in this paper a version of CRM employing outer-approximate projections. These approxi-
mate projections still enjoy some of the properties of the exact ones, having the advantage
of being potentially more tractable. For instance, they cover the subgradient projections
of Fukushima [19].

Consider closed convex sets K1, . . . , Km ⊂ R
n with nonempty intersection and the CFP

of finding a point x ∈ ⋂m
i=1 Ki. In the eighties, Pierra noted that this problem is directly

related to the problem of finding a point x ∈ K ∩ D, where K := K1 × · · · × Km ⊂ R
nm

and the diagonal space D = {(x, . . . , x) : x ∈ R
n} ⊂ R

nm. In fact, x ∈ ⋂m
i=1 Ki if and only if

x = (x, . . . , x) ∈ K ∩ D. Thus, if we solve any intersection problem featuring a closed convex
set and an affine subspace, we cover the general CFP. Let us proceed in this direction by
considering a closed convex set K ⊂ R

n and an affine subspace U ⊂ R
n with nonempty

intersection. From now on, the CFP we are going to focus on is the one of tracking a point
in K ∩ U .

We consider now two operators A and B : Rn →R
n and define T = A◦B. Under adequate

assumptions, the sequence {xk}k∈N ⊂ R
n defined by

xk+1 = T
(
xk) = A

(
B
(
xk)) (1.1)

is expected to converge to a common fixed point of A and B. If the operators A and B are
the projectors onto the convex sets U and K , that is, A = PU , B = PK , then problem (1.1)
provides the iteration of the famous method of alternating projections (MAP). Moreover,
the set of common fixed points of A and B in this case is precisely K ∩ U and MAP con-
verges to a point in K ∩ U for any starting point in R

n; see, for instance, [3].
The circumcentered-reflection method (CRM) introduced in [7, 8] can be seen as an

acceleration technique for the sequence defined by (1.1). We showed in [9] that indeed
CRM achieves a better linear rate than MAP in the presence of an error bound. Moreover,
in general, there is abundant numerical evidence that CRM outperforms MAP (see [7, 15,
16]).

Define the reflection operators AR, BR : Rn →R
n as AR = 2A – Id, BR = 2B – Id, where Id

stands for the identity operator in R
n. The CRM operator C : Rn → R

n is defined as

C(x) = circ
(
x, BR(x), AR(

BR(x)
))

,

i.e., the circumcenter of the three points x, BR(x), AR(BR(x)). The CRM sequence {xk}k∈N ⊂
R

n, starting at some x0 ∈R
n, is then defined as xk+1 = C(xk). For three non-collinear points

x, y, z ∈ R
n, the circumcenter circ(x, y, z) is the center of the unique two-dimensional circle

passing through x, y, z (or, equivalently, the point in the affine manifold aff{x, y, z} gener-
ated by x, y, z and equidistant to these three points). In particular, if A = PU and B = PK ,
that is, AR = 2PU – Id, BR = 2PK – Id, the CRM sequence, starting at some x0 ∈ U ,

xk+1 = C
(
xk) = circ

(
xk , BR(

xk), AR(
BR(

xk))), (1.2)

converges to a point in K ∩ U as long as the initial point lies in U . If in addition a certain
error bound between K and U holds, then CRM converges linearly, and with a better rate
than MAP.

In this paper, we introduce approximate versions of MAP and CRM for solving CFP,
which we call MAAP and CARM. The MAAP and CARM iterations are computed by
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(1.1) and (1.2) with A being the exact projector onto U and B an approximate projector
onto K . The approximation consists of replacing at each iteration the set K by a larger set
separating the current iterate from K . This separating scheme is rather general and, for a
large family of convex sets, includes particular instances where the separating set is a half-
space, or a Cartesian product of half-spaces, in which cases all the involved projections
have very low computational cost. One could fear that this significant reduction in the
computational cost per iteration could be nullified by a substantial slowing down of the
process as a whole, through a deterioration of the convergence speed. However, we show
that this is not necessarily the case. Indeed, we prove that under error bound conditions
separating schemes are available so that MAAP and CARM enjoy linear convergence rates,
with the linear rate of CARM being strictly better than MAAP. Our numerical experiments
confirm these statements, and more than that, they show CARM outperforming MAP,
CRM, and MAAP in terms of computational time.

2 Preliminaries
We recall first the definition of Q-linear and R-linear convergence.

Definition 2.1 Consider a sequence {zk}k∈N ⊂ R
n converging to z∗ ∈ R

n. Assume that
zk �= z∗ for all k ∈N. Let q := lim supk→∞

‖zk+1–z∗‖
‖zk –z∗‖ . Then the sequence {zk}k∈N converges

(i) Q-superlinearly, if q = 0,
(ii) Q-linearly, if q ∈ (0, 1),

(iii) Q-sublinearly, if q ≥ 1.
Let r := lim supk→∞ ‖zk – z∗‖1/k . Then the sequence {zk}k∈N converges

(iv) R-superlinearly, if r = 0,
(v) R-linearly, if r ∈ (0, 1),

(vi) R-sublinearly, if r ≥ 1.
The values q and r are called asymptotic constants of {zk}k∈N.

It is well known that Q-linear convergence implies R-linear convergence (with the same
asymptotic constant), but the converse statement does not hold true [20].

We remind now the notion of Fejér monotonicity.

Definition 2.2 A sequence {zk}k∈N ⊂ R
n is Fejér monotone with respect to a nonempty

closed convex set M ⊂R
n when ‖zk+1 – y‖ ≤ ‖zk – y‖ for all k ∈N and y ∈ M.

Proposition 2.3 Suppose that the sequence {zk}k∈N is Fejér monotone with respect to the
closed convex set M ⊂R

n. Then
(i) {zk}k∈N is bounded.

(ii) if a cluster point z̄ of {zk}k∈N belongs to M, we have limk→∞ zk = z̄.
(iii) if {zk}k∈N converges to z̄, we get ‖zk – z̄‖ ≤ 2 dist(zk , M).

Proof See Theorem 2.16 in [3]. �

Next we introduce the separating operator needed for the approximate versions of MAP
and CRM, namely MAAP and CARM.

Definition 2.4 Given a closed and convex set K ⊂ R
n, a separating operator for K is a

point-to-set mapping S : Rn →P(Rn) satisfying:
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(A1) S(x) is closed and convex for all x ∈ R
n.

(A2) K ⊂ S(x) for all x ∈ R
n.

(A3) If a sequence {zk}k∈N ⊂R
n converges to z∗ ∈R

n and limk→∞ dist(zk , S(zk)) = 0,
then z∗ ∈ K .

We have the following immediate result regarding Definition 2.4.

Proposition 2.5 If S is a separating operator for K , then x ∈ S(x) if and only if x ∈ K .

Proof The “if” statement follows from A2. For the “only if” statement, take x ∈ S(x), con-
sider the constant sequence zk = x for all k ∈N, which converges to x, and apply A3. �

Proposition 2.5 implies that if x /∈ K then x /∈ S(x), which, in view of A2, indicates that the
set S(x) separates indeed x from K . The separating sets S(x) will provide to the approximate
projections that we are going to employ throughout the paper.

Several notions of separating operators have been introduced in the literature; see, e.g.,
[21, Sect. 2.1.13] and the references therein. Our definition is a point-to-set version of the
separating operators in [22, Definition 2.1]. It encompasses not only hyperplane-based
separators as the ones in the seminal work by Fukushima [19], considered next in Ex-
ample 2.6, but also more general situations. Indeed, in Example 2.7, S(x) is the Cartesian
product of half-spaces, which is not a half-space.

For the family of convex sets in Examples 2.6 and 2.7, we get both explicit separating
operators complying with Definition 2.4 and closed formulas for projections onto them.

Example 2.6 Assume that K = {x ∈R
n : g(x) ≤ 0}, where g : Rn →R is convex. Define

S(x) =

⎧
⎨

⎩

K , if x ∈ K ,
{z ∈ R

n : u(z – x) + g(x) ≤ 0}, otherwise,
(2.1)

where u ∈ ∂g(x) is an arbitrary subgradient of g at x.

We mention that any closed and convex set K can be written as the 0-sublevel set of a
convex and even smooth function g , for instance, g(x) = dist(x, K)2, but in general this is not
advantageous, because for this g it holds that ∇g(x) = 2(x – PK (x)), so that PK (x), the exact
projection of x onto K , is needed for computing the separating half-space, and nothing has
been won. The scheme is interesting when the function g has easily computable gradient
or subgradients. For instance, in the quite frequent case in which K = {x ∈ R

n : gi(x) ≤
0 (1 ≤ i ≤ �)}, where the gis are convex and smooth, we can take g(x) = max1≤i≤� gi(x), and
the subgradients of g are easily obtained from the gradients of the gis.

Example 2.7 Assume that K = K1 ×· · ·×Km ⊂R
nm, where Ki ⊂R

n is of the form Ki = {x ∈
R

n : gi(x) ≤ 0} and gi : Rn → R is convex for 1 ≤ i ≤ m. Write x ∈ R
nm as x = (x1, . . . , xm)

with xi ∈ R
n(1 ≤ i ≤ m). We define the separating operator S : Rnm → P(Rnm) as S(x) =

S1(x1) × · · · × Sm(xm), with

Si
(
xi) =

⎧
⎨

⎩

Ki, if xi ∈ Ki,
{z ∈R

n : (ui)(z – xi) + gi(xi) ≤ 0}, otherwise,

where ui ∈ ∂gi(xi) is an arbitrary subgradient of gi at xi.
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Example 2.7 is suited for the reduction of simultaneous projection method (SiPM) for
m convex sets in R

n to MAP regarding two convex sets in R
nm. Note that in Example 2.6,

S(x) is either K or a half-space, and the same holds for the sets Si(xi) in Example 2.7. We
prove next that the separating operators S and S defined in Examples 2.6 and 2.7 satisfy
assumptions A1–A3.

Proposition 2.8 The separating operators S and S defined in Examples 2.6 and 2.7 satisfy
assumptions A1–A3.

Proof We start with S as in Example 2.6. First we observe that if x /∈ K then all subgradient
of g at x are nonzero: since K is assumed nonempty, there exist points where g is nonpos-
itive, so that x, which satisfies g(x) > 0, cannot be a minimizer of g , and hence 0 /∈ ∂g(x),
i.e., u �= 0 for all u ∈ ∂g(x). Regarding A1, S(x) is either equal to K or to a half-space, both
of which are closed and convex.

For A2, obviously it holds for x ∈ K . If x /∈ K , we take z ∈ K , and conclude, taking into
account the fact that z ∈ K and the subgradient inequality, that u(x – z) + g(x) ≤ g(z) ≤ 0,
implying that z ∈ S(x) in view of (2.1).

We deal now with A3. Take a sequence {zk}k∈N converging to some z∗ such that
limk→∞ dist(zk , S(zk)) = 0. We must prove that z∗ ∈ K . If some subsequence of {zk}k∈N is
contained in K , then z∗ ∈ K , because K is closed. Otherwise, for large enough k, S(zk) is
a half-space. It is well known, and easy to check, that the projection PH onto a half-space
H = {y ∈R

n : ay ≤ α} ⊂R
n, with a ∈R

n, α ∈R, is given by

PH (x) = x – ‖a‖–2 max
{

0,α – ax
}

a. (2.2)

Denote by PSk the projection onto S(zk). By (2.2), PSk (z) = z –‖uk‖–2 max{0, g(z)}uk , so that

dist
(
zk , S

(
zk)) =

∥
∥zk – PSk

(
zk)∥∥ =

∥
∥uk∥∥–1

max
{

0, g
(
zk)}.

Note that {zk}k∈N is bounded, because it is convergent. Since the subdifferential opera-
tor ∂g is locally bounded in the interior of the domain of g , which here we take as R

n,
there exists μ > 0 so that ‖uk‖ ≤ μ for all k and all uk ∈ ∂g(zk). Hence, dist(zk , S(zk)) ≥
μ–1 max{0, g(zk)} ≥ 0. Since by assumption limk→∞ dist(zk , S(zk)) = 0, and g being convex,
is continuous, we get that 0 = limk→∞ μ–1 max{0, g(zk)} = μ–1 max{0, g(z∗)}, implying that
0 = max{0, g(z∗)},i.e., g(z∗) ≤ 0, so that z∗ ∈ K and A3 holds.

Now we consider S as in Example 2.7. As before, if xi /∈ Ki then Si(xi) is indeed a half-
space in R

n. Concerning A1–A3, A1 holds because S(x) is the Cartesian product of closed
and convex sets (either Ki or a half-space in R

n). For A2, take (x1, . . . , xm) ∈ K. If xi ∈ Ki,
then xi ∈ Si(zi) = Ki. Otherwise, we take zi ∈ Ki, and invoking again the subgradient in-
equality, we get (ui)(xi – zi) + g(xi) ≤ g(zi) ≤ 0 implying that zi ∈ Si(xi), i.e., Ki ⊂ Si(Xi)
for all i, and the result follows taking into account the definitions of K and S. For A3,
note that limk→∞ dist(zk , S(zk)) = 0 if and only if limk→∞ dist(zk,i, Si(zk,i)) = 0 for 1 ≤ i ≤ m,
where zk = (zk,1, . . . , zk,m) with zk,i ∈ R

n. Then, the result follows with the same argument
as in Example 2.6, with zk,i, Si, gi substituting for zk , S, g . �
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3 Convergence results for MAAP and CARM
We recall now the definitions of MAP and CRM and introduce the formal definitions of
MAAP and CARM. Consider a closed convex set K ⊂R

n and an affine manifold U ⊂R
n.

We remind that an affine manifold is a set of the form {x ∈R
n : Qx = b} for some Q ∈R

n×n

and some b ∈R
n.

Let PK , PU be the projections onto K , U respectively and define RK , RU , T , C : Rn →R
n

as

RK = 2PK – Id, RU = 2PU – Id,

T = PU ◦ PK , C(x) = circ
(
x, RK (x), RU

(
RK (x)

))
,

(3.1)

where Id is the identity operator in R
n and circ(x, y, z) is the circumcenter of x, y, z, i.e.,

the point in the affine hull of x, y, z equidistant to them. We remark that circ(x, y, y) =
(1/2)(x + y) (in this case the affine hull is the line through x, y) and circ(x, x, x) = x (the
affine hull being the singleton {x}).

Then, starting from any x0 ∈R
n, MAP generates a sequence {xk}k∈N ⊂R

n according to

xk+1 = T
(
xk),

and, starting with x0 ∈ U , CRM generates a sequence {xk}k∈N ⊂R
n given by

xk+1 = C
(
xk).

For MAAP and CARM, we assume that S : Rn → P(Rn) is a separating operator for K
satisfying A1–A3, we take PU as before and define PS as the operator given by PS(x) :=
PS(x)(x), where PS(x) is the projection onto S(x).

Take RU as in (3.1), and define RS, TS, CS : Rn → R
n as

TS = PU ◦ PS, RS = 2PS – Id, CS(x) = circ
(
x, RS(x), RU

(
RS(x)

))
. (3.2)

Then, starting from any x0 ∈ R
n, MAAP generates a sequence {xk}k∈N ⊂ R

n according
to

xk+1 = TS(xk),

and, starting with x0 ∈ U , CARM generates a sequence {xk}k∈N ⊂R
n given by

xk+1 = CS(xk).

We observe now that the “trivial” separating operator S(x) = K for all x ∈ R
n satisfies

A1–A3, and that in this case we have TS = T , CS = C, so that MAP, CRM are particular in-
stances of MAAP, CARM respectively. Hence, the convergence analysis of the approximate
algorithms encompasses the exact ones. Global convergence of MAP is well known (see,
e.g., [23]) and the corresponding result for CRM has been established in [15]. The follow-
ing propositions follow quite closely the corresponding results for the exact algorithms,
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the difference consisting in the replacement of the set K by the separating set S(x). How-
ever, some care is needed, because K is fixed, while S(x) changes along the algorithm, so
that we present the complete analysis for the approximate algorithms MAAP and CARM.

Proposition 3.1 For all z ∈ K ∩ U and all x ∈R
n, it holds that

∥
∥TS(x) – z

∥
∥2 ≤ ‖z – x‖2 –

∥
∥TS(x) – PS(x)

∥
∥2 –

∥
∥PS(x) – x

∥
∥2 (3.3)

with TS as in (3.2).

Proof The projection operator PM onto any closed and convex set M is known to be firmly
nonexpansive [24, Proposition 4.16], that is,

∥
∥PM(x) – y

∥
∥2 ≤ ‖x – y‖2 –

∥
∥PM(x) – x

∥
∥2 (3.4)

for all x ∈R
n and all y ∈ M.

Applying consecutively (3.4) with M = U and M = S(x) and noting that for z ∈ K ∩ U we
get z ∈ U and also z ∈ K ⊂ S(x) (due to Assumption A2), we obtain (3.3). �

A similar result for operator CS is more delicate due to the presence of the reflections and
the circumcenter and requires some intermediate results. We follow closely the analysis
for operator C presented in [15].

The crux of the convergence analysis of CRM, performed in [15], is the remarkable ob-
servation that for x ∈ U \ K , C(x) is indeed the projection of x onto a half-space H(x)
separating x from K ∩ U . Next, we extend this result to CS .

Proposition 3.2 Let U , H ⊂ R
n be an affine manifold and a subspace, respectively, such

that H ∩ U �= ∅. Denote as PH , RH : Rn → R
n the projection and the reflection with respect

to H , respectively. Then
(i) PH∩U (x) = circ(x, RH(x), RU (RH(x)) for all x ∈ U ,

(ii) circ(x, RH(x), RU(RH (x)) ∈ U for all x ∈ U .

Proof See Lemmas 2 and 3 in [15]. �

Proposition 3.2 means that when the sets in CFP are an affine manifold and a hyperplane,
CRM indeed converges in one step, which is a first indication of its superiority over MAP,
which certainly does not enjoy this one-step convergence property, but also points to the
main weakness of CRM, namely that for its convergence we may replace H by a general
closed and convex set, but the other set must be kept as an affine manifold.

Lemma 3.3 Define H(x) ⊂R
n as

H(x) :=

⎧
⎨

⎩

K , if x ∈ K ,

{z ∈R
n : (z – PS(x))(x – PS(x)) ≤ 0}, otherwise.

(3.5)

Then, for all x ∈ U , CS(x) = PH(x)∩U (x).
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Proof Take x ∈ U . If x ∈ K , then x ∈ S(x) by A2, and it follows that RU (x) = RS(x) = x, so
that CS(x) = circ(x, x, x) = x. Also, PH(x)(x) = PK (x) = x by (3.5), and the result holds. Assume
that x ∈ U \ K , so that H(x) is the half-space in (3.5).

In view of (3.5), we get, using (2.2) with a = x–PS(x), α = (x–PS(x))PS(x), that PH(x)(x) =
PS(x). It follows from the definition of the reflection operator RS that

RS(x) = RH(x)(x). (3.6)

Now, by (3.2) and (3.6),

CS(x) = circ
(
x, RS(x), RU

(
RS(x)

))
= circ

(
x, RH(x), RU

(
RH(x)(x)

))
.

Since U is an affine manifold and H(x) is a half-space, we can apply Proposition 3.2 and
conclude that CS(x) = PH(x)∩U (x), proving the last statement of the lemma. By assumption,
x ∈ U , so that PH(x)∩U (x) = PH(x)(x), establishing the result. �

This rewriting of the operator CS as a projection onto a half-space (which varies with
the argument of CS) allows us to obtain the result for CARM analogous to Proposition 3.1.

Proposition 3.4 For all z ∈ K ∩ U and all x ∈ U , it holds that
(i) ‖CS(x) – z‖2 ≤ ‖z – x‖2 – ‖CS(x) – x‖2 with CS as in (3.2).

(ii) CS(x) ∈ U for all x ∈ U .

Proof For (i), take z ∈ K ∩U and x ∈ U . By Lemma 3.3, CS(x) = PH(x)(x) for all x ∈ U . Since
z ∈ K ⊂ H(x), we can apply (3.4) with M = H(x), obtaining ‖PH(x)(x) – z‖2 ≤ ‖x – z‖2 –
‖PH(x)(x) – x‖2, which gives the result, invoking again Lemma 3.3. Item (ii) follows from
Proposition 3.2 and Lemma 3.3. �

Propositions 3.1 and 3.4 allow us to prove convergence of the MAAP and CARM se-
quences, respectively, using the well-known Fejér monotonicity argument.

Theorem 3.5 Consider a closed and convex set K ⊂ R
n and an affine manifold U ⊂ R

n

such that K ∩ U �= ∅. Consider also a separating operator S for K satisfying Assumptions
A1–A3. Then the sequences generated by either MAAP or CARM, starting from any initial
point in the MAAP case and from a point in U in the CARM case, are well defined, con-
tained in U , Fejér monotone with respect to K ∩ U , convergent, and their limits belong to
K ∩ U , i.e., they solve CFP.

Proof Let first {xk}k∈N be the sequence generated by MAAP, i.e., xk+1 = TS(xk). Take any
z ∈ K ∩ U . Then, by Proposition 3.1,

∥
∥xk+1 – z

∥
∥2 ≤ ∥

∥xk – z
∥
∥2 –

∥
∥PU

(
PS(xk)) – PS(xk)∥∥2 –

∥
∥PS(xk) – xk∥∥2

≤ ∥
∥xk – z

∥
∥2, (3.7)

and so {xk}k∈N is Fejér monotone with respect to K ∩ U . By the definition of TS in (3.2),
{xk}k∈N ⊂ U . By Proposition 2.3(i), {xk}k∈N is bounded. Also, {‖xk – z‖}k∈N is nonincreas-
ing and nonnegative, therefore convergent, and thus the difference between consecutive
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iterates converges to 0. Hence, rewriting (3.7) as

∥
∥PU

(
PS(xk)) – PS(xk)∥∥2 +

∥
∥PS(xk) – xk∥∥2 ≤ ∥

∥xk – z
∥
∥2 –

∥
∥xk+1 – z

∥
∥2,

we conclude that

lim
k→∞

∥
∥PU

(
PS(xk)) – PS(xk)∥∥2 = 0 (3.8)

and

lim
k→∞

∥
∥PS(xk) – xk∥∥2 = 0. (3.9)

Let x̄ be a cluster point of {xk}k∈N and {xjk }jk∈N be a subsequence of {xk}k∈N convergent
to x̄. By (3.9), limk→∞ dist(xjk , S(xjk )) = 0. By Assumption A3 on the separating operator S,
x̄ ∈ K . It follows also from (3.9) that limk→∞ PS(xjk ) = x̄. By (3.8) and the continuity of PU ,
PU (x̄) = x̄, so that x̄ ∈ U and therefore x̄ ∈ K ∩ U . By Proposition 2.3(ii), x̄ = limk→∞ xk ,
completing the proof for the case of MAAP.

Let now {xk}k∈N be the sequence generated by CARM with x0 ∈ U . By Lemma 3.3, when-
ever xk ∈ U , xk+1 is the projection onto a closed and convex set, namely H(xk), and hence
it is well defined. Since x0 ∈ U by assumption, the whole sequence is well defined, and us-
ing recursively Proposition 3.4(ii), we have that {xk}k∈N ⊂ U . Now, we use Proposition 3.2,
obtaining, for any z ∈ K ∩ U ,

∥
∥xk+1 – z

∥
∥2 ≤ ∥

∥xk – z
∥
∥2 –

∥
∥CS(xk) – xk∥∥2 ≤ ∥

∥xk – z
∥
∥2,

so that again {xk}k∈N is Fejér monotone with respect K ∩U , and henceforth bounded. Also,
with the same argument as before, we get

lim
k→∞

∥
∥xk+1 – xk∥∥ = lim

k→∞
∥
∥CS(xk) – xk∥∥ = 0. (3.10)

In view of (3.10) and the definition of circumcenter, ‖xk+1 – xk‖ = ‖xk+1 – RS(xk)‖, so that
limk→∞ ‖xk+1 – RS(xk)‖ = 0 implying that limk→∞ ‖xk+1 – PS(xk)‖ = 0. Thus, since ‖xk –
PS(xk)‖ ≤ ‖xk – xk+1‖ + ‖xk+1 – PS(xk)‖, we get that

0 = lim
k→∞

∥
∥xk – PS(xk)∥∥ = lim

k→∞
dist

(
xk , S

(
xk)). (3.11)

Let x̄ be any cluster point of {xk}k∈N. Looking at (3.11) along a subsequence of {xk}k∈N
converging to x̄ and invoking Assumption A3 of the separating operator S, we conclude
that x̄ ∈ K . Since {xk}k∈N ⊂ U , we get that all cluster points of {xk}k∈N belong to K ∩ U ,
and then, using Proposition 2.3(ii), we get that limk→∞ xk = x̄ ∈ K ∩ U , establishing the
convergence result for CARM. �

4 Linear convergence rate of MAAP and CARM under a local error bound
assumption

In [9], the following global error bound assumption on the sets K , U , denoted as (EB), was
considered:
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(EB) There exists ω̄ > 0 such that dist(x, K) ≥ ω̄ dist(K ∩ U) for all x ∈ U .
Let us comment on the connection between (EB) and other notions of error bounds

which have been introduced in the past, all of them related to regularity assumptions
imposed on the solutions of certain problems. If the problem at hand consists of solv-
ing H(x) = 0 with a smooth H : Rn → R

m, a classical regularity condition demands that
m = n and the Jacobian matrix of H be nonsingular at a solution x∗, in which case New-
ton’s method, for instance, is known to enjoy superlinear or quadratic convergence. This
condition implies local uniqueness of the solution x∗. For problems with nonisolated so-
lutions, a less demanding assumption is the notion of calmness (see [25], Chap. 8, Sect. F),
which requires that

‖H(x)‖
dist(x, S∗)

≥ ω (4.1)

for all x ∈ R
n \ S∗ and some ω > 0, where S∗ is the solution set, i.e., the set of zeros of H .

Calmness, also called upper-Lipschitz continuity (see [26]), is a classical example of error
bound, and it holds in many situations (e.g., when H is affine by virtue of Hoffman’s lemma
[27]). It implies that the solution set is locally a Riemannian manifold (see [28]), and it has
been used for establishing superlinear convergence of Levenberg–Marquardt methods in
[29].

When dealing with convex feasibility problems, as in this paper, it seems reasonable to
replace the numerator of (4.1) by the distance from x to some of the convex sets, giving
rise to (EB). Similar error bounds for feasibility problems can be found, for instance, in
[30–33].

Under (EB), it was proved in [9] that MAP converges linearly with asymptotic constant
bounded above by

√
1 – ω̄2, and that CRM also converges linearly with a better upper

bound for the asymptotic constant, namely
√

(1 – ω̄2)/(1 + ω̄2). In this section, we prove
similar results for MAAP and CARM, assuming that a local error bound related not just
to K , U , but also to the separating operator S. The local error bound, denoted as (LEB), is
defined as follows:

(LEB) There exist a set V ⊂R
n and a scalar ω > 0 such that

dist
(
x, S(x)

) ≥ ω dist(x, K ∩ U) for all x ∈ U ∩ V .

We reckon that (LEB) becomes meaningful, and relevant for establishing convergence
rate results, only when the set V contains the tail of the sequence generated by the algo-
rithm; otherwise it might be void (e.g., it holds trivially, with any ω, when U ∩ V = ∅). In
order to facilitate the presentation, we opted for introducing additional conditions on V
in our convergence results rather than in the definition of (LEB).

The use of a local error bound instead of a global one makes sense, because the definition
of linear convergence rate deals only with iterates xk of the generated sequence with large
enough k, and the convergence of the sequences of interest has already been established
in Theorem 3.5, so that only points close enough to the limit x∗ of the sequence matter. In
fact, the convergence rate analysis for MAP and CRM in [9] holds, without any substantial
change, under a local rather than global error bound.

The set V could be expected to be a neighborhood of the limit x∗ of the sequence, but
we do not specify it for the time being, because for the prototypical example of separating
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operator, i.e., the one in Example 2.6 of Sect. 3, it will have, as we will show later, a slightly
more complicated structure: a ball centered at x∗ minus a certain “slice”.

We start with the convergence rate analysis for MAAP.

Proposition 4.1 Assume that K , U and the separating operator S satisfy (LEB). Consider
TS : Rn →R

n as in (3.1). Then, for all x ∈ U ∩ V ,

(
1 – ω2)∥∥x – PK∩U (x)

∥
∥2 ≥ ∥

∥TS(x) – PK∩U
(
TS(x)

)∥
∥2 (4.2)

with ω as in Assumption (LEB).

Proof By Proposition 3.1, for all z ∈ K ∩ U and all x ∈ R
n,

∥
∥TS(x) – z

∥
∥2 ≤ ‖z – x‖2 –

∥
∥TS(x) – PS(x)

∥
∥2 –

∥
∥PS(x) – x

∥
∥2

≤ ‖x – z‖2 –
∥
∥PS(x) – x

∥
∥2. (4.3)

Note that ‖PS(x) – x‖ = dist(x, S(x)) and that ‖TS(x) – PK∩U (TS(x))‖ ≤ ‖TS(x) – z‖ by the
definition of PK∩U . Take z = PK∩U (x), and get from (4.3)

∥
∥TS(x) – PK∩U

(
TS(x)

)∥
∥2 ≤ ∥

∥TS(x) – PK∩U (x)
∥
∥2

≤ ∥
∥x – PK∩U (x)

∥
∥2 – dist

(
x, S(x)

)2. (4.4)

Take now x ∈ U ∩ V and invoke (LEB) to get from (4.4)

∥
∥TS(x) – PK∩U

(
TS(x)

)∥
∥2 ≤ ∥

∥x – PK∩U (x)
∥
∥2 – ω2 dist(x, K ∩ U)2

= (1 – ω)2∥∥x – PK∩U (x)
∥
∥2,

which immediately implies the result. �

Proposition 4.1 implies that if {xk}k∈N is the sequence generated by MAAP and xk ∈ V for
large enough k, then the sequence {dist(xk , K ∩ U)}k∈N converges Q-linearly, with asymp-
totic constant bounded above by

√
1 – ω2. In order to move from the distance sequence

to the sequence {xk}k∈N itself, we will invoke the following lemma from [9].

Lemma 4.2 Consider a nonempty closed convex set M ⊂ R
n and a sequence {yk}k∈N ⊂

R
n. Assume that {yk}k∈N is Fejér monotone with respect to M, and that {dist(yk , M)}k∈N

converges R-linearly to 0. Then {yk}k∈N converges R-linearly to some point y∗ ∈ M, with
asymptotic constant bounded above by the asymptotic constant of {dist(yk , M)}k∈N.

Proof See Lemma 3.4 in [9]. �

Next we establish the linear convergence of MAAP under (LEB).

Theorem 4.3 Consider a closed and convex set K ⊂ R
n and an affine manifold U ⊂ R

n

such that K ∩ U �= ∅. Moreover, assume that S is a separating operator for K satisfying
Assumptions A1–A3. Suppose that K , U and the separating operator S satisfy (LEB). Let
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{xk}k∈N be the sequence generated by MAAP from any starting point x0 ∈R
n. If there exists

k0 such that xk ∈ V for all k ≥ k0, then {xk}k∈N converges R-linearly to some point x∗ ∈
K ∩ U , and the asymptotic constant is bounded above by

√
1 – ω2, with ω and V as in

(LEB).

Proof The fact that {xk}k∈N converges to some x∗ ∈ K ∩ U has been established in The-
orem 3.5. Take any k ≥ k0. By assumption, xk ∈ V , and by definition of TS , xk ∈ U . So,
we can take x = xk in Proposition 4.1, in which case TS(x) = xk+1, and rewrite (4.2) as (1 –
ω2) dist(xk , K ∩ U)2 ≥ dist(xk+1, K ∩ U)2 for k ≥ k0, which implies that {dist(xk , K ∩ U)}k∈N
converges Q-linearly, and hence R-linearly, with asymptotic constant bounded by

√
1 – ω2.

The corresponding result for the R-linear convergence of {xk}k∈N with the same bound for
the asymptotic constant follows then from Lemma 4.2, since {xk}k∈N is Fejér monotone
with respect to K ∩ U by Theorem 3.5. �

Now we analyze the convergence rate of CARM under (LEB), for which a preliminary
result, relating x, CS(x) and TS(x), is needed. The corresponding result for x, C(x), T(x)
can be found in [15], where it is proved with a geometrical argument. Here we present an
analytical one.

Proposition 4.4 Consider the operators CS, TS : Rn → R
n defined in (3.2). Then TS(x)

belongs to the segment between x and CS(x) for all x ∈ U .

Proof Let E denote the affine manifold spanned by x, RS(x) and RU (RS(x)). By definition,
the circumcenter of these three points, namely CS(x), belongs to E. We claim that TS(x)
also belongs to E, and next we proceed to proving the claim. Since U is an affine manifold,
PU is an affine operator, so that PU (αx + (1 – α)x′) = αPU (x) + (1 – α)PU (x′) for all α ∈ R

and all x, x′ ∈R
n. By (3.1), RU (RS(x)) = 2PU (RS(x)) – RS(x), so that

PU
(
RS(x)

)
=

1
2
(
RU

(
RS(x)

)
+ RS(x)

)
. (4.5)

On the other hand, using the affinity of PU , the definition of TS , and the assumption that
x ∈ U , we have

PU
(
RS(x)

)
= PU

(
2PS(x) – x

)
= 2PU

(
PS(x)

)
– PU (x) = 2TS(x) – x, (4.6)

so that

TS(x) =
1
2
(
PU

(
RS(x)

)
+ x

)
. (4.7)

Combining (4.5) and (4.7),

TS(x) =
1
2

x +
1
4

RU
(
RS(x)

)
+

1
4

RS(x),

i.e., TS(x) is a convex combination of x, RU (RS(x)) and RS(x). Since these three points be-
long to E, the same holds for TS(x), and the claim holds. We observe now that x ∈ U by
assumption, TS(x) ∈ U by definition, and CS(x) ∈ U by Proposition 3.4(ii). Now we con-
sider three cases: if dim(E ∩ U) = 0 then x, TS(x) and CS(x) coincide, and the result holds
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trivially. If dim(E∩U) = 2 then E ⊂ U , so that RS(x) ∈ U so that RU (RS(x)) = RS(x), in which
case CS(x) is the midpoint between x and RS(x), which is precisely PS(x). Hence, PS(x) ∈ U ,
so that TS(x) = PU (PS(x)) = PS(x) = CS(x), implying that TS(x) and CS(x) coincide, and the
result holds trivially. The interesting case is the remaining one, i.e., dim(E ∩ U) = 1. In this
case x, TS(x) and CS(x) lie in a line, so that we can write CS(x) = x +η(TS(x) – x) with η ∈R,
and it suffices to prove that η ≥ 1.

By the definition of η,

∥
∥CS(x) – x

∥
∥ = |η|∥∥TS(x) – x

∥
∥. (4.8)

In view of (3.4) with M = U , y = CS(x), and x = RS(x),

∥
∥CS(x) – RS(x)

∥
∥ ≥ ∥

∥CS(x) – PU
(
RS(x)

)∥
∥. (4.9)

Then

∥
∥CS(x) – x

∥
∥ =

∥
∥CS(x) – RS(x)

∥
∥ ≥ ∥

∥CS(x) – PU
(
RS(x)

)∥
∥

=
∥
∥
(
CS(x) – x

)
–

(
PU

(
RS(x)

)
– x

)∥
∥

=
∥
∥η

(
TS(x) – x

)
– 2

(
TS(x) – x

)∥
∥

= |η – 2|∥∥TS(x) – x
∥
∥, (4.10)

using the definition of the circumcenter in the first equality, (4.9) in the inequality, and
(4.6), as well as the definition of η, in the third equality. Combining (4.8) and (4.10), we get

|η|∥∥TS(x) – x
∥
∥ ≥ |η – 2|∥∥TS(x) – x

∥
∥,

implying that |η| ≥ |2 – η|, which holds only when η ≥ 1, completing the proof. �

We continue with another intermediate result.

Proposition 4.5 Assume that (LEB) holds for K , U , and S, and take x ∈ U . If x, CS(x) ∈ V ,
then

(
1 + ω2)dist

(
CS(x), K ∩ U

)2 ≤ (
1 – ω2)dist(x, K ∩ U)2, (4.11)

with V , ω as in (LEB).

Proof Take z ∈ K ∩ U , x ∈ V ∩ U . We use Proposition 3.1, rewriting (3.3) as

∥
∥x – PS(x)

∥
∥2 ≤ ‖x – z‖2 –

∥
∥PU

(
PS(x)

)
– z

∥
∥2 –

∥
∥PU

(
PS(x)

)
– PS(x)

∥
∥2 (4.12)

for all x ∈R
n and all z ∈ K ∩ U . Since x ∈ U , we get from Lemma 3.3 that CS(x) = PH(x)(x).

We apply next the well-known characterization of projections [24, Theorem 3.16] to get

(
x – CS(x)

)(
z – CS(x)

) ≤ 0. (4.13)
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In view of Proposition 4.4, PU (PS(x)) is a convex combination of x and CS(x), meaning that
PU (PS(x)) – CS(x) is a nonnegative multiple of x – CS(x), so that (4.13) implies

(
PU

(
PS(x)

)
– CS(x)

)(
z – CS(x)

) ≤ 0. (4.14)

Expanding the inner product in (4.14), we obtain

∥
∥PU

(
PS(x)

)
– z

∥
∥2 ≥ ∥

∥CS(x) – z
∥
∥2 +

∥
∥CS(x) – PU

(
PS(x)

)∥
∥2. (4.15)

Combining (4.12) and (4.15), we have

dist
(
x, S(x)

)2 ≤ ‖x – z‖2 –
∥
∥CS(x) – z

∥
∥2 –

∥
∥CS(x) – PU

(
PS(x)

)∥
∥2

–
∥
∥PU

(
PS(x)

)
– PS(x)

∥
∥2. (4.16)

Now, since U is an affine manifold, (y – PU (y))(w – PU (y)) = 0 for all y ∈ R
n and all w ∈ U ,

so that

‖w – y‖2 =
∥
∥w – PU (y)

∥
∥2 +

∥
∥PU (y) – y

∥
∥2. (4.17)

Since CS(x) ∈ U by Lemma 3.3, we use (4.17) with y = PS(x), w = CS(x), getting

∥
∥CS(x) – PU

(
PS(x)

)∥
∥2 +

∥
∥PU

(
PS(x)

)
– PS(x)

∥
∥2 =

∥
∥CS(x) – PS(x)

∥
∥2. (4.18)

Replacing (4.18) in (4.16), we obtain

dist
(
x, S(x)

)2 ≤ ‖x – z‖2 –
∥
∥CS(x) – z

∥
∥2 –

∥
∥CS(x) – PS(x)

∥
∥2

≤ ‖x – z‖2 – dist
(
CS(x), K ∩ U

)2 – dist
(
CS(x), S(x)

)2, (4.19)

using the facts that PS(x) ∈ S(x) and z ∈ K ∩ U in the last inequality. Now, we take z =
PK∩U (x), recall that x, CS(x) ∈ V by hypothesis, and invoke the (LEB) assumption, together
with (4.19), in order to get

ω2 dist(x, K ∩ U)2 ≤ dist
(
x, S(x)

)2

≤ dist(x, K ∩ U)2 – dist
(
CS(x), K ∩ U

)2

– ω2 dist
(
CS(x), K ∩ U

)2

= dist(x, K ∩ U)2 –
(
1 + ω2)dist

(
CS(x), K ∩ U

)2. (4.20)

The result follows rearranging (4.20). �

Next we present our convergence rate result for CARM.

Theorem 4.6 Consider a closed and convex set K ⊂ R
n, an affine manifold U ⊂ R

n such
that K ∩ U �= ∅, and a separating operator S for K satisfying Assumptions A1–A3. Suppose
that K , U and the separating operator S satisfy (LEB). Let {xk}k∈N be the sequence generated
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by CARM from any starting point x0 ∈ U . If there exists k0 such that xk ∈ V for all k ≥ k0,
then {xk}k∈N converges R-linearly to some point x∗ ∈ K ∩ U , and the asymptotic constant is
bounded above by

√
(1 – ω2)/(1 + ω2), with ω and V as in (LEB).

Proof The fact that {xk}k∈N converges to some x∗ ∈ K ∩ U has been established in Theo-
rem 3.5. Take any k ≥ k0. By assumption, xk ∈ V and by the definition of TS , xk ∈ U . Also,
k + 1 ≥ k0, so that CS(xk) = xk+1 ∈ V So, we can take x = xk in Proposition 4.5 and rewrite
(4.11) as (1 + ω2) dist(xk+1, K ∩ U)2 ≤ (1 – ω2) dist(xk , K ∩ U)2 or equivalently as

dist(xk+1, K ∩ U)
dist(xk , K ∩ U)

≤
√

1 – ω2

1 + ω2

for all k ≥ 0, which immediately implies that {dist(xk , K ∩ U)}k∈N converges Q-linearly,
and hence R-linearly, with asymptotic constant bounded by

√
(1 – ω2)/(1 + ω2). The cor-

responding result for the R-linear convergence of {xk}k∈N with the same bound for the
asymptotic constant follows then from Lemma 4.2, since {xk}k∈N is Fejér monotone with
respect to K ∩ U by Theorem 3.5. �

From now on, given z ∈ R
n, α > 0, B(z,α) will denote the closed ball centered at z with

radius α.
The results of Theorems 4.3 and 4.6 become relevant only if we are able to find a separat-

ing operator S for K such that (LEB) holds. This is only possible if the “trivial” separating
operator satisfies an error bound, i.e., if an error bound holds for the sets K , U themselves.
Let {xk}k∈N be a sequence generated by CARM starting at some x0 ∈ U . By Theorem 3.5,
{xk}k∈N converges to some x∗ ∈ K ∩ U . Without loss of generality, we assume that xk /∈ K
for all k, because otherwise the sequence is finite and it makes no sense to deal with con-
vergence rates. In such a case, x∗ ∈ ∂K , the boundary of K . We also assume from now on
that a local error bound for K , U , say (LEB1), holds at some neighborhood of x∗, i.e.,

(LEB1) There exist ρ, ω̄ > 0 such that dist(x, K) ≥ ω̄ dist(x, K ∩ U) for all
x ∈ U ∩ B(x∗,ρ).

Note that (LEB1) is simply a local version of (EB). Observe further that (LEB1) does not
involve the separating operator S, and that it gives a specific form to the set V in (LEB),
namely a ball around x∗.

We will analyze the situation for what we call the “prototypical” separating operator,
namely the operator S presented in Example 2.6, for the case in which K is the 0-sublevel
set of a convex function g : Rn →R.

We will prove that under some additional mild assumptions on g , for any ω < ω̄, there
exists a set V such that U , K , S satisfy a local error bound assumption, say (LEB), with the
pair ω, V .

Indeed, it will not be necessary to assume (LEB) in the convergence rate result; we will
prove that under (LEB1), (LEB) will be satisfied for any ω < ω̄ with an appropriate set V
which does contain the tail of the sequence.

Our proof strategy will be as follows: in order to check that the error bounds for K ,
U and S(x), U are virtually the same for x close to the limit x∗ of the CARM sequence,
we will prove that the quotient between dist(x, S(x)) and dist(x, K) approaches 1 when x
approaches x∗. Since both distances vanish at x = x∗, we will take the quotient of their first
order approximations, in a L’Hôspital’s rule fashion, and the result will be established as
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long as the numerator and denominator of the new quotient are bounded away from 0,
because otherwise this quotient remains indeterminate. This “bad” situation occurs when
x approaches x∗ along a direction almost tangent to K ∩ U , or equivalently almost normal
to ∇g(x∗). Fortunately, the CARM sequence, being Fejér monotone with respect to K ∩ U ,
does not approach x∗ in such a tangential way. We will take an adequate value smaller than
the angle between ∇g(x∗) and xk – x∗. Then, we will exclude directions whose angle with
∇g(x∗) is smaller than such a value and find a ball around x∗ such that, given any ω < ω̄,
(LEB) holds with parameter ω in the set V defined as the ball minus the “slice” containing
the “bad” directions. Because of the Fejér monotonicity of the CARM sequence, its iterates
will remain in V for large enough k, and the results of Theorem 4.6 will hold with such ω.
We proceed to follow this strategy in detail.

The additional assumptions on g are continuous differentiability and a Slater condition,
meaning that there exists x̂ ∈ R

n such that g(x̂) < 0. When g is of class C1, the separating
operator of Example 2.6 becomes

S(x) =

⎧
⎨

⎩

K , if x ∈ K ,

{z ∈ R
n : ∇g(x)(z – x) + g(x) ≤ 0} otherwise.

(4.21)

Proposition 4.7 Let g : Rn → R be convex, of class C1, and such that there exists x̂ ∈ R
n

satisfying g(x̂) < 0. Take K = {x ∈ R
n : g(x) ≤ 0}. Assume that K , U satisfy (LEB1). Take

x∗ as in (LEB1), fix 0 < ν < ‖∇g(x∗)‖ (we will establish that 0 �= ∇g(x∗) in the proof of this
proposition), and define Lν := {z ∈ R

n : |∇g(x∗)(z – x∗)| ≤ ν‖z – x∗‖}. Consider the sepa-
rating operator S defined in (4.21). Then, for any ω < ω̄, with ω̄ as in (LEB1), there exists
β > 0 such that K , U , S satisfy (LEB) with ω and V := B(x∗,β) \ Lν .

Proof The fact that 0 < ν < ‖∇g(x∗)‖ ensures that V �= ∅. We will prove that, for x close
to x∗, the quotient dist(x, S(x))/ dist(x, K) approaches 1, and first we proceed to evaluate
dist(x, S(x)). Note that when x ∈ K ⊂ S(x), the inequality in (LEB1) holds trivially because
of A1. Thus, we assume that x /∈ K , so that x /∈ S(x) by Proposition 2.5, and hence g(x) > 0
and S(x) = {z ∈R

n : ∇g(x)(z – x) + g(x) ≤ 0}, implying, in view of (2.2), that

dist
(
x, S(x)

)
=

∥
∥x – PS(x)

∥
∥ =

g(x)
‖∇g(x)‖ . (4.22)

Now we look for a more manageable expression for dist(x, K) = ‖x – PK (x)‖. Let y = PK (x).
So, y is the unique solution of the problem min‖z – x‖2 s.t. g(z) ≤ 0, whose first order
optimality conditions, sufficient by convexity of g , are

x – z = λ∇g(z) (4.23)

with λ ≥ 0, so that

dist(x, K) = ‖x – y‖ = λ
∥
∥∇g(y)

∥
∥. (4.24)

Now we observe that the Slater condition implies that the right-hand sides of both (4.22)
and (4.24) are well defined: since x /∈ K , g(x) > 0; since y = PK (x) ∈ ∂K , g(y) = 0. By the
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Slater condition, g(x) > g(x̂) and g(y) > g(x̂), so that neither x nor y are minimizers of g ,
and hence both ∇g(y) and ∇g(x) are nonzero. By the same token, ∇g(x∗) �= 0, because x∗

is not a minimizer of g : being the limit of a sequence lying outside K , x∗ belongs to the
boundary of K , so that g(x∗) = 0 > g(x̂).

From (4.22), (4.24),

dist(x, S(x))
dist(x, K)

=
∥
∥∇g

(
y(x)

)∥
∥
∥
∥∇g(x)

∥
∥
[

λ(x)
g(x)

]

, (4.25)

where the notation y(x), λ(x) emphasizes that both y = PK (x) and the multiplier λ depend
on x.

We look at the right-hand side of (4.25) for x close to x∗ ∈ K , in which case y, by the con-
tinuity of PK , approaches P(x∗) = x∗, so that ∇g(y(x)) approaches ∇g(x∗) �= 0, and hence, in
view of (4.22), λ(x) approaches 0. So, the product of the first two factors in the right-hand
side of (4.25) approaches ‖∇g(x∗)‖2, but the quotient is indeterminate, because both the
numerator and the denominator approach 0, requiring a more precise first order analysis.

Expanding g(x) around x∗ and taking into account that g(x∗) = 0, we get

g(x) = ∇g
(
x∗)(x – x∗) + o

(∥
∥x – x∗∥∥)

.

Define t = ‖x – x∗‖, d = t–1(x – x∗) so that ‖d‖ = 1, and (4.26) becomes

g(x) = t∇g
(
x∗)d + o(t). (4.26)

Now we look at λ(x). Let φ(t) = λ(x∗ + td). Note that, for x ∈ ∂K , we get y(x) = x, so that
0 = λ(x)∇g(x) and hence λ(x) = 0. Thus, φ(0) = 0 and

λ(x) = φ(t) = tφ′
+(0) + o(t), (4.27)

where φ′
+(0) denotes the right derivative of φ(t) at 0. Since we assume that x /∈ K , we have

y(x) ∈ ∂K and hence, using (4.23),

0 = g
(
y(x)

)
= g

(
x – λ(x)∇g

(
y(x)

))
= g

(
x∗ + td – φ(t)∇g

(
y
(
x∗ + td

)))
(4.28)

for all t > 0. Let σ (t) = φ(t)∇g(y(x∗ + td)), ψ(t) = g(x∗ + td – σ (t)), so that (4.28) becomes
0 = ψ(t) = g(x∗ + td – σ (t)) for all t > 0 and hence

0 = ψ ′(t) = ∇g
(
y
(
x∗ + td

))(
d – σ ′(t)

)
. (4.29)

Taking limits in (4.29) with t → 0+ and noting that y(x∗) = x∗ because x∗ ∈ K , we get

0 = ∇g
(
x∗)(

d – σ ′
+(0)

)
, (4.30)

where σ ′
+(0) denotes the right derivative of σ (t) at 0. We compute σ ′

+(0) directly from the
definition, because we assume that g is of class C1 but perhaps not of class C2. Recalling
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that φ(0) = 0, we have that

σ ′
+(0) = lim

t→0+

φ(t)
t

∇g
(
y
(
x∗ + td

))

= lim
t→0+

φ(t)
t

lim
t→0+

∇g
(
y
(
x∗ + td

))
= φ′

+(0)∇g
(
x∗), (4.31)

using the facts that g is class C1 and that y(x∗) = x∗. Replacing (4.31) in (4.30), we get that
0 = ∇g(x∗)(d – φ′

+(0)∇g(x∗)), and therefore

φ′
+(0) =

∇g(x∗)d
‖∇g(x∗)‖2 . (4.32)

Using (4.27) and (4.32), we obtain

λ(x) =
t∇g(x∗)d
‖∇g(x∗)‖2 + o(t) =

1
‖∇g(x∗)‖2

[
t∇g

(
x∗)d + o(t)

]
. (4.33)

Replacing (4.33) and (4.26) in (4.25), we obtain

dist(x, S(x))
dist(x, K)

=
[‖∇g(y(x))‖‖∇g(x)‖

‖∇g(x∗)‖2

][
t∇g(x∗)d + o(t)
t∇g(x∗)d + o(t)

]

=
[‖∇g(y(x∗ + td))‖‖∇g(x∗ + td)‖

‖∇g(x∗)‖2

][∇g(x∗)d + o(t)/t
∇g(x∗)d + o(t)/t

]

. (4.34)

Now we recall that we must check the inequality of (LEB) only for points in V , and that V ∩
Lν = ∅ with Lν = {z ∈ R

n : ∇g(x∗)(z – x∗) ≤ ν‖z – x∗‖}. So, for x ∈ V , we have |∇g(x∗)(x –
x∗)| ≥ ν‖x – x∗‖, which implies |∇g(x∗)d| ≥ ν , i.e., ∇g(x∗)d is bounded away from 0,
independently of the direction d. In this situation, it is clear that the rightmost expression
of (4.34) tends to 1 when t → 0+, and so there exists some β > 0 such that, for t ∈ (0,β),
such an expression is not smaller than ω/ω̄, with ω as in (LEB) and ω̄ as in (LEB1). Without
loss of generality, we assume that β ≤ ρ , with ρ as in Assumption (LEB1). Since t = ‖x–x∗‖,
we have proved that, for x ∈ U ∩ B(x∗,β) \ Lν = U ∩ V , it holds that

dist(x, S(x))
dist(x, K)

≥ ω

ω̄
. (4.35)

It follows from (4.35) that

dist
(
x, S(x)

) ≥ dist(x, K)
ω

ω̄
(4.36)

for all x ∈ V ∩ U . Dividing both sides of (4.36) by dist(x, K ∩ U), recalling that β ≤ ρ , and
invoking Assumption (LEB1), we obtain

dist(x, S(x))
dist(x, K ∩ U)

≥ dist(x, K)
dist(x, K ∩ U)

ω

ω̄
≥ ω̄

ω

ω̄
= ω

for all x ∈ U ∩ V , thus proving that (LEB) holds for any ω < ω̄, with V = B(x∗,β) \ Lν and
with ω̄ as in (LEB1). �
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We have proved that for the prototypical separating operator given by (4.21), the result
of Proposition 4.5 holds. In order to obtain the convergence rate result of Theorem 4.6 for
this operator, we must prove that in this case the tail of the sequence {xk}k∈N generated
by CARM is contained in V = B(x∗,β) \ Lν . Note that β depends on ν . Next we will show
that if we take ν smaller than a certain constant which depends on x∗, the initial iterate
x0, the Slater point x̂, and the parameter ω̄ of (LEB1), then the tail of the sequence {xk}k∈N
will remain outside Lν . Clearly, this will suffice, because the sequence eventually remains
in any ball around its limit, which is x∗, so that its tail will surely be contained in B(x∗,β).
The fact that xk /∈ Lν for large enough k is a consequence of the Fejér monotonicity of the
sequence with respect to K ∩ U , proved in Theorem 3.5. In the next proposition we will
prove that indeed xk /∈ Lν for large enough k, and so the result of Theorem 4.6 holds for
this separating operator.

Proposition 4.8 Let g : Rn → R be convex, of class C1, and such that there exists x̂ ∈ R
n

satisfying g(x̂) < 0. Take K = {x ∈R
n : g(x) ≤ 0}. Assume that K , U satisfy (LEB1). Consider

the separating operator S defined in (4.21). Let {xk}k∈N be a sequence generated by (CARM)
with starting point x0 ∈ U and limit point x∗ ∈ K ∩ U . Take ν > 0 satisfying

ν < min

{
ω̄|g(x̂)|

4(‖x̂ – x∗‖ + ‖x∗ – x0‖)
,
‖∇g(x∗)‖

2

}

, (4.37)

with ω̄ as in (LEB1), and define

Lν :=
{

z ∈R
n :

∣
∣∇g

(
x∗)(

z – x∗)∣∣ ≤ ν
∥
∥z – x∗∥∥}

.

Then there exists k0 such that, for all k ≥ k0, xk ∈ B(x∗,β) \ Lν , with β as in Proposition 4.7.

Proof Assume that xk ∈ Lν , i.e.,

∣
∣∇g

(
x∗)(

xk – x∗)∣∣ ≤ ν
∥
∥xk – x∗∥∥. (4.38)

Using the gradient inequality, the fact that g(x∗) = 0, and (4.38), we obtain

g
(
xk) ≤ g

(
x∗) – ∇g

(
xk)(

x∗ – xk)

=
[∇g

(
x∗) – ∇g

(
xk) – ∇g

(
x∗)](

x∗ – xk)

≤ ∥
∥∇g

(
x∗) – ∇g

(
xk)∥∥

∥
∥x∗ – xk∥∥ +

∣
∣∇g

(
x∗)(

xk – x∗)∣∣

≤ (∥
∥∇g

(
x∗) – ∇g

(
xk)∥∥ + ν

)∥
∥xk – x∗∥∥. (4.39)

By Theorem 3.5, {xk}k∈N is Fejér monotone with respect to K ∩ U . Thus, we use Propo-
sition 2.3(iii) and (LEB1) in (4.39), obtaining

g
(
xk) ≤ 2

(∥
∥∇g

(
x∗) – ∇g

(
xk)∥∥ + ν

)
dist

(
xk , K ∩ U

)

≤ 2(‖∇g(x∗) – ∇g(xk)‖ + ν) dist(xk , K)
ω̄

. (4.40)
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Denote yk = PK (xk). Using again the gradient inequality, together with the facts that
g(yk) = 0 and that xk – yk and ∇g(yk) are collinear, which is a consequence of (4.23), and
the nonnegativity of λ, we get from (4.40)

g
(
xk) ≥ g

(
yk) + ∇g

(
yk)(

xk – yk)

=
∥
∥∇g

(
yk)∥∥

∥
∥xk – yk∥∥ =

∥
∥∇g

(
yk)∥∥dist

(
xk , K

)
. (4.41)

Now we use the Slater assumption on g for finding a lower bound for ‖∇g(yk)‖. Take x̂
such that g(x̂) < 0, and apply once again the gradient inequality.

g(x̂) ≥ g
(
yk) + ∇g

(
yk)(

x̂ – yk) = ∇g
(
yk)(

x̂ – yk) ≥ –
∥
∥∇g

(
yk)∥∥

∥
∥x̂ – yk∥∥. (4.42)

Multiplying (4.42) by –1, we get

∣
∣g(x̂)

∣
∣ ≤ ∥

∥∇g
(
yk)∥∥

∥
∥x̂ – yk∥∥ ≤ ∥

∥∇g
(
yk)∥∥

(∥
∥x̂ – x∗∥∥ +

∥
∥x∗ – yk∥∥

)

≤ ∥
∥∇g

(
yk)∥∥

(∥
∥x̂ – x∗∥∥ +

∥
∥x∗ – xk∥∥

)

≤ ∥
∥∇g

(
yk)∥∥

(∥
∥x̂ – x∗∥∥ +

∥
∥x∗ – x0∥∥

)
, (4.43)

using the facts that yk = PK (xk) and that x∗ ∈ K in the third inequality and the Féjer mono-
tonicity of {xk}k∈N with respect to K ∩ U in the fourth one. Now, since limk→∞ xk = x∗,
there exists k1 such that ‖xk – x∗‖ ≤ ρ for k ≥ k1, with ρ as in (LEB1). So, in view of (4.43),
with k ≥ k1, |g(x̂)| ≤ ‖∇g(yk)‖(‖x̂ – x∗‖ + ‖x∗ – x0‖), implying that

∥
∥∇g

(
yk)∥∥ ≥ |g(x̂)|

‖x̂ – x∗‖ + ‖x∗ – x0‖ . (4.44)

Combining (4.40), (4.41), (4.44), and (4.37), we obtain

2ν <
ω̄|g(x̂)|

2(‖x̂ – x∗‖ + ‖x∗ – x0‖)
≤ ∥

∥∇g
(
xk) – ∇g

(
x∗)∥∥ + ν,

implying

ν <
∥
∥∇g

(
xk) – ∇g

(
x∗)∥∥. (4.45)

The inequality in (4.45) has been obtained by assuming that xk ∈ Lν . Now, since
limk→∞ xk = x∗ and g is of class C1, there exists k0 ≥ k1 such that ‖∇g(x∗) – ∇g(xk)‖ ≤ ν

for k ≥ k0, and hence (4.45) implies that, for k ≥ k0, xk /∈ Lν . Since k0 ≥ k1, xk ∈ B(x∗,β) for
k ≥ k0, meaning that when k ≥ k0, xk ∈ B(x∗,β) \ Lν , establishing the result. �

Now we conclude the analysis of CARM with the prototypical separating operator, prov-
ing that under smoothness of g and a Slater condition, the CARM method achieves lin-
ear convergence with precisely the same bound for the asymptotic constant as CRM, thus
showing that the approximation of PK by PS produces no deterioration in the convergence
rate. We emphasize again that, for this operator S, PS has an elementary closed formula,
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namely the one given by

PS(x) = x –
(

max{0, g(x)}
‖∇g(x)‖2

)

∇g(x).

Theorem 4.9 Let g : Rn → R be convex, of class C1, and such that there exists x̂ ∈ R
n

satisfying g(x̂) < 0. Take K = {x ∈R
n : g(x) ≤ 0}. Assume that K , U satisfy (LEB1). Consider

the separating operator S defined in (4.21). Let {xk}k∈N be a sequence generated by CARM
with the starting point x0 ∈ U . Then {xk}k∈N converges to some x∗ ∈ K ∩ U with linear
convergence rate and asymptotic constant bounded above by

√
(1 – ω̄2)/(1 + ω̄2), with ω̄ as

in (LEB1).

Proof The fact that {xk}k∈N converges to some x∗ ∈ K ∩ 1 follows from Theorem 3.5. Let
ω̄ be the parameter in (LEB1). By Proposition 4.7, P, K , and S satisfy (LEB) with any pa-
rameter ω ≤ ω̄ and a suitable V . By Proposition 4.8, xk ∈ V for large enough k, so that the
assumptions of Theorem 4.6 hold, and hence

lim sup
k→∞

‖xk+1 – x∗‖
‖xk – x∗‖ ≤

√
1 – ω2

1 + ω2 (4.46)

for any ω ≤ ω̄. Taking infimum in the right-hand side of (4.46) with ω < ω̄, we conclude
that the inequality holds also for ω̄, i.e.,

lim sup
k→∞

‖xk+1 – x∗‖
‖xk – x∗‖ ≤

√
1 – ω̄2

1 + ω̄2 ,

completing the proof. �

We mention that the results of Propositions 4.7 and 4.8 and Theorem 4.9 can be ex-
tended without any complications to the separating operator S in Example 2.7, so that they
can be applied for accelerating SiPM for CFP with m convex sets, presented as 0-sublevel
sets of smooth convex functions. We omit the details.

Let us continue with a comment on the additional assumptions on g used for proving
Theorem 4.9, namely continuous differentiability and the Slater condition. We guess that
the second one is indeed needed for the validity of the result; regarding smoothness of g ,
we conjecture that the CARM sequence still converges linearly under (LEB) when g is not
smooth, but with an asymptotic constant possibly larger than the one for CRM. It seems
clear that the proof of such a result requires techniques quite different from those used
here.

Finally, we address the issue of the extension of the results in this paper to the framework
of infinite dimensional Hilbert spaces. We have refrained from developing our analysis in
such a framework because our main focus lies in the extension of the convergence rate
results for the exact algorithms presented in [9] to the approximate methods introduced
in this paper, so that in order to establish the appropriate comparisons between the exact
and approximate methods one should start by rewriting the results of [9] in the context
of Hilbert spaces, which would unduly extend the length of this paper. We just comment
that it is possible to attain such an aim following the approach presented in [11, 12].
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5 Convergence rate results for CARM and MAAP applied to specific instances of
CFP

The results of Sect. 4 indicate that when K , U satisfy an error bound assumption, both
CARM and MAAP enjoy linear convergence rates (with a better asymptotic constant for
the former). In this section we present two families of CFP instances for which the dif-
ference between CARM and MAAP is more dramatic: using the prototypical separating
operator, in the first one (for which (LEB) does not hold), MAAP converges sublinearly
and CARM converges linearly; in the second one, MAAP converges linearly, as in Sect. 4,
but CARM converges superlinearly. Similar results on the behavior of MAP and CRM for
these two families can be found in [9].

Throughout this section, K ⊂R
n+1 will be the epigraph of a convex function f : Rn →R

of class C1 and U will be the hyperplane U := {x ∈ R
n+1 : xn+1 = 0}. We mention that the

specific form of U and the fact that K is an epigraph entail little loss of generality; but the
smoothness assumption on f and the fact that U is a hyperplane (i.e. an affine manifold of
codimension 1) are indeed more restrictive.

First we look at the case when the following assumptions hold:
B1. f (0) = 0.
B2. ∇f (x) = 0 if and only if x = 0.

Note that under B1–B2, 0 is the unique minimizer of f and that K ∩U = {0}. It follows from
Theorem 3.5 that the sequences generated by MAAP and CARM, from any initial iterate
in R

n and U respectively, converge to x∗ = 0. We prove next that under these assumptions
MAAP converges sublinearly.

Proposition 5.1 Assume that K ⊂R
n+1 is the epigraph of a convex function f : Rn → R of

class C1 satisfying B1–B2, and U := {x ∈ R
n+1 : xn+1 = 0}. Consider the separating operator

given by (4.21) for the function g : Rn+1 →R defined as g(x1, . . . , xn+1) = f (x1, . . . , xn) – xn+1.
Then the sequence {xk}k∈N generated by MAAP starting at any x0 ∈R

n+1 converges sublin-
early to x∗ = 0.

Proof Convergence of {xk}k∈N to x∗ = 0 results from Theorem 3.5. We write vectors inR
n+1

as (x, s) with x ∈ R
n, s ∈ R. We start by computing the formula for TS(x, 0). By definition

of g , ∇g(x, s) = (∇f (x), –1). Let

α(x) =
∥
∥∇f (x)

∥
∥2 + 1. (5.1)

By (2.2),

PS(x, 0) = (x, 0) –
g(x, 0)

‖∇g(x, 0)‖2 ∇g(x, 0) =
(

x –
f (x)
α(x)

∇f (x), –
f (x)
α(x)

)

,

which implies, since PU (x, s) = (x, 0),

TS(x, 0) = PU
(
PS(x)

)
=

(

x –
f (x)
α(x)

∇f (x), 0
)

. (5.2)

Let x̄ = ‖x‖–1x. From (5.2),

[‖TS(x, 0)‖
‖(x, 0)‖

]2

= 1 – 2
f (x)
‖x‖

(∇f (x)x̄
α(x)

)

+
(

f (x)
‖x‖

‖∇f (x)‖
α(x)

)2

. (5.3)



Araújo et al. Fixed Point Theory Algorithms Sci Eng          (2022) 2022:1 Page 23 of 30

Note that limx→0 α(x) = α(0) = 1 and that, by B1–B2, limx→0 ∇f (x) = ∇f (0) = 0, f (x) =
o(‖x‖), implying that limx→0 f (x)/‖x‖ = 0, and conclude from (5.3) that

lim
x→0

‖TS(x, 0)‖
‖(x, 0)‖ = 1. (5.4)

Now, since xk+1 = TS(xk), xk ∈ U for all k ≥ 0, and x∗ = 0, we get from (5.4)

lim
k→∞

‖xk+1 – x∗‖
‖xk – x∗‖ = lim

x→0

‖TS(x, 0)‖
‖(x, 0)‖ = 1,

and hence {xk}k∈N converges sublinearly. �

Next we study the CARM sequence in the same setting.

Proposition 5.2 Assume that K ⊂R
n+1 is the epigraph of a convex function f : Rn → R of

class C1 satisfying B1–B2, and U := {x ∈ R
n+1 : xn+1 = 0}. Consider the separating operator

given by (4.21) for the function g : Rn+1 →R defined as g(x1, . . . , xn+1) = f (x1, . . . , xn) – xn+1.
For 0 �= x ∈R

n, define

θ (x) :=
f (x)

‖x‖‖∇f (x)‖ . (5.5)

Then

[‖CS(x, 0)‖
‖x‖

]2

≤ 1 – θ (x)2, (5.6)

with CS as in (3.2).

Proof Define

β(x) :=
f (x)

‖∇f (x)‖2 . (5.7)

By (3.2),

RS(x, 0) =
(

x – 2
f (x)
α(x)

∇f (x), 2
f (x)
α(x)

)

. (5.8)

From Proposition 4.4,

CS(x, 0) = (x, 0) + η
(
TS(x, 0) – (x, 0)

)
=

(

x – η
f (x)
α(x)

∇f (x), 0
)

, (5.9)

for some η ≥ 1. By the definition of circumcenter, ‖CS(x) – x‖ = ‖CS(x) – RS(x)‖. Combin-
ing this equation with (5.8) and (5.9), one obtains η = 1 +‖∇f (x)‖–1, which implies, in view
of (5.7), that

ηf (x)
α(x)

=
f (x)

‖∇f (x)‖2 = β(x). (5.10)
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Combining (5.9) and (5.10),

CS(x, 0) =
(
x – β(x)∇f (x), 0

)
, (5.11)

so that

∥
∥CS(x, 0)

∥
∥2 = ‖x‖2 – 2β(x)∇f (x)x + β(x)2∥∥∇f (x)

∥
∥2

≤ ‖x‖2 – 2β(x)f (x) + β(x)2∥∥∇f (x)
∥
∥2, (5.12)

using the fact that f (x) ≤ ∇f (x)x, which follows from that gradient inequality with the
points x and 0. It follows from (5.12) and the definitions of α(x), β(x), that

[‖CS(x, 0)‖
‖x‖

]2

≤ 1 – 2β(x)
f (x)
‖x‖2 +

(
β(x)‖∇f (x)‖

‖x‖
)2

= 1 –
(

f (x)
‖∇f (x)‖‖x‖

)2

= 1 – θ (x)2,

using (5.5) in the last equality. �

We prove next the linear convergence of the CARM sequence in this setting under the
following additional assumption on f :

(B3) lim infx→0
f (x)

‖x‖‖∇f (x)‖ > 0.

Corollary 5.3 Under the assumptions of Proposition 5.2, if f satisfies B3 and {xk}k∈N is the
sequence generated by CARM starting at any x0 ∈ U , then limk→∞ xk = x∗ = 0, and

lim inf
k→∞

‖xk+1 – x∗‖
‖xk – x∗‖ ≤ √

1 – δ2 < 1,

with

δ = lim inf
x→0

f (x)
‖x‖‖∇f (x)‖ ,

so that {xk}k∈N converges linearly, with asymptotic constant bounded by
√

1 – δ2.

Proof Convergence of {xk}k∈N follows from Theorem 3.5. Since xk+1 = CS(xk), we invoke
Proposition 5.2, observing that lim infx→0 θ (x) = δ and taking square root and lim sup in
(5.6):

lim sup
k→∞

‖xk+1 – x∗‖
‖xk – x∗‖ ≤

√

1 – lim inf
k→∞

θ
(
xk

)2 =
√

1 – δ2 < 1,

using (5.5) and Assumption B3. �

In [9] it was shown that Assumption B3 holds in several cases, e.g., when f is of class C2

and the Hessian ∇2f (0) is positive definite, in which case

δ ≥ 1
2

λmin

λmax
,
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where λmax, λmin are the largest and smallest eigenvalues of ∇2f (0), or when f (x) = ϕ(‖x‖),
where ϕ : R→ R is a convex function of class Cr , satisfying ϕ(0) = ϕ′(0) = 0, in which case
δ ≥ 1/p, where p ≤ r is defined as p = min{j : ϕ(j) �= 0}.

In all these instances, in view of Proposition 5.1 and Corollary 5.3, the CARM sequence
converges linearly, while the MAAP one converges sublinearly. If we look at the formulae
for TS and CS , in (5.2) and (5.11), we note that both operators move from (x, 0) in the di-
rection (∇f (x), 0) but with different step-sizes. Looking now at (5.3) and (5.5), we see that
the relevant factors of these step-sizes, for x near 0, are f (x)/‖x‖ and f (x)/(‖x‖‖∇f (x)‖).
Since we assume that ∇f (0) = 0, the first one vanishes near 0, inducing the sublinear be-
havior of MAAP, while the second one, in rather generic situations, will stay away from
0. It is the additional presence of ‖∇f (x)‖ in the denominator of θ (x) which makes all the
difference.

Now we analyze the second family, which is similar to the first one, excepting that con-
dition B1 is replaced by the following one:

(B1’) f (0) < 0.
We also make a further simplifying assumption, which is not essential for the result,

but keeps the calculations simpler. We take f of the form f (x) = ϕ(‖x‖) with ϕ : R → R.
Rewriting B1’, B2 in terms of ϕ, we assume that

(i) ϕ : R →R is strictly convex and of class C1,
(ii) ϕ(0) < 0,

(iii) ϕ′(0) = 0.
This form of f gives a one-dimensional flavor to this family. Now, 0 ∈ R

n+1 cannot be
the limit point of the MAAP or the CARM sequences: 0 is still the unique minimizer of
f , but since f (0) < 0, 0 /∈ ∂K , while the limit points of the sequences, unless they are finite
(in which case convergence rates make no sense), do belong to the boundary of K . Hence,
both f and ∇f do not vanish at such limit points, implying that both ϕ and ϕ′ are nonzero
at the norms of the limit points. We have the following result for this family.

Proposition 5.4 Assume that U , K ⊂ R
n+1 are defined as U = {(x, 0) : x ∈ R

n} and K =
epi(f ), where f (x) = φ(‖x‖) and φ satisfies (i)–(iii). Let CS , TS be as defined in (3.2), and
(x∗, 0), (z∗, 0) be the limits of the sequences {xk}k∈N, {zk}k∈N generated by CARM and MAAP,
starting from some (x0, 0) ∈ U and some (z0, w) ∈ R

n+1, respectively. Then

lim
x→z∗

‖T(x, 0) – (z∗, 0)‖
‖(x, 0) – (z∗, 0)‖ =

1
1 + φ′(‖z∗‖)2 (5.13)

and

lim
x→z∗

‖C(x, 0) – (x∗, 0)‖
‖(x, 0) – (x∗, 0)‖ = 0. (5.14)

Proof We start by rewriting the formulae for CS(x), TS(x) in terms of ϕ. We also define
t := ‖x‖. Using (5.1), (5.2), (5.5), and (5.6), we obtain

TS(x, 0) =
([

1 –
ϕ(‖x‖)ϕ′(‖x‖)

(ϕ′(‖x‖)2 + 1)‖x‖
]

x, 0
)

=
([

1 –
ϕ(t)(ϕ′(t)

(ϕ′(t)2 + 1)t

]

x, 0
)

(5.15)
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and

CS(x, 0) =
([

1 –
ϕ(‖x‖)

ϕ′(‖x‖)‖x‖
]

x, 0
)

=
([

1 –
ϕ(t)
ϕ′(t)t

]

x, 0
)

. (5.16)

Note that x, TS(x), CS(x) are collinear (the one-dimensional flavor!), so that the same hap-
pens with x∗, z∗. Let r := ‖x∗‖, s := ‖z∗‖, so that x∗ = (r/t)x, z∗ = (s/t)x. Then, using (5.15),
(5.16), we get

‖TS(x, 0) – (z∗, 0)‖
‖(x, 0) – (z∗, 0)‖ =

t – r – ϕ(t)ϕ′(t)
ϕ′(t)2+1

t – r
=

[

1 –
ϕ(t)
t – r

][
ϕ′(t)

ϕ′(t)2 + 1

]

=
[

1 –
ϕ(t) – ϕ(r)

t – r

][
ϕ′(t)

ϕ′(t)2 + 1

]

, (5.17)

and

‖CS(x, 0) – (x∗, 0)‖
‖(x, 0) – (x∗, 0)‖ =

t – s – ϕ(t)
ϕ′(t)

t – s
= 1 –

[
ϕ(t)
t – s

]
1

ϕ′(t)

= 1 –
[

ϕ(t) – ϕ(r)
t – s

]
1

ϕ′(t)
, (5.18)

using in the last equalities of (5.17) and (5.18) the fact that ϕ(r) = ϕ(s) = 0, which results
from f (x∗) = f (z∗) = 0. Now we take limits with x → z∗, x → x∗ in the leftmost expressions
of (5.17), (5.18), which demands limits with t → s, t → r in the rightmost expressions of
them.

lim
x→x∗

‖TS(x, 0) – (z∗, 0)‖
‖(x, 0) – (z∗, 0)‖ = lim

t→r

[

1 –
ϕ(t) – ϕ(r)

t – r

][
ϕ′(t)

ϕ′(t)2 + 1

]

= 1 –
ϕ′(r)2

ϕ′r2 + 1
=

1
ϕ′(r)2 + 1

=
1

ϕ′(‖z∗‖)2 + 1

and

lim
x→z∗

‖CS(x, 0) – (x∗, 0)‖
‖(x, 0) – (x∗, 0)‖ = lim

t→s

[

1 –
ϕ(t) – ϕ(r)

t – s

]
1

ϕ′(t)
= 1 –

ϕ′(s)
ϕ′(s)

= 0,

completing the proof. �

Corollary 5.5 Under the assumptions of Proposition 5.4, the sequence generated by MAAP
converges Q-linearly to a point (x∗, 0) ∈ K ∩ U , with asymptotic constant equal to 1/(1 +
ϕ′(‖x∗‖)2), and the sequence generated by CARM converges superlinearly.

Proof Recall that if {(xk , 0)}k∈N is the MAAP sequence, then (xk+1, 0) = TS(xk , 0), and if
{(zk , 0)}k∈N is the CARM sequence, then (zk+1, 0) = CS(zk , 0). Recall also that for both se-
quences the last components of the iterates vanish because {xk}k∈N, {zk}k∈N ⊂ U . Then the
result follows immediately from (5.13) and (5.14) in Proposition 5.4. �

We mention that the results of Corollary 5.5 coincide with those obtained in Corollary
4.11 of [9] for the sequences generated by MAP and CRM applied to the same families
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of instances of CFP, showing that the convergence rate results of the exact methods are
preserved without any deterioration also in these cases.

6 Numerical comparisons
In this section, we perform numerical comparisons between CARM, MAAP, CRM, and
MAP. These methods are employed for solving the particular CFP of finding a common
point in the intersection of finitely many ellipsoids, that is, finding

x̄ ∈ E =
m⋂

i=1

Ei ⊂R
n, (6.1)

with each ellipsoid Ei being given by

Ei :=
{

x ∈R
n : gi(x) ≤ 0

}
, for i = 1, . . . , m,

where gi : Rn → R is given by gi(x) = xAix + 2xbi – αi, each Ai is a symmetric positive
definite matrix, bi is an n-vector, αi is a positive scalar.

Problem (6.1) has importance on its own (see [34, 35]), and both CRM and MAP are suit-
able for solving it. Nevertheless, the main motivation for tackling it with approximate pro-
jection methods is that the computation of exact projections onto ellipsoids is a formidable
burden for any algorithm to bear. Since the gradient of each gi is easily available, we can
consider the separable operators given in Examples 2.6 and 2.7 and use CARM and MAAP
to solve problem (6.1) as well. What is more, the experiments illustrate that, in this case,
CARM handily outperforms CRM in terms of CPU time, while still being competitive in
terms of iteration count. The exact projection onto each ellipsoid is so demanding that
even MAAP has a better CPU time result than CRM.

The four methods are employed upon Pierra’s product space reformulation, that is, we
seek a point x∗ ∈ K ∩ D, where K := E1 × E2 × · · · × Em and D is the diagonal space. For
each sequence {xk}k∈N that we generate, we consider the tolerance ε := 10–6 and use as
stopping criteria the gap distances

∥
∥xk – PK

(
xk)∥∥ < ε or

∥
∥xk – PS

K
(
xk)∥∥ < ε,

where PK(xk) is utilized for CRM and MAP, and PS
K(xk) is used for CARM and MAAP.

Note that if the correspondent criterion is not met in a given iteration, the projection com-
puted is employed to yield the next step. We also set the maximum number of iterations
as 50,000.

To execute our tests, we randomly generate 160 instances of (6.1) in the following man-
ner. We range the dimension size n in {10, 50, 100, 200}, and for each n, we took the number
m of underlying sets varying in {5, 10, 20, 50}. For each of these 16 pairs (m, n), we build
10 randomly generated instances of (6.1). Each matrix Ai is of the form Ai = γ Id +B

i Bi,
with Bi ∈ R

n×n, γ ∈ R++. Matrix Bi is a sparse matrix sampled from the standard normal
distribution with sparsity density p = 2n–1, and each vector bi is sampled from the uniform
distribution between [0, 1]. We then choose each αi so that αi > (bi)Abi, which ensures
that 0 belongs to every Ei, and thus (6.1) is feasible. The initial point x0 is of the form
(η,η, . . . ,η) ∈ R

n, with η being negative and |η| sufficient large, guaranteeing that x0 is far
from all Eis.
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The computational experiments were performed on an Intel Xeon W-2133 3.60 GHz
with 32 GB of RAM running Ubuntu 20.04 and using Julia v1.5 programming lan-
guage [36]. The codes for our experiments are fully available in https://github.com/
lrsantos11/CRM-CFP.

We remark that, as CRM and MAP rely on the computation of exact projections, AL-
GENCAN [37], an augmented Lagrangian algorithm implemented in Fortran (wrapped
in Julia using NLPModels.jl [38]) was used in our code to compute projections onto
the ellipsoids. Each projection was found by solving the correspondent quadratic mini-
mization problem with quadratic constraints (the gis).

The results are summarized in Fig. 1 using a performance profile [39]. Performance
profiles allow one to compare different methods on problems set with respect to a per-
formance measure. The vertical axis indicates the percentage of problems solved, while
the horizontal axis indicates, in log-scale, the corresponding factor of the performance
index used by the best solver. In this case, when looking at CPU time (in seconds), the
performance profile shows that CARM always did better than the other three methods.
The picture also shows that MAAP took less time than CRM and MAP. We conclude this
examination by presenting, in Table 1, the following descriptive statistics of the bench-
mark of CARM, MAAP, CRM, and MAP: mean, maximum (max), minimum (min), and

Figure 1 Performance profile of experiments with ellipsoidal feasibility – CARM, MAAP, CRM, and MAP

Table 1 Statistics of the experiments (in number of iterations and CPU time)

Method mean max min std

CARM it 6.4875 8 6 0.5259
CPU (s) 1.4632× 10–3 8.4866× 10–3 9.3599× 10–5 1.8643

MAAP it 260.75 689 54 213.346
CPU (s) 2.7132× 10–2 0.9736 3.2268× 10–4 4.7248× 10–2

CRM it 4.35 6 3 0.8256
CPU (s) 39.592 358.846 0.0872 82.9985

MAP it 257.856 671 54 211.537
CPU (s) 182.567 1616.24 1.0315 391.669

https://github.com/lrsantos11/CRM-CFP
https://github.com/lrsantos11/CRM-CFP
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standard deviation (std) for iteration count (it) and CPU time in seconds (CPU (s)). In
particular, CARM was, in average, almost 3000 times faster than CRM.

7 Concluding remarks
In this paper, we have introduced a new circumcenter iteration for solving convex feasi-
bility problems. The new method is called CARM, and it utilizes outer-approximate pro-
jections instead of the exact ones taken in the original CRM.

We have drawn our attention to questions on whether similar convergence results
known for CRM could be generalized for CARM. We have derived many positive the-
oretical statements in this regard. For instance, the convergence of CARM was proven,
and linear rates were achieved under error bound conditions. In addition to that, we pre-
sented numerical experiments in which subgradient approximate projections were em-
ployed. This choice of approximate projections is a particular case of the ones covered
by CARM. The numerical results show CARM to be much faster in CPU time than the
other methods we compared it with, namely, the pure CRM, the classical MAP, and an
approximate version of MAP called MAAP.
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