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Abstract
We study a mechanical system with a finite number of degrees of freedom, subjected
to perfect time-dependent frictionless unilateral (possibly nonconvex) constraints
with inelastic collisions on active constraints. The dynamic is described in the form of
a second-order measure differential inclusion. Under some regularity assumptions on
the data, we establish several properties of the set of admissible positions, which is
not necessarily convex but assumed to be uniformly prox-regular. Our approach does
not require any second-order information or boundedness of the Hessians of the
constraints involved in the problem and are specific to moving sets represented by
inequalities constraints. On that basis, we are able to discretize our problem by the
time-stepping algorithm and construct a sequence of approximate solutions. It is
shown that this sequence possesses a subsequence converging to a solution of the
initial problem. This methodology is not only used to prove an existence result but
could be also used to solve numerically the vibroimpact problem with
time-dependent nonconvex constraints.
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1 Introduction
Vibroimpact systems are dynamical multibody systems subjected to perfect nonpenetra-
tion conditions that generate vibrations and impacts. Because of the impact laws, the sys-
tems involve discontinuities in the velocity and the acceleration may contain Dirac mea-
sures. Hence, vibroimpact systems cannot be modeled by ordinary differential equations,
and one uses measure differential inclusions (see, e.g., [3, 20–24, 30, 35]).

In this paper, we consider a mechanical system with a finite number of degrees of free-
dom, subjected to perfect time-dependent unilateral constraints. More precisely, let I =
[0, T], T > 0, be a bounded time real interval and d ∈ N

∗ := {1, 2, . . . }. Let g : I ×R
d → R

d

and fi : I × R
d → R, i ∈ {1, . . . , m} be some functions and m ∈ N

∗. We denote by q ∈ R
d

the representative point of the system in generalized coordinates and define the set of
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admissible positions at each instant t ∈ I by

C(t) =
{

q ∈R
d | fi(t, q) ≤ 0 ∀i ∈ {1, . . . , m}}

and the set of active constraints by J(t, q) = {i ∈ {1, . . . , m} | fi(t, q) = 0}. The vibroimpact
system given by g and the functions fi is formally described by the following second-order
differential inclusion in R

d :

q̈(t) – g
(
t, q(t)

) ∈ –NC(t)
(
q(t)
)
, (1)

where NC(t)(q(t)) is the Clarke normal cone [13, p. 51] to C(t) at q(t), t ∈ I .
Denote by ∇fi(t, ·)(q) the derivative of fi(t, q) with respect to the second variable q and

by ∂fi(·, q) the derivative of fi with respect to the first variable t. In what follows, given a
set � ⊂R

d , we denote its interior and boundary, respectively, by int(�) and ∂�.
Since NC(t)(q) = ∅ if q(t) /∈ C(t), if q is a solution of (1), then q(t) must belong to C(t) for

all t ∈ I . If q(t) ∈ int(C(t)) for all t ∈ I , then NC(t)(q(t)) = {0} for all t ∈ I , so (1) becomes
q̈ = g(t, q), which is an ordinary differential equation.

If q(t) ∈ int(C(t)) for all t ∈ (t0, t1) ∪ (t1, t2), q(t1) ∈ ∂C(t1), then

q̇
(
t–
1
) ∈ –T

(
t1, q(t1)

)
and q̇

(
t+
1
) ∈ T

(
t1, q(t1)

)
, (2)

where

T (t, q) :=
{

v ∈R
d | ∂fi(·, q)(t) +

〈∇fi(t, ·)(q), v
〉≤ 0 ∀i ∈ J(t, q)

}
.

Observe that the set T (t, q) is a polyhedral convex closed set for each pair (t, q). The in-
clusion (2) will be proved in Sect. 4.2.

Note that the function q̇ may be discontinuous at some t ∈ I if J(t, q(t)) is nonempty.
Therefore, in general, we cannot find a solution q of (1) for which there exists a differen-
tiable derivative q̇. Hence, we look for a solution q of (1) whose derivative q̇ is of bounded
variation. The latter implies that q̇ is differentiable almost everywhere on I . Then, q̈ can
be understood as a Stieltjes measure. Therefore, (1) can be extended in the distributional
sense:

⎧
⎨

⎩
q̇ ∈ BV ([0, T];Rd)

dq̇ – g(·, q(·)) dt ∈ –NC(·)(q(·)) dt,

where BV ([0, T];Rd) stands for the space of all functions of bounded variation from
[0, T] to R

d . More precisely, the second inclusion is taken in the Radon measure space
M(0, T ;Rd), which is the dual space of the space of all continuous functions from [0, T]
to R

d , denoted by C([0, T],Rd). For ϕ ∈ C(I,Rd) and for ξ (·) ∈ –NC(·)(q(·)),

dq̇ : C
(
I,Rd)→R;

〈dq̇,ϕ〉 =
∫

I
ϕ dq̇,

g
(·, q(·))dt : C

(
I,Rd)→R;
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〈
g
(·, q(·))dt,ϕ

〉
=
∫

I

〈
g
(
t, q(t)

)
,ϕ(t)

〉
dt,

ξ (·) dt : C
(
I,Rd)→R;

〈
ξ (·) dt,ϕ

〉
=
∫

I

〈
ξ (t),ϕ(t)

〉
dt.

Since the relation (2) does not uniquely define q̇(t+), we will follow [21] to impose the
following inealstic impact law

q̇
(
t+) = PT (t,q(t))

(
q̇
(
t–)),

where PT (t,q(t))(q̇(t–)) is the nearest point of q̇(t–) in T (t, q(t)). In fact, J.-J. Moreau intro-
duced the notion of inelastic shocks in 1983 in the paper [21] (see also [21, 22]).

To sum up, we are interested in investigating the following problem.
Problem (P). Let (q0, p0) ∈ C(0) × T (0, q0). Find q : [0, T] →R

d , with T > 0, such that
(P1) q is absolutely continuous on [0, T], q̇ ∈ BV (0, T ;Rd);
(P2) q(t) ∈ C(t) for all t ∈ [0, T];
(P3) dq̇ – g(·, q(·)) dt ∈ –NC(·)(q(·)) dt;
(P4) q̇(t+) = PT (t,q(t))(q̇(t–)) for all t ∈ [0, T];
(P5) q(0) = q0 and q̇(0) = p0.
Under some appropriate regularity assumptions on the data, we will prove the existence

of at least one solution to problem (P). Namely, by using a time-discretization scheme, we
will construct a sequence of approximate solutions that has a subsequence converging to
a solution of (P).

There are many existence results for the vibroimpact problems with time-independent
constraints (i.e., when the set of admissible positions does not depend on time: C(t) = C
for t ∈ [0, T]). In the single-constraint case, the results have been established by using the
position-based algorithm in [32–34] and by using the velocity-based algorithm in [15, 16,
18–20]. In the multiconstraint case, several results have been obtained in [6, 25, 26, 28].

For vibroimpact problems with time-dependent constraints (i.e., when the set of admis-
sible positions C(t) depends on time), there are few solution existence theorems. Let us
list some important results related to this case that are known in the literature:

Schatzman [35] established an existence result by considering a generalization of the
Yosida-type approximation proposed in [31].

Assuming that the set of admissible positions at any instant is defined as a finite in-
tersection of complements of convex sets, Bernicot and Lefebvre-Lepot [7] obtained an
existence theorem.

Paoli [27, 29] proposed a time-stepping approximation scheme for the problem and
proved its convergence, which gives as a byproduct a global existence result when the
set of admissible positions at any instant is defined by a finite family of C2 functions.

Attouch, Cabot and Redont [3] studied the dynamics of elastic shocks via epigraphical
regularization of the nonsmooth convex potential and established an asymptotic analysis
of the solutions when time t → +∞.

Cabot and Paoli [12] studied the convergence of trajectories and the exponential decay
of the energy function associated to a vibroimpact problem with a linear dissipation term.

Attouch, Manigé and Redont [4] studied a nonsmooth second-order differential inclu-
sion involving a Hessian-driven damping with applications to nonelastic shock laws.
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The existence of solutions for these second-order differential problems has been studied
by Bernicot and Venel [9] in a general and abstract framework. More precisely, the set
C(t) of admissible positions is assumed in [9] to be Lipschitz continuous in the Hausdorff
distance sense and satisfies an “admissibility” property (see Sect. 2.3 [9]). The authors also
considered a particular case, where the constraints are C2 functions and have bounded
second-order derivatives (see Sect. 4 in [9]). The assumptions used in this paper require
less regularity on the data of the problem and could be seen as a complementary result of
Theorem 3.2 and an improvement of Theorem 4.6 in [9] (see Remark 4.2 for more details).

In this paper, we give explicit conditions for the constraints without requiring any
second-order differentiability information on the data involved in the constraints. We will
follow the time-stepping scheme of [27] to prove the convergence of the approximate so-
lutions. An illustrative example is given to clarify the applicability of the obtained result.

Our main result is an analog of the Peano solution existence theorem [17, Theorem 2.1,
p. 10] for ordinary differential equations. Among other things, the proof relies on the
Ascoli–Arzelà theorem, and the Banach–Alaoglu theorem applied to the Radon measure
space M(0, T ;Rd), which is the dual space of the space of all continuous functions from
[0, T] to R

d . Note that, as shown by Bounkhel [10], one can obtain existence theorems for
first- and second-order nonconvex sweeping processes with perturbations by applying a
fixed-point theorem.

The paper is organized as follows. In Sect. 2, we recall some preliminaries. In Sect. 3,
we formulate our regularity assumptions and deduce several properties of the set of ad-
missible positions and its Clarke’s normal cone. Section 4 presents the time-discretization
scheme to construct a sequence of approximate solutions and establishes the main result
of the paper. The convergence of the sequence of approximate solutions is investigated in
Sect. 4.1. In Sects. 4.2 and 4.3, we prove that the limit trajectory is a solution of problem
(P). To check the applicability of our result and to compare them with the existing ones,
an example is presented in Sect. 5. Some concluding remarks are given in the final section.

2 Preliminaries
First, we recall some basic concepts and facts from nonsmooth analysis, which are widely
used in what follows. We mainly follow the references [5, 13, 14] and [20]. Our notation is
standard in variational analysis; see, e.g., [13].

Let the Euclidean space R
d be equipped with a standard scalar product 〈·, ·〉 and the

Euclidean norm ‖ · ‖. The open ball (resp., closed ball) in R
d with center x and radius r

is denoted by B(x, r) (resp., B̄(x, r)). The open unit ball and closed unit ball are denoted,
respectively, by B and B̄.

The distance function dC(·) : Rd →R, where C is a nonempty subset of Rd , is defined by
setting dC(x) = inf{‖x – y‖ | y ∈ C}. For ρ > 0, the set Uρ(C) = {x ∈ R

d | dC(x)<ρ} is called
the ρ-enlargement Uρ(C) of C. For x in R

d , the set of the nearest points of x in C is called
the projection of x onto C and is defined by PC(x) = {y ∈ C | ‖y – x‖ = dC(x)}.

A function f : Y →R defined on Y ⊂R
d is said to be Lipschitz continuous with modulus

L > 0 on Y if |f (y) – f (y′)| ≤ L‖y – y′‖ for all y, y′ ∈ Y .

Definition 2.1 Let f be Lipschitz continuous near x in R
d and let v be any vector in R

d .
Clarke’s generalized directional derivative of f at x in the direction v, denoted by f 0(x; v),
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is defined by

f 0(x; v) := lim sup
y→x,t↓0

f (y + tv) – f (y)
t

.

Let C be a closed subset of Rd and x ∈ C.

Definition 2.2 The set TC(x) := {v ∈ R
d | d0

C(x; v) = 0} is called the Clarke tangent cone to
C at x. The Clarke normal cone to C at x is defined by polarity with TC(x):

NC(x) =
{

x∗ ∈R
d | 〈x∗, v

〉≤ 0 for all v ∈ TC(x)
}

.

Definition 2.3 A vector v ∈ R
d is a proximal subgradient of a function f : Rd → R at x if

there exist a real number σ ≥ 0 and a neighborhood U of x such that

〈
v, x′ – x

〉≤ f
(
x′) – f (x) + σ

∥∥x′ – x
∥∥2,

for all x′ ∈ U .

Definition 2.4 A vector v ∈ R
d is a proximal normal vector to C at x ∈ C when it is a

proximal subgradient of the indicator function of C, that is, when there exist a constant
σ ≥ 0 and a neighborhood U of x such that 〈v, x′ – x〉 ≤ σ‖x′ – x‖2 for all x′ ∈ U ∩ C. The
set of such vectors, which is denoted by N P

C (x), is said to be the proximal normal cone of
C at x.

Definition 2.5 The set C is said to be r-prox-regular (or uniformly prox-regular with
constant r > 0) whenever, for all x ∈ C, for all ξ ∈ N P

C (x) ∩ B, and for all t ∈ (0, r), one has
x ∈ PC(x + tξ ).

Remark 2.1 If C is uniformly prox-regular, then N P
C (x) = NC(x).

The following proposition provides a representation for the Clarke normal cone to a set,
given by inequalities constraints, under some suitable assumptions.

Proposition 2.1 (See [13] Corollary 2 of Theorem 2.4.7) Let C be given as follows:

{
y ∈ R

d | f1(y) ≤ 0, . . . , fm(y) ≤ 0
}

,

and let x be such that fi(x) = 0 for i = 1, . . . , m. Then, if each fi is differentiable at x and if
the gradients ∇fi(x), i = 1, . . . , m, are positively linearly independent, we have

NC(x) =

{ m∑

i=1

λi∇fi(x) | λi ≥ 0, i = 1, . . . , m

}

.

Lemma 2.1 (See [2, Lemma 3.2]) Let C ⊂ R
d and x, y ∈ C with ‖x – y‖ < 2ρ , where ρ ∈

(0, +∞]. Then, for any τ ∈ [0, 1] one has x + τ (y – x) ∈ Uρ(C).
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Definition 2.6 Let f : [a, b] → R
d be a function. The total variation of f on [a, b] is the

nonnegative extended real number

Var
(
f , [a, b]

)
= sup

n∑

i=1

∥∥f (xi) – f (xi–1)
∥∥,

where the supremum is taken over all finite partitions a = x0 < x1 < · · · < xn = b of [a, b].
If Var(f , [a, b]) < +∞, then one says that f is a function of bounded variation on [a, b] and
writes f ∈ BV ([a, b],Rd).

The next proposition is a consequence of the Ascoli–Arzelà Theorem and the Banach–
Alaoglu Theorem, which gives sufficient conditions for the existence of a convergence
subsequence of a sequence of absolutely continuous functions.

Proposition 2.2 (See [5, Theorem 4, p. 13]) Let {xk(·)} be a sequence of absolutely contin-
uous functions from an interval I ⊂R to a Banach space X satisfying

(i) For all t ∈ I , {xk(t)}k is a relatively compact subset of X ;
(ii) There exists a positive function c(·) ∈ L1(I,R) such that ‖ẋk(t)‖ ≤ c(·) for almost all

t ∈ I .
Then, there exists a subsequence, still denoted by {xk(·)}, converging to an absolutely con-
tinuous function x(·) from I to X in the sense that

(a) xk(·) converges uniformly to x(·) over compact subsets of I ;
(b) ẋk(·) converges weakly to ẋ(·) in L1(I, X).

3 The framework
We now propose some regularity assumptions. In the notation of Sect. 1, let

C =
{

(t, q) ∈ [0, T] ×R
d | q ∈ C(t)

}
.

Assumption A1 There exists an extended real ρ ∈ (0, +∞] such that
(i) for all i ∈ {1, . . . , m}, fi is differentiable on Uρ(C) and its derivative

∇fi(·, ·) : Uρ(C) →R is Lipschitz continuous with rank L;
(ii) there is γ > 0 such that for all t ∈ [0, T] and i ∈ {1, . . . , m}, for all q1, q2 ∈ Uρ(C(t)),

〈∇fi(t, ·)(q1) – ∇fi(t, ·)(q2), q1 – q2
〉≥ –γ ‖q1 – q2‖2;

(iii) for all t ∈ [0, T] and for all i ∈ {1, . . . , m}, one has ‖∇fi(t, ·)(q)‖ ≤ L for all
q ∈ Uρ(C(t)).

Assumption A2 There is μ > 0 with the property that for all t ∈ [0, T] and q ∈ C(t) there
exists v = v(t, q) ∈R

d with ‖v‖ = 1 such that for all i ∈ {1, . . . , m}, one has

〈∇fi(t, ·)(q), v
〉≤ –μ. (3)

Remark 3.1 From Assumption A1(i), it follows that
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(i) For each i ∈ {1, . . . , m}, for all t, t′ ∈ [0, T] and q, q′ ∈ R
d ,

∣∣∂fi(·, q)(t) – ∂fi
(·, q′)(t′)∣∣≤ L

(∣∣t – t′∣∣ +
∥∥q – q′∥∥);

(ii) for each i ∈ {1, . . . , m}, for all t, t′ ∈ [0, T], q, q′ ∈ Uρ(C(t)),

∥∥∇fi(t, ·)(q) – ∇fi
(
t′, ·)(q′)∥∥≤ L

(∣∣t – t′∣∣ +
∥∥q – q′∥∥).

Remark 3.2 From Assumptions A1 and A2, it follows that for all i ∈ {1, . . . , m}, μ ≤
‖∇fi(t, ·)(q)‖ ≤ L for all t ∈ [0, T] and |∂fi(·, q)(t)| ≤ L for all q ∈ Uρ(C(t)). In particular,
∇fi(t, ·)(q) �= 0 for all i ∈ {1, . . . , m}.

We are going to present some characterizations of the set of admissible positions C(t)
and the Clarke’s normal cone NC(t)(q). Thanks to Assumptions A1 and A2, the following
proposition is valid.

Proposition 3.1 (See [2, Theorem 3.1]) Suppose that Assumptions A1(i)–(ii) and A2 hold,
then, for all t ∈ [0, T], the set C(t) is r-prox-regular with r = min{ρ, μ

γ
}.

Following the technique used in [1], we obtain the following proposition, which gives
sufficient conditions to obtain Lipschitz continuity of the moving constraint set with re-
spect to the Hausdorff distance.

Proposition 3.2 Under Assumptions A1(i) and A2, C(·) is ϑ-Lipschitzian on [0, T], with
ϑ ≥ L

μ
.

Proof Fix a real number ϑ such that ϑ ≥ μ–1L. Choose a subdivision

0 < T1 < · · · < Tp = T

of [0, T] such that Tk – Tk–1 < 1
ϑ
ρ . Fix any k and select s, t ∈ Ik := [Tk–1, Tk]. Then, take any

i ∈ {1, . . . , m}. Put u(s, t) = ϑ |s – t|. For any x ∈ C(t), define y := x + u(s, t)v. Since t, s ∈ Ik ,
we have ‖y – x‖ = ϑ |s – t| < ρ . This proves that y ∈ int(Uρ(C(t))). By Lemma 2.1, for all
λ ∈ [0, 1] we have

x(λ) = x + λ(y – x) ∈ int Uρ

(
C(t)

)
.

Now, we consider the expression fi(t, x + u(s, t)v) – fi(t, x). Since fi(s, ·) is differentiable on
Uρ(C(t)), by the mean-value theorem there exists λ ∈ (0, 1) such that

fi
(
t, x + u(s, t)v

)
– fi(t, x) =

〈∇fi(t, ·)(xλ), u(s, t)v
〉
,

with xλ = λx + (1 – λ)(x + u(s, t)v). Hence, by Remark 3.1, we have

fi
(
s, x + u(s, t)v

)
=
[
fi
(
s, x + u(s, t)v

)
– fi
(
t, x + u(s, t)v

)]
+ fi(t, x)

+
[
fi
(
t, x + u(s, t)v

)
– fi(t, x)

]
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≤ L|s – t| + fi(t, x) +
〈∇fi(t, ·)(xλ), u(s, t)v

〉
.

By (3) and the inclusion x ∈ C(t) we obtain

fi
(
s, x + u(s, t)v

)≤ L|s – t| – u(s, t)μ = (L – ϑμ)|s – t| ≤ 0,

where the inequality is valid due to the choice of ϑ . Since i ∈ {1, . . . , m} can be chosen
arbitrarily, this implies that the vector x + u(s, t)v = x + ϑ |s – t|v belongs to C(s). Hence,
x ∈ C(s) + ϑ |s – t|(–v). It follows that

C(t) ⊂ C(s) + ϑ |s – t|(–v) ⊂ C(s) + ϑ |s – t|B.

Thus, C(·) is ϑ-Lipschitzian on [Tk–1, Tk]. Hence, we can infer that C(·) is ϑ-Lipschitzian
on [0, T]. �

4 An existence result for the vibroimpact problem
The approximate solutions will be constructed by the following time-discretization
scheme. Let N be a positive natural number and h = T/N , we define tn = nh for all
0 ≤ n ≤ N and

1. Q–1 = q0 – hp0, Q0 = q0,
2. for all n ∈ {0, . . . , N},

Gn =
∫ tn+1

tn

g(s, Qn) ds

and

Vn = 2Qn – Qn–1 + h2Gn, Qn+1 ∈ argmin
x∈C(tn+1)

‖Vn – x‖. (4)

Here, argminx∈C(tn+1) ‖Vn – x‖ denotes the solution set of the minimization problem
minx∈C(tn+1) ‖Vn – x‖.

In this scheme, we use the approximation

q̈(x) ≈ q(x + h) – 2q(x) + q(x – h)
h2 .

Clearly, this leads to (4). We define the discrete velocities as

Pn =
Qn+1 – Qn

h
for all n ∈ {–1, . . . , N}.

The sequence of approximate solutions qN is given by

qN (t) = Qn + (t – tn)
Qn+1 – Qn

h
, t ∈ [tn, tn+1],∀n ∈ {0, . . . , N – 1}

and

pN (t) = Pn =
Qn+1 – Qn

h
, t ∈ [tn, tn+1],∀n ∈ {0, . . . , N – 1}.

For the existence of a solution to our problem we will need the following assumptions:
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Assumption A3 For all q ∈ R
d , g(·, q) is measurable on [0, T] and for all t ∈ [0, T], g(t, ·)

is continuous on R
d . Moreover, there exist Lg > 0 and F ∈ L1(0, T ;R) such that for almost

every t ∈ [0, T] one has

∥∥g(t, q) – g(t, q̃)
∥∥≤ Lg‖q – q̃‖ ∀(q, q̃) ∈ (Rd)2 s.t. (t, q) ∈ Uρ(C), (t, q̃) ∈ Uρ(C),

∥∥g(t, q)
∥∥≤ F(t) ∀q ∈R

d s.t. (t, q) ∈ Uρ(C).

Assumption A4 For all t ∈ [0, T], q ∈ Uρ(C(t)), and for all j, k ∈ J(t, q) and j �= k, one has

〈∇fj(t, ·)(q),∇fk(t, ·)(q)
〉≥ 0.

Proposition 4.1 Under Assumptions A1(i) and A2, for any t ∈ I and q ∈ C(t), the Clarke
normal cone to C(t) at q can be computed by the formula

NC(t)(q) =

⎧
⎨

⎩
{0} if q ∈ int(C(t)),

{w ∈R
d | w =

∑
i∈J(t,q) λi∇fi(t, ·)(q),λi ≥ 0} if q ∈ ∂C(t).

Proof If q ∈ int(C(t)), then the Clarke tangent cone is equal to the whole space Rd . There-
fore, NC(t)(q) = {0}. Now, we consider the case when q is on the boundary ∂C(t) of C(t).
Then, J(t, q) �= ∅. From Assumption A2 it follows that {∇fi(t, ·)(q) | i ∈ J(t, q)} is posi-
tively linearly independent. Hence, by Proposition 2.1 we obtain the desired formula for
NC(t)(q). �

From Proposition 4.1 we can deduce the next formula for computing the corresponding
Clarke tangent cone:

TC(t)(q) =
{

v ∈R
d | 〈∇fi(t, ·)(q), v

〉≤ 0,∀i ∈ J(t, q)
}

. (5)

Lemma 4.1 Let t ∈ [0, T], q ∈ C(t) and v = v(t, q) be the vector that exists by Assump-
tion A2. There exist ρ ′ > 0, τ ∈ (0,ρ ′] and θ ∈ (0,ρ ′] such that for all t′ ∈ I , |t′ – t| ≤ τ , and
for all q′ from the open ball B(q, θ ) centered at q with radius θ ,

〈∇fi
(
t′, ·)(q′), v

〉≤ –
μ

3
, ∀i ∈ {1, . . . , m}.

Proof Let q ∈ C(t), v be defined in A2. For all t′ ∈ I , q′ ∈R
d such that ‖q′ – q‖ ≤ ρ , and for

any i ∈ {1, . . . , m}, by Remark 3.1(ii) we have

〈∇fi
(
t′, ·)(q′) – ∇fi(t, ·)(q), v

〉≤ ∥∥∇fi
(
t′, ·)(q′) – ∇fi(t, ·)(q)

∥∥‖v‖
≤ L
(∣∣t – t′∣∣ +

∥∥q – q′∥∥).

Hence,

〈∇fi
(
t′, ·)(q′), v

〉≤ –μ + L
(∣∣t – t′∣∣ +

∥∥q – q′∥∥).

Choose τ = θ = min{μ/3L,ρ}. Then, we have 〈∇fi(t′, ·)(q′), v〉 ≤ – μ

3 . �

Our main result is the next theorem.
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Theorem 4.1 Suppose that Assumptions A1–A3 hold. Let (q0, p0) ∈ C(0)×T (0, q0). Then,
there is a subsequence of {qN }, still denoted by {qN }, of the approximate solutions that con-
verges uniformly on [0, T] to a limit q satisfying (P1)–(P3). Furthermore, if Assumption A4
holds, then q also satisfies (P4) and (P5), and it is a solution of problem (P) on [0, T].

To make the proof of this theorem easier to understand, we present it in the forthcoming
three subsections.

4.1 Convergence of the approximate solutions
In this subsection, we shall prove that the discrete sequence {qN } constructed in the latter
section converges to a limit, which will later be verified to be a solution of problem (P).
More precisely, we will prove that {pN } is uniformly bounded and it has bounded variation
in Propositions 4.2 and 4.3.

Lemma 4.2 For all n ∈ {0, . . . , N – 1}, one has

Pn–1 – Pn + hGn ∈NC(tn+1)(Qn+1). (6)

Proof By definition of the scheme, for all x ∈ C(tn+1), we have

‖Vn – Qn+1‖2 ≤ ‖Vn – x‖2

= ‖Vn – Qn+1‖2 + 2〈Vn – Qn+1, Qn+1 – x〉 + ‖Qn+1 – x‖2.

Hence,

2〈Vn – Qn+1, x – Qn+1〉 ≤ ‖Qn+1 – x‖2.

By definition, Vn – Qn+1 = h(Pn–1 – Pn + hGn), hence

〈Pn–1 – Pn + hGn, x – Qn+1〉 ≤ 1
2h

‖Qn+1 – x‖2, ∀x ∈ C(tn+1). (7)

If Qn+1 ∈ int(C(tn+1)), we can choose ε > 0 sufficiently small such that x1 = Qn+1 + εE and
x2 = Qn+1 – εE belong to C(tn+1), where E = (1, . . . , 1) ∈R

d . Then, we have

Pn–1 – Pn + hGn = 0.

Otherwise J(tn+1, Qn+1) �= ∅. We know that by (5), the Clarke’s tangent cone of C(tn+1) at
Qn+1 is

TC(tn+1)(Qn+1) =
{

w ∈R
d | 〈∇fi(tn+1, ·)(Qn+1), w

〉≤ 0,∀i ∈ J(tn+1, Qn+1)
}

.

Hence, we need to show that

〈Pn–1 – Pn + hGn, w〉 ≤ 0, ∀w ∈ TC(tn+1)(Qn+1).
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Indeed, by Assumption A2, int(TC(tn+1)(Qn+1)) �= ∅. Note that

int
(
TC(tn+1)(Qn+1)

)
=
{

w ∈R
d | 〈∇fi(tn+1, ·)(Qn+1), w

〉
< 0,∀i ∈ J(tn+1, Qn+1)

}
.

Take any w̄ ∈ int(TC(tn+1)(Qn+1)). We will prove that Qn+1 + sw̄ ∈ C(tn+1) for s > 0 sufficiently
small. For any s ≥ 0, there exists qλ := Qn+1 + λsw̄ with λ ∈ (0, 1), such that

fi(tn+1, Qn+1 + sw̄) – fi(tn+1, Qn+1) =
〈∇fi(tn+1, ·)(Qn+1 + λsw̄), sw̄

〉
.

For s small enough such that ‖sw̄‖ ≤ ρ , we have Qn+1 + sw̄ ∈ Uρ(C(tn+1)). By Remark 3.1(ii),

∥∥∇fi(tn+1, ·)(Qn+1 + λsw̄) – ∇fi(tn+1, ·)(Qn+1)
∥∥≤ λsL‖w̄‖.

Then, 〈∇fi(tn+1, ·)(Qn+1 + λsw̄) – ∇fi(tn+1, ·)(Qn+1), sw̄〉 ≤ λLs2‖w̄‖2. Hence,

〈∇fi(tn+1, ·)(Qn+1 + λsw̄), sw̄
〉≤ λLs2‖w̄‖ + s

〈∇fi(tn+1, ·)(Qn+1), w̄
〉
.

Since 〈∇fi(tn+1, ·)(Qn+1), w̄〉 < 0, we can choose s small enough such that

fi(tn+1, Qn+1 + sw̄) ≤ 0.

This implies that Qn+1 + sw̄ ∈ C(tn+1). Now, we choose x = Qn+1 + sw̄ satisfying x ∈ C(tn+1),
by (7) we obtain

〈Pn–1 – Pn + hGn, sw̄〉 ≤ 1
2h

‖sw̄‖2.

Letting s → 0, one has

〈Pn–1 – Pn + hGn, w̄〉 ≤ 0.

By Assumption A2, there exits a unit vector v(tn+1, Qn+1) ∈ int(TC(tn+1)(Qn+1)). Therefore,
for all v ∈ TC(tn+1)(Qn+1), the sequence {vk}k∈N∗ , which is defined by

vk = v +
1
k

v(tn+1, Qn+1)

for all k ≥ 1, converges to v. We also see that vk ∈ int(TC(tn+1)(Qn+1)) for all k ≥ 1. Hence,
int(TC(tn+1)(Qn+1)) is dense in TC(tn+1)(Qn+1). This leads to

〈Pn–1 – Pn + hGn, w〉 ≤ 0,∀w ∈ TC(tn+1)(Qn+1),

which implies that Pn–1 – Pn + hGn ∈NC(tn+1)(Qn+1). �

Remark 4.1 One can reformulate (6) as follows: For all n ∈ {0, . . . , N – 1}, there exist non-
negative real numbers λn

i , i = 1, . . . , m such that λn
i = 0 for all i /∈ J(tn+1, Qn+1), and

Pn – Pn–1 – hGn = –
m∑

i=1

λn
i ∇fi(tn+1, ·)(Qn+1). (8)
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Lemma 4.3 For each i ∈ J(tn+1, Qn+1) and ‖Pn‖ ≤ ρN
2T , one has

L +
〈∇fi(tn+1, ·)(Qn+1), Pn

〉≥ –γ h‖Pn‖2. (9)

Proof For all i ∈ J(tn+1, Qn+1), we have fi(tn+1, Qn+1) = 0 ≥ fi(tn, Qn). Thus,

0 ≥ fi(tn, Qn) – fi(tn+1, Qn+1)

= fi(tn, Qn) – fi(tn+1, Qn) + fi(tn+1, Qn) – fi(tn+1, Qn+1)

≥ –hL – h
〈∇fi(tn+1, ·)(qn

αi

)
, Pn
〉
,

where qn
αi

= αiQn + (1 – αi)Qn+1 for some αi ∈ (0, 1). It follows that

� := L +
〈∇fi(tn+1, ·)(Qn+1), Pn

〉

≥ 〈∇fi(tn+1, ·)(Qn+1) – ∇fi(tn+1, ·)(qn
αi

)
, Pn
〉

=
〈
∇fi(tn+1, ·)(Qn+1) – ∇fi(tn+1, ·)(qn

αi

)
,

Qn+1 – qn
αi

αih

〉

≥ 1
h
〈∇fi(tn+1, ·)(Qn+1) – ∇fi(tn+1, ·)(qn

αi

)
, Qn+1 – qn

αi

〉
.

Since ‖Pn‖ ≤ ρN
2T , by Lemma 2.1 we know that qn

αi
∈ Uρ(C(tn+1)). By Assumption A1(ii),

we obtain (9). �

Lemma 4.4 Let N > N0, where N0 = max{T
2 , 6TL

μθ
}. Then, for all n ∈ {0, . . . , N – 1}, we have

‖Pn‖ ≤ 2‖Pn–1‖ + 2h‖Gn‖ +
6L
μ

.

Proof Let w = 6L
μ

v(tn, Qn), where v(tn, Qn) is the unit vector defined in Assumption A2 for
(t, x) = (tn, Qn), i.e., for all i ∈ {1, . . . , m}, one has 〈∇fi(tn, ·)(Qn), v(tn, Qn)〉 ≤ –μ. Then,

Qn + hw ∈ C(tn+1).

Indeed, by Remark 3.2 and the mean-value theorem, we have

fi(tn+1, Qn + hw) ≤ fi(tn, Qn + hw) + L|tn+1 – tn|.

By the mean-value theorem, there exists qn
α = αQn + (1 – α)(Qn + hw) with α ∈ (0, 1), such

that

fi(tn, Qn + hw) – fi(tn, Qn) =
〈∇fi(tn, ·)(qn

α

)
, hw
〉
.

Since N ≥ 6TL
μθ

, qn
α ∈ B(Qn, θ ). By Lemma 4.1, we have

〈∇fi(tn, ·)(qn
α

)
, w
〉≤ –μ

3
6L
μ

= –2L.
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Therefore, for all i ∈ {1, . . . , m},

fi(tn+1, Qn + hw) ≤ fi(tn, Qn) +
〈∇fi(tn, ·)(qn

α

)
, hw
〉
+ hL ≤ 0.

We have proved that Qn + hw ∈ C(tn+1). As Qn+1 ∈ argminx∈C(tn+1) ‖Vn – x‖, it follows that

∥∥2Qn – Qn–1 + h2Gn – Qn+1
∥∥≤ ∥∥2Qn – Qn–1 + h2Gn – Qn – hw

∥∥.

Thus, ‖Pn–1 – Pn + hGn‖ ≤ ‖Pn–1 – w + hGn‖. Hence, we obtain ‖Pn‖ ≤ 2‖Pn–1‖+ 2h‖Gn‖+
‖w‖, which yields the conclusion. �

Proposition 4.2 There exist N1 > N0 and κ > 0 such that

‖Pn‖ ≤ κ ∀n ∈ {0, . . . , N – 1},∀N > N1.

Proof We now define two real sequences {κk}k∈N and {τk}k∈N∗ by setting κ0 = ‖p0‖ + 1,

κk = κk–1 +
12L
μ

+ ‖F‖L1(0,T ;Rd)

= κ0 + k
(

12L
μ

+ ‖F‖L1(0,T ;Rd)

)
∀k ≥ 1

and

τk =
min{τ , θ}

2κk
=

min{τ , θ}
2κ0 + 2k( 2L

μ
+ ‖F‖L1(0,T ;Rd))

∀k ≥ 1.

It is easy to see that the series
∑∞

k=1 τk is a divergent sum, hence, there exists k0 ≥ 1 such
that

∑k0
k=1 τk > T . Let κ = κk0 . Define

κ̄ = 2κ + 2‖F‖L1(0,T ;Rd) +
6L
μ

and

N1 = max

(
N0,

2T κ̄

ρ
,

2T κ̄

θ
,

2T
τ

,
2γ κ̄2T

L

)
.

We now prove that for all N > N1 and we can construct a finite family of real numbers
(τN

k )1≤k≤k0 such that τN
0 = 0 < τN

1 < · · · < τN
kN

0
= T with 1 ≤ kN

0 ≤ k0 and for all k ∈ {1, . . . , kN
0 },

in each interval [τN
k–1, τN

k ), one has

‖Pn‖ ≤ κk ∀n ∈ {0, . . . , N – 1}.

Consider the interval [0, τ1] instead of [0, T]. From Assumption A2, we can define a vector
w0 = 6L

μ
v(t0, Q0). Note that ‖P–1‖ = ‖p0‖ ≤ κ0 ≤ κ , by Lemma 4.4 we have ‖P0‖ ≤ κ̄ . Since

0 < h = T
N ≤ θ

2κ̄
,

‖Q1 – Q0‖ = h‖P0‖ ≤ θ

2
< θ .
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Moreover, |t1 – t0| ≤ h ≤ τ /2 < τ , we have (t1, Q1) ∈ B(t0, τ ) ×B(Q0, θ ). We will prove that
w0 – P0 ∈ TC(t1)(Q1). Indeed, for all i ∈ J(t1, Q1), by Lemma 4.3 one has

〈∇fi(t1, ·)(Q1), w0 – P0
〉

=
〈∇fi(t1, ·)(Q1), w0

〉
+ L –

(
L +
〈∇fi(t1, ·)(Q1), P0

〉)

≤ –μ‖w0‖
3

+ L + γ h‖P0‖2

≤ –2L + L + γ hκ̄2 ≤ –
L
2

.

From the latter inequality, it follows that w0 – P0 ∈ TC(t1)(Q1). Since P–1 – P0 + hG0 ∈
NC(t0)(Q(0)), we obtain

〈
(P–1 – w0) – (P0 – w0) + hG0, w0 – P0

〉≤ 0.

This yields 〈P–1 – w0 + hG0, w0 – P0〉 ≤ –‖P0 – w0‖2, which implies that

‖P0 – w0‖ ≤ ‖P–1 – w0‖ + h‖G0‖.

Hence,

‖P0‖ ≤ ‖P–1‖ +
12L
μ

+ h‖G0‖ ≤ κ1 ≤ κ .

Next, we will prove by induction that

‖Pn – w0‖ ≤ ‖P–1 – w0‖ + h
n∑

�=0

‖G�‖ ∀n ∈ {0, . . . , N – 1}.

Indeed, let n ∈ {0, . . . , N – 1}. Suppose that

‖Pk – w0‖ ≤ ‖P–1 – w0‖ + h
k∑

�=0

‖G�‖ ∀k ∈ {0, . . . , n – 1}.

Then,

‖Pk‖ ≤ 2‖w0‖ + ‖P–1‖ + h
k∑

�=0

‖G�‖ ≤ κ1 for all k ∈ {0, . . . , n – 1}

and by Lemma 4.4 we infer that ‖Pn‖ ≤ κ̄ . Since 0 < h ≤ θ
2κ̄

,

‖Qn+1 – Qn‖ = h‖Pn‖ ≤ θ

2
< θ .

Moreover, as |tn+1 – tn| ≤ h < τ , we have (tn+1, Qn+1) ∈ B(tn, τ ) × B(Qn, θ ). For all i ∈
J(tn+1, Qn+1), by Lemma 4.3 one has

�0 :=
〈∇fi(tn+1, ·)(Qn+1), w0 – Pn

〉

=
〈∇fi(tn+1, ·)(Qn+1), w0

〉
+ L –

(
L +
〈∇fi(tn+1, ·)(Qn+1), Pn

〉)
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≤ –μ‖w0‖
3

+ L + γ h‖Pn‖2

≤ –2L + L + γ hκ̄2 ≤ –
L
2

.

It follows that w0 – Pn ∈ TC(tn+1)(Qn+1). Therefore,

〈
(Pn–1 – w0) – (Pn – w0) + hGn, w0 – Pn

〉≤ 0.

This yields

‖Pn – w0‖ ≤ ‖Pn–1 – w0‖ + h‖Gn‖ ≤ ‖P–1 – w0‖ + h
n∑

l=0

‖G�‖.

Hence,

‖Pn‖ ≤ ‖P–1‖ +
12L
μ

+ h
n∑

l=0

‖G�‖ ≤ κ1.

We have shown that ‖Pn‖ ≤ κ1 for all n ∈ {0, . . . , N} on the interval [0, τ1]. Putting τN
0 = 0,

we define τN
1 = min{τN

0 + τ1, T}. If τN
0 + τ1 < T , we have τN

1 – τN
0 = τ1. If T > τN

1 , then k0 > 1,
(tN+1, QN+1) ∈ C and ‖PN+1‖ ≤ κ1 ≤ κ .

Assume now that τN
0 +τ1 < T . By Lemma 4.1 and Assumption A2, we can define a vector

w1 = 6L
μ

v(tN+1, QN+1). For the sake of simplicity, we will recount the index from 0 instead
of N + 1. By the same argument, we can prove that ‖Pn‖ ≤ κ2 for all n ∈ {0, . . . , N – 1} on
the interval [τN

1 , τN
1 + τ2]. We now can divide the interval [0, T] into subintervals [τN

i , τN
i +

τi+1] for i ∈ {1, . . . , k0}. Repeating the same argument for finitely many steps, we obtain the
desired result. �

Proposition 4.3 There exists κ ′ > 0 such that, for all N > N1, we have

N–1∑

n=0

‖Pn – Pn–1‖ ≤ κ ′.

Proof We decompose [0, T] into the subintervals [τN
k , τN

k+1], k ∈ {0, . . . , kh
0 – 1}, which were

defined in the proof of Proposition 4.2. Consider the interval [τN
0 , τN

1 ]. We have shown
that

w0 – Pn ∈ TC(tn+1)(Qn+1)

for all n ∈ {0, . . . , N – 1}. We now prove that the closed ball B̄(w0 – Pn, 1
2 ) ⊂ TC(tn+1)(Qn+1).

Indeed, let a ∈ B̄(w0 – Pn, 1
2 ). Then, ‖a – (w0 – Pn)‖ ≤ 1

2 . As in the proof of Proposition 4.2,
one has 〈∇fi(tn+1, ·)(Qn+1), w0 – Pn〉 ≤ – L

2 for all n ∈ {0, . . . , N – 1}. Then,

�1 :=
〈∇fi(tn+1, ·)(Qn+1), a

〉

=
〈∇fi(tn+1, ·)(Qn+1), a – (w0 – Pn)

〉
+
〈∇fi(tn+1, ·)(Qn+1), w0 – Pn

〉

≤ ∥∥∇fi(tn+1, ·)(Qn+1)
∥∥∥∥a – (w0 – Pn)

∥∥ –
L
2

≤ 0.
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This proves that a ∈ TC(tn+1)(Qn+1). Since the tangent cone TC(tn+1)(Qn+1) is closed and con-
vex [13, p. 51], for every x ∈R

d , by [20, Lemma 4.3, p. 22] we have

∥∥x – PTC(tn+1)(Qn+1)(x)
∥∥≤ ‖x – w0 + Pn‖2 –

∥∥PTC(tn+1)(Qn+1)(x) – w0 + Pn
∥∥2.

Applying this with x = Pn–1 – Pn + hGn, we obtain

‖Pn–1 – Pn + hGn – P̄‖ ≤ ‖Pn–1 – Pn + hGn – w0 + Pn‖2 – ‖P̃ – w0 + Pn‖2,

where P̄ = PTC(tn+1)(Qn+1)(Pn–1 – Pn + hGn). It follows that

‖Pn–1 – Pn + hGn – P̄‖
≤ ‖Pn–1 + hGn – w0‖2 – ‖P̄ – w0 + Pn‖2.

Recall that Pn–1 – Pn + hGn ∈NC(tn+1)(Qn+1) (see Lemma 4.2). Since NC(tn+1)(Qn+1) is the
dual cone of TC(tn+1)(Qn+1), P̄ = 0. We obtain

�2 := ‖Pn–1 – Pn‖
= ‖Pn–1 – Pn + hGn – hGn‖
≤ h‖Gn‖ + ‖Pn–1 – Pn + hGn‖
= h‖Gn‖ +

∥∥(Pn–1 – Pn + hGn) – P̄
∥∥

≤ h‖Gn‖ + ‖Pn–1 – Pn + hGn‖2 – ‖Pn – w0‖2

≤ h‖Gn‖ + ‖Pn–1 – w0‖2 – ‖Pn – w0‖2 + h2‖Gn‖2 + 2h〈Gn, Pn–1 – w0〉
≤ h‖Gn‖ + ‖Pn–1 – w0‖2 – ‖Pn – w0‖2 + h2‖Gn‖2 + 2h‖Gn‖‖Pn–1 – w0‖
=
(
1 + h‖Gn‖ + 2‖Pn–1 – w0‖

)
h‖Gn‖ + ‖Pn–1 – w0‖2 – ‖Pn – w0‖2

≤ (1 + h‖Gn‖ + 2‖Pn–1‖ + 2‖w0‖
)
h‖Gn‖ + ‖Pn–1 – w0‖2 – ‖Pn – w0‖2.

It follows that ‖Pn–1 – Pn‖ ≤ h(1 + ‖F‖L1(0,T ;Rd) + 2κ + 12L
μ

)‖Gn‖ + ‖Pn–1 – w0‖2 – ‖Pn – w0‖2

for n = 0, . . . , N – 1. Adding these inequalities, we obtain

�3 :=
N–1∑

n=0

‖Pn–1 – Pn‖

≤
(

1 + ‖F‖L1(0,T ;Rd) + 2κ +
12L
μ

) N–1∑

n=0

h‖Gn‖ + ‖P0 – w0‖2 – ‖PN – w0‖2

≤ T
(

1 + ‖F‖L1(0,T ;Rd) + 2κ +
12L
μ

)
‖F‖L1(0,T ;Rd) + 2

(
κ +

6L
μ

)2

.

Similarly, we can obtain the same result for all the subintervals [τN
i , τN

i+1], where i ∈
{1, . . . , k0}. Since the number of the subintervals [τN

i , τN
i+1] is finite, the proof is complete. �

From Propositions 4.2 and 4.3 we can infer that the sequence {qN } is uniformly Lips-
chitz continuous and that the sequence {pN } is uniformly bounded in L∞(0, T ;Rd) and
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in BV ([0, T];Rd). For any t ∈ [0, T], it is clear that qN (t) is bounded for all N . Moreover,
since pN is the derivative of qN , by Proposition 2.2, there exists a subsequence of {qN }, still
denoted by {qN }, converging uniformly to an absolutely continuous function q over [0, T].
In addition, by [20, Theorem 2.1], we can extract subsequences of {pN }, still denoted by
{pN } and find p ∈ BV ([0, T];Rd) such that

pN → p pointwise in [0, T],

dpN ⇀ dp weakly* in M
(
0, T ;Rd).

4.2 Properties of the limit trajectory
In this subsection, we will prove that the limit trajectory q satisfies the properties (P1)–
(P3).

The definitions of qN and pN imply that

qN (t) = q0 +
∫ t

0
pN (s) ds ∀t ∈ [0, T] ∀n > N1.

Passing to the limit as N → +∞, by the dominated convergence theorem [11, Theorem 4.2,
p. 90] we obtain

q(t) = q0 +
∫ t

0
p(s) ds ∀t ∈ [0, T]. (10)

Hence, q̇ = p ∈ BV ([0, T];Rd), which implies that q is Lipschitz continuous with rank κ on
[0, T].

Proposition 4.4 For all t ∈ [0, T], q(t) ∈ C(t).

Proof Indeed, for all t ∈ [0, T] and for all N > N1, there exists n ∈ {0, . . . N – 1} such that
t ∈ [tn, tn+1]. Then, for all i ∈ {1, . . . , m},

fi
(
t, q(t)

)
– fi
(
tn, qN (tn)

)
= fi
(
t, q(t)

)
– fi
(
t, qN (tn)

)
+ fi
(
t, qN (tn)

)
– fi
(
tn, qN (tn)

)

≤ L
∥∥q(t) – qN (tn)

∥∥ + L|tn – t|
≤ L
∥∥q(t) – qN (tn)

∥∥ + hL

≤ L
(∥∥q(t) – q(tn)

∥∥ +
∥∥q(tn) – qN (tn)

∥∥) + hL.

Since q is Lipschitz continuous with modulus κ , we have

fi
(
t, q(t)

)
– fi
(
tn, qN (tn)

)

≤ L
(
κ(t – tn) + sup

{∥∥q(s) – qN (s)
∥∥
Rd | s ∈ [0, T]

})
+ hL

≤ L
(
κh + ‖q – qN‖C([0,T];Rd)

)
+ hL.

(11)

Since {qN } converges uniformly to q on [0, T], fi(tn, qN (tn)) = fi(tn, Qn) ≤ 0, and (11) holds
for all N > N1, we can conclude that fi(t, q(t)) ≤ 0.

The proof is complete. �
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We are now going to show that the limit trajectory satisfies property (P3). By the defini-
tion of pN , the Stieltjes measure dq̇N = dpN is a sum of Dirac’s measures

dpN (t) =
N–1∑

n=0

(Pn – Pn–1)δ(t – tn).

Define

gN (t) =
N–1∑

n=0

hGnδ(t – tn) –
N–1∑

n=0

m∑

i=1

λn
i (∇fi(tn+1, ·)(Qn+1) – ∇fi(tn, ·)(q(tn)

)
δ(t – tn),

and

UN (t) =
N–1∑

n=0

m∑

i=1

δ(t – tn)λn
i ∇fi(t, ·)(q(t)

)
,

where the constants λn
i are given in Remark 4.1. Then, (8) can be rewritten as

dpN (t) = –UN (t) + gN (t). (12)

Lemma 4.5 For all i ∈ {1, . . . , m} and for all N > N1 we have

N–1∑

n=0

∣∣λn
i
∣∣≤ 1

μ

(
κ ′ + ‖F‖L1(0,T ;R)

)
.

Proof Let i ∈ {1, . . . , m}, n ∈ {0, . . . , N – 1}. By (8) we have

∥∥∥∥∥

m∑

i=1

λn
i ∇fi(tn+1, ·)(Qn+1)

∥∥∥∥∥
≤ ‖Pn – Pn–1‖ + h‖Gn‖.

By Assumption A1(ii), for fixed n, there exists v such that 〈∇fi(tn+1, ·)(Qn+1), v〉 ≤ –μ.
Hence,

〈Pn – Pn–1 + hGn, v〉 =

〈 m∑

i=1

λn
i ∇fi(tn+1, ·)(Qn+1), v

〉

=
m∑

i=1

λn
i
〈∇fi(tn+1, ·)(Qn+1), v

〉

≤
m∑

i=1

λn
i (–μ).

For every fixed i, we have

λn
i ≤

m∑

i=1

λn
i ≤ 1

μ

(‖Pn – Pn–1‖ + ‖hGn‖
)
.
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Hence,

N–1∑

n=0

∣∣λn
i
∣∣ =

N–1∑

n=0

λn
i ≤ 1

μ

N–1∑

n=0

(‖Pn – Pn–1‖ + h‖Gn‖
)≤ 1

μ

(
κ ′ + ‖F‖L1(0,T ;R)

)
.

The proof is complete. �

Let �N
i (t) =

∑N–1
n=0 λn

i δ(t – tn). By the above lemma, �N
i is uniformly bounded, then

there exists a subsequence of {�N
i } converging weakly∗ to nonnegative measure �i in

M(0, T ;R). Therefore, UN has a subsequence that converges weakly∗ to U in M(0, T ;Rd)
with U(t) =

∑m
i=1 �i(t)∇fi(t, ·)(q(t)). Since ∇fi(t, ·)(q(t)) ∈ NC(t)(q(t)), we obtain U ∈

NC(·)(q(·)) dt.

Lemma 4.6 The sequence {gN } converges weakly∗ to g(·, q) dt in M(0, T ;Rd), where
g(·, q) dt is the measure of density g(·, q) with respect to Lebesgue’s measure on [0, T].

Proof Let ϕ ∈ C([0, T];Rd). By the definition of gN , we have

〈gN ,ϕ〉 =
N–1∑

n=0

h
〈
Gn,ϕ(tn)

〉
+

N–1∑

n=0

m∑

i=1

λn
i
〈∇fi(tn+1, ·)(Qn+1)

– ∇fi(tn, ·)(q(tn)
)
,ϕ(tn)

〉

=
N–1∑

n=0

∫ tn+1

tn

〈
g(s, Qn),ϕ(tn)

〉
ds +

N–1∑

n=0

m∑

i=1

λn
i
〈∇fi(tn+1, ·)(Qn+1)

– ∇fi(tn, ·)(q(tn)
)
,ϕ(tn)

〉

=
∫ T

0

〈
g
(
s, q(s)

)
,ϕ(s)

〉
ds +

N–1∑

n=0

∫ tn+1

tn

〈
g(s, Qn) – g

(
s, q(s)

)
,ϕ(s)

〉
ds

+
N–1∑

n=0

∫ tn+1

tn

〈
g(s, Qn),ϕ(tn) – ϕ(s)

〉
ds +

N–1∑

n=0

m∑

i=1

λn
i
〈∇fi(tn+1, ·)(Qn+1)

– ∇fi(tn, ·)(q(tn)
)
,ϕ(tn)

〉
.

(13)

Moreover, for all n ∈ {0, . . . , N – 1}, we have (tn, q(tn)) ∈ C and

∥∥Qn+1 – q(tn)
∥∥≤ ‖Qn+1 – Qn‖ +

∥∥qN (tn) – q(tn)
∥∥

≤ κh + ‖q – qN‖C([0,T];Rd).

Let εn := ‖Qn+1 – q(tn)‖. From Remark 3.1 and Lemma 4.5 it follows that

�4 :=

∥∥∥∥∥

N–1∑

n=0

m∑

i=1

λn
i
〈∇fi(tn+1, ·)(Qn+1) – ∇fi(tn, ·)(q(tn)

)
,ϕ(tn)

〉
∥∥∥∥∥

≤
N–1∑

n=0

m∑

i=1

λn
i L(h + εn)

∥∥ϕ(tn)
∥∥
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≤
N–1∑

n=0

m∑

i=1

λn
i L
(
(κ + 1)h + ‖q – qN‖C([0,T];Rd)

)‖ϕ‖C([0,T];Rd)

≤ mL
μ

(
(κ + 1)h + ‖q – qN‖C([0,T];Rd)

)‖ϕ‖C([0,T];Rd)

× (Var
(
pN , [0, T]

)
+ ‖F‖L1(0,T ;Rd)

)
.

In addition,

∣∣∣∣∣

N–1∑

n=0

∫ tn+1

tn

〈
g(s, Qn) – g

(
s, q(s)

)
,ϕ(s)

〉
ds

∣∣∣∣∣
≤

N–1∑

n=0

∫ tn+1

tn

Lg
∥∥Qn – q(s)

∥∥∥∥ϕ(s)
∥∥ds

≤ Lg
(
κh + ‖q – qN‖C([0,T],Rd)

)∫ T

0

∥∥ϕ(s)
∥∥ds.

We also have
∣∣∣∣∣

N–1∑

n=0

∫ tn+1

tn

〈
g(s, Qn),ϕ(tn) – ϕ(s)

〉
ds

∣∣∣∣∣
≤

N–1∑

n=0

∫ tn+1

tn

∥∥g(s, Qn)
∥∥∥∥ϕ(tn) – ϕ(s)

∥∥ds

≤ ωϕ(h)‖F‖L1([0,T];Rd),

where ωϕ denotes the modulus of continuity of ϕ. Therefore, letting N go to ∞ in (13) we
obtain

〈gN ,ϕ〉 →
∫ T

0

〈
g
(
s, q(s)

)
,ϕ(s)

〉
ds.

The proof is complete. �

Passing (12) to the limit yields dp – g(·, q) dt ∈ –NC(·)(q(·)) dt.

4.3 Checking the impact law and the initial data
In this subsection, we will prove that the limit trajectory satisfies the impact law (P4) and
the initial data (P5).

Lemma 4.7 If J(t, q) �= ∅, then q̇(t+) ∈ T (t, q(t)).

Proof Let t ∈ I be chosen arbitrarily. Consider an index i such that fi(t, q(t)) = 0. We have

0 ≥ fi
(
t + ε, q(t + ε)

)
– fi
(
t, q(t)

)

= ε∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, q(t + ε) – q(t)

〉
+ o(ε).

Dividing both sides by ε and letting ε → 0, we obtain

∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, q̇
(
t+)〉≤ 0.

We have shown that q̇(t+) ∈ T (t, q(t)).
Similarly, we can prove that q̇(t–) ∈ –T (t, q(t)). �
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Lemma 4.8 For each i ∈ J(tn+1, Qn+1) and ‖Pn‖ ≤ ρN
2T , one has

∂fi(·, Qn+1)(tn+1) +
〈∇fi(tn+1, ·)(Qn+1), Pn

〉≥ –h
(
L + L‖Pn‖ + γ ‖Pn‖2).

Proof For all i ∈ J(tn+1, Qn+1), fi(tn+1, Qn+1) = 0 ≥ fi(tn, Qn). Thus,

0 ≥ fi(tn, Qn) – fi(tn+1, Qn+1)

= fi(tn, Qn) – fi(tn+1, Qn) + fi(tn+1, Qn) – fi(tn+1, Qn+1)

= –h∂fi(·, Qn)
(
tn
α

)
– h
〈∇fi(tn+1, ·)(qn

β

)
, Pn
〉
,

where tn
α = αtn + (1 – α)tn+1 and qn

β = βQn + (1 – β)Qn+1 for some α,β ∈ (0, 1), satisfying

〈
∂fi(·, Qn)

(
tn
α

)
, tn – tn+1

〉
= fi(tn, Qn) – fi(tn+1, Qn),

and

〈∇fi(tn+1, ·)(qn
β

)
, Qn – Qn+1

〉
= fi(tn+1, Qn) – fi(tn+1, Qn+1).

Hence,

〈∇fi(tn+1, ·)(Qn+1), Pn
〉≥ –∂fi(·, Qn)

(
tn
α

)
+
〈∇fi(tn+1, ·)(Qn+1)

– ∇fi(tn+1, ·)(qn
β

)
, Pn
〉

≥ –∂fi(·, Qn)
(
tn
α

)
+

1
βh
〈∇fi(tn+1, ·)(Qn+1)

– ∇fi(tn+1, ·)(qn
β

)
, Qn+1 – qn

β

〉
.

Since h‖Pn‖ ≤ ρ

2 , by Lemma 2.1 we know that qn
β ∈ Uρ(C(tn+1)). Therefore, by Re-

mark 3.1(i),

∥∥∂fi(·, Qn+1)(tn+1) – ∂fi(·, Qn)
(
tn
α

)∥∥≥ –L
(|tn+1 – tα| + ‖Qn+1 – Qn‖

)

= –Lh
(
α + ‖Pn‖

)

≥ –Lh
(
1 + ‖Pn‖

)
.

Then, by Assumption A1(ii), one has

1
βh
〈∇fi(tn+1, ·)(Qn+1) – ∇fi(tn+1, ·)(qn

β

)
, Qn+1 – qn

β

〉≥ –
γ

βh
∥∥Qn+1 – qn

β

∥∥2

= –γβh‖Pn‖2

≥ –γ h‖Pn‖2.

Hence,

∂fi(·, Qn+1)(tn+1) +
〈∇fi(tn+1, ·)(Qn+1), Pn

〉≥ –h
(
L + L‖Pn‖ + γ ‖Pn‖2).

The proof is complete. �
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Proposition 4.5 For all t ∈ (0, T), one has q̇(t+) = PT (t,q)(q̇(t–)).

Proof Step 1: We consider the case that J(t, q(t)) = ∅. Since fi are continuous for all i ∈
{1, . . . , m}, we may define ρt ∈ (0, min(ρ, t, T – t)) such that, for all i ∈ {1, . . . , m} we have

fi(s, y) ≤ 1
2

fi
(
t, q(t)

)
< 0 ∀s ∈ [t – ρt , t + ρt], y ∈ B̄

(
q(t),ρt

)

and we define Nt > max{N1, 4T(κ+1)
ρt

} such that ‖q – qN‖C([0,T];Rd) ≤ ρt
4 for all N > Nt . Then,

for all ρ̃ ∈ (0,ρt] and for all N > Nt , we define

n– =
⌊ t – ρ̃

4(κ+1)

h

⌋
+ 1, n+ =

⌊ t + ρ̃

4(κ+1)

h

⌋
.

It follows that

2h < (n– – 1)h ≤ t –
ρ̃

4(κ + 1)
< hn– < · · · < hn+

≤ t +
ρ̃

4(κ + 1)
< (n+ + 1)h < T – 2h

and

Pn––1 = pN

(
t –

ρ̃

4(κ + 1)

)
, Pn+ = pN

(
t +

ρ̃

4(κ + 1)

)
.

By relation (8) we have

Pn+ – Pn––1 =
n+∑

n=n–

hGn –
n+∑

n=n–

m∑

i=1

λn
i ∇fi(tn+1, ·)(Qn+1).

Moreover, for all n ∈ {n–, . . . , n+} we have tn = nh ∈ [t – ρ̃

4(κ+1) , t + ρ̃

4(κ+1) ] and

|tn+1 – t| ≤ ρ̃

4(κ + 1)
+ h ≤ ρt

2(κ + 1)
< ρt ,

∥∥Qn+1 – q(t)
∥∥≤ ∥∥Qn+1 – qN (t)

∥∥ +
∥∥qN (t) – q(t)

∥∥

≤ κ|tn+1 – t| + ‖q – qN‖C([0,T];Rd) < ρt .

It follows that fi(tn+1, Qn+1) < 0 and λn
i = 0 for all i ∈ {1, . . . , m} and for all n ∈ {n–, . . . , n+}.

Thus,

∥∥∥∥pN

(
t +

ρ̃

4(κ + 1)

)
– pN

(
t –

ρ̃

4(κ + 1)

)∥∥∥∥ =

∥∥∥∥∥

n+∑

n=n–

hGn

∥∥∥∥∥

≤
∫ tn++1

tn–

F(s) ds

≤
∫ t+ ρ̃

4(κ+1) +h

t– ρ̃
4(κ+1)

F(s) ds.
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Letting N go to infinity, we obtain that ‖p(t+) – p(t–)‖ = 0. This means that

q̇
(
t–) = p

(
t–) = p

(
t+) = q̇

(
t+).

Step 2: Now, let t ∈ (0, T) be such that J(t, q(t)) �= ∅. Consider the case if J(t, q(t)) =
{1, . . . , m}, we let ρt = 1

2 min(ρ, t, T – t). Otherwise, using the continuity of the mappings
fi, i ∈ {1, . . . , m} we may define ρt in (0, min(ρ, t, T – t)) such that, for all i ∈ {1, . . . , m} \
J(t, q(t)) we have

fi(s, y) ≤ 1
2

fi
(
t, q(t)

)
< 0 ∀s ∈ [t – ρt , t + ρt], y ∈ B̄

(
q(t),ρt

)
.

Then, by the uniform convergence of (qN ) to q on [0, T], we can define

Nt > max

(
N1,

4T(κ + 1)
ρt

)

such that ‖q – qN‖C([0,T];Rd) ≤ ρt
4 for all N > Nt . We will show that for all N > Nt and for all

tn ∈ [t – ρt
4(κ+1) , t + ρt

4(κ+1) ], J(tn+1, Qn+1) ⊂ J(t, q(t)). Indeed, let N > Nt and tn ∈ [t – ρt
4(κ+1) , t +

ρt
4(κ+1) ]. We have

|tn+1 – t| ≤ ρt

4(κ + 1)
+ h ≤ ρt

2(κ + 1)
< ρt ,

∥∥Qn+1 – q(t)
∥∥≤ ∥∥Qn+1 – qN (t)

∥∥ +
∥∥qN (t) – q(t)

∥∥

≤ κ|tn+1 – t| + ‖q – qN‖C([0,T];Rd) < ρt .

In addition, we have

fi(tn+1, Qn+1) < 0 ∀i /∈ J
(
t, q(t)

)
.

Therefore, J(tn+1, Qn+1) ⊂ J(t, q(t)). Represent J(t, q(t)) as J(t, q(t)) = J1(t, q(t)) ∪ J2(t, q(t))
with

J1
(
t, q(t)

)
=
{

i ∈ J
(
t, q(t)

) | ρi ∈ (0,ρt],∃Ni > Nt ,∀N > Ni,

∀tn ∈
[

t –
ρi

4(κ + 1)
, t +

ρi

4(κ + 1)

]
∩ [0, T], fi(tn+1, Qn+1) < 0

}

and

J2
(
t, q(t)

)
=
{

i ∈ J
(
t, q(t)

) | ∀ρi ∈ (0,ρt],∀Ni > Nt ,∃N > Ni,

∃tn ∈
[

t –
ρi

4(κ + 1)
, t +

ρi

4(κ + 1)

]
∩ [0, T], fi(tn+1, Qn+1) = 0

}
.

Since J1(t, q(t)) is a finite set, we may define

⎧
⎨

⎩
ρ̃t = min{ρi | i ∈ J1(t, q(t))}, Ñt = max{Ni | i ∈ J1(t, q(t))} if J1(t, q(t)) �= ∅,

ρ̃t = ρt , Ñt = Nt if J1(t, q(t)) = ∅.
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Now, let ρ̃ ∈ (0, ρ̃t] and N > Ñt . As before, we define

n– =
⌊ t – ρ̃

4(κ+1)

h

⌋
+ 1, n+ =

⌊ t + ρ̃

4(κ+1)

h

⌋
,

which implies that

2h < (n– – 1)h ≤ t –
ρ̃

4(κ + 1)
< n–h < · · · < n+h

≤ t +
ρ̃

4(κ + 1)
< (n+ + 1)h < T – 2h

and

Pn––1 = pN

(
t –

ρ̃

4(κ + 1)

)
, Pn+ = pN

(
t +

ρ̃

4(κ + 1)

)
.

Thus,

Pn+ – Pn––1 =
n+∑

n=n–

hGn –
n+∑

n=n–

m∑

i=1

λn
i ∇fi(tn+1, ·)(Qn+1).

Since J(tn+1, Qn+1) ⊂ J(t, q(t)), i /∈ J(tn+1, Qn+1) implies that i ∈ J1(t, q(t)). Thus,

Pn+ – Pn––1 =
n+∑

n=n–

hGn –
∑

i∈J2(t,q(t))

n+∑

n=n–

λn
i ∇fi(tn+1, ·)(Qn+1). (14)

If J2(t, q(t)) = ∅ using the same arguments as in Step 1, we can obtain that q̇(t+) = q̇(t–).
Moreover, since q(s) ∈ C(s) for all s ∈ [0, T], q̇(t+) ∈ T (t, q(t)). It follows that q̇(t+) =
q̇(t–) ∈ T (t, q(t)) and therefore we have q̇(t–) = q̇(t+) = PT (t,q(t))(q̇(t–)). For the case where
J2(t, q(t)) �= ∅, we rewrite (14) as follows

�5 := pN

(
t +

ρ̃

4(κ + 1)

)
– pN

(
t –

ρ̃

4(κ + 1)

)

= –
∑

i∈J2(t,q(t))

n+∑

n=n–

λn
i ∇fi(t, ·)(q(t)

)
+

n+∑

n=n–

hGn

–
∑

i∈J2(t,q(t))

n+∑

n=n–

λn
i
(∇fi(tn+1, ·)(Qn+1) – ∇fi(t, ·)(q(t)

))
.

(15)

Before continuing the proof, we prove the following two technical lemmas.

Lemma 4.9 We have

p
(
t+) – p

(
t–) ∈ –

∑

i∈J2(t,q(t))

R+∇fi(t, ·)(q(t)
)
.
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Proof We can estimate the last two terms of (15) as follows

∥∥∥∥∥

n+∑

n=n–

hGn

∥∥∥∥∥
≤
∫ tn++1

tn–

F(s) ds ≤
∫ t+ ρ̃

4(κ+1) +h

t– ρ̃
4(κ+1)

F(s) ds

and, let �n
i (t) = λn

i (∇fi(tn+1, ·)(Qn+1) – ∇fi(t, ·)(q(t))), using Lemma 4.5 and Remark 3.1(ii)
we have

�6 :=

∥∥∥∥∥

∑

i∈J2(t,q(t))

n+∑

n=n–

�n
i (t)

∥∥∥∥∥

≤
∑

i∈J2(t,q(t))

n+∑

n=n–

∥∥�n
i (t)
∥∥

≤
∑

i∈J2(t,q(t))

n+∑

n=n–

λn
i L
(|tn+1 – t| +

∥∥Qn+1 – q(t)
∥∥)

≤
∑

i∈J2(t,q(t))

n+∑

n=n–

λn
i L
((

h +
ρ̃

4(κ + 1)

)
+ ‖q – qN‖C([0,T];Rd)

)

≤ L
((

h +
ρ̃

4(κ + 1)

)
+ ‖q – qN‖C([0,T];Rd)

)

× m
μ

(
Var
(
pN , [0, T]

)
+ ‖F‖L1(0,T ;Rd)

)
.

From (15), it follows that

lim
ρ̃→0+

lim
N→∞

∥∥∥∥∥
pN

(
t +

ρ̃

4(κ + 1)

)
– pN

(
t –

ρ̃

4(κ + 1)

)

+
∑

i∈J2(t,q(t))

n+∑

n=n–

λn
i ∇fi(t, ·)(q(t)

)
∥∥∥∥∥

= 0.

(16)

We now will prove that the set S :=
∑

i∈J2(t,q(t)) R+∇fi(t, ·)(q(t)) is a closed subset of R. In-
deed, let {xn}, with xn =

∑
i∈J2(t,q(t)) xi,n∇fi(t, ·)(q(t)), be a sequence in S converging to some

x∗. By Assumption A2, there exists v = v(t, q(t)) such that ‖v‖ = 1 and

〈xn, v〉 =
〈 ∑

i∈J2(t,q(t))

xi,n∇fi(t, ·)(q(t)
)
, v
〉

=
∑

i∈J2(t,q(t))

xi,n
〈∇fi(t, ·)(q(t)

)
, v
〉

≤ (–μ)
∑

i∈J2(t,q(t))

xi,n.

From this it follows that

0 ≤ xi,n ≤
∑

i∈J2(t,q(t))

xi,n ≤ 1
μ

〈xn, –v〉 ≤ 1
μ

‖xn‖.

Since {xn} is a convergent sequence, there exists l > 0 such that for each i ∈ J2(t, q(t)) we
have 0 ≤ xi,n < l for all n. Hence, there exists a subsequence of {xi,n}, denoted by {xi,n′ } and
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a nonnegative number x∗
i such that for all i ∈ J2(t, q(t))

xi,n′
n′→+∞−→ x∗

i .

Since the sequence {xn} converges to x∗, the sequence {xn′ } also converges to x∗. We have

∥∥∥∥xn′ –
∑

i∈J2(t,q(t))

x∗
i ∇fi(t, ·)(q(t)

)
∥∥∥∥≤

∑

i∈J2(t,q(t))

∣∣xi,n′ – x∗
i
∣∣∥∥∇fi(t, ·)(q(t)

)∥∥.

From this we obtain the limit

x∗ =
∑

i∈J2(t,q(t))

x∗
i ∇fi(t, ·)(q(t)

) ∈ S.

We have shown that
∑

k∈J(t,q) R+∇fi(t, ·)(q) is closed. Hence, by (16) we obtain the desired
result. �

Lemma 4.10 For all i ∈ J2(t, q(t)), one has

∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, q̇
(
t+)〉 = 0.

Proof By Lemma 4.7, q̇(t+) ∈ T (t, q(t)). Hence, for each i ∈ J2(t, q(t)),

∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, q̇
(
t+)〉≤ 0.

We only need to prove that

∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, q̇
(
t+)〉≥ 0; ∀i ∈ J2

(
t, q(t)

)
.

Let i ∈ J2(t, q(t)) and ρ̃ ∈ (0, ρ̃t]. By the definition of J2(t, q(t)), there exists a subsequence
{Nα}α∈N strictly increasing to infinity such that, for all α ∈ N we have Nα > Ñt . Let
hα = T/Nα , then there exists nhα ∈ [t – ρ̃

4(κ+1) , t + ρ̃

4(κ+1) ] such that fi(tn+1, Qn+1) = 0, i.e.,
i ∈ J(tn+1, Qn+1). We define

nα = max

{
n ∈N | nhα ∈

[
t –

ρ̃

4(κ + 1)
, t +

ρ̃

4(κ + 1)

]
and i ∈ J(tn+1, Qn+1)

}
.

By Lemma 4.8 we have

∂fi(·, Qn+1)(tn+1) +
〈∇fi(tn+1, ·)(Qn+1), Pn

〉≥ –h
(
L + L‖Pn‖ + γ ‖Pn‖2).

It follows that

�7 := ∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, Pn+

〉

≥ –hα

(
1 + κ + γ κ2) +

(
∂fi
(·, q(t)

)
(t) – ∇fi(tnα+1, ·)(Qnα+1)

)

+
〈∇fi(t, ·)(q(t)

)
, Pn+ – Pnα

〉

+
〈∇fi(t, ·)(q(t)

)
– ∇fi(tnα+1, ·)(Qnα+1), Pnα

〉
.

(17)
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We can estimate the second and fourth terms of the right-hand side of (17) as follows

�8 := ∂fi
(·, q(t)

)
(t) – ∇fi(tnα+1, ·)(Qnα+1)

≥ –L
(|t – tnα+1| +

∥∥Qnα+1 – q(t)
∥∥)

≥ –L
(

ρ̃

4(κ + 1)
+ hα + ‖q – qNα‖C([0,T];Rd)

)

and

�9 :=
〈∇fi(t, ·)(q(t)

)
– ∇fi(tnα+1, ·)(Qnα+1), Pnα

〉

≥ –L
(|t – tnα+1| +

∥∥Qnα+1 – q(t)
∥∥)‖Pnα‖

≥ –Lκ

(
ρ̃

4(κ + 1)
+ hα + ‖q – qNα‖C([0,T];Rd)

)
.

If nα = n+, the third term of the right-hand side of (17) vanishes. Otherwise, we rewrite it
as follows

� :=
〈∇fi(t, ·)(q(t)

)
, Pn+ – Pnα

〉

=

〈

∇fi(t, ·)(q(t)
)
,

n+∑

n=nα+1

hGn

〉

+
〈∇fi(t, ·)(q(t)

)
, e1
〉

≥ –L
∫ t+ ρ̃

4(κ+1)

t– ρ̃
4(κ+1)

F(s) ds +
〈∇fi(t, ·)(q(t)

)
, e2
〉
+
〈∇fi(t, ·)(q(t)

)
, e1 – e2

〉
,

where

e1 =
n+∑

n=nα+1

∑

j∈J(tn+1,Qn+1)

λn
j ∇fj(tn+1, ·)(Qn+1),

e2 =
n+∑

n=nα+1

∑

j∈J(tn+1,Qn+1)

λn
j ∇fj(t, ·)(q(t)

)
.

Since i /∈ J(tn+1, Qn+1) for all n ∈ {nα + 1, . . . , n+} by the definition of nα and the inclusion
J(tn+1, Qn+1) ⊂ J(t, q(t)), Assumption A4 implies that the second term of the right-hand
side of this last inequality is nonnegative. Furthermore, the last term can be estimated as

〈∇fi(t, ·)(q(t)
)
, e1 – e2

〉≥ –
n+∑

n=nα+1

∑

j∈J(tn+1,Qn+1)

λn
j L2(|t – tn+1| +

∥∥Qn+1 – q(t)
∥∥)

≥ –L2m
(

r̃
4(κ + 1)

+ hα + ‖q – qNα‖C([0,T];Rd)

)

× (Var
(
pN , [0, T]

)
+ ‖F‖L1(0,T ;Rd)

)
.

Then, passing the right-hand side of (17) to the limit and recalling that Pn+ = pN (t + ρ̃

4(κ+1) ),
we obtain

�0 := lim
ρ̃→0+

lim
Nα→∞ ∂fi

(·, q(t)
)
(t) +

〈∇fi(t, ·)(q(t)
)
, Pn+

〉
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= ∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, p
(
t+)〉

≥ 0.

This means that ∂fi(·, q(t))(t) + 〈∇fi(t, ·)(q(t)), q̇(t+)〉 ≥ 0. �

We now continue the proof of Proposition 4.5. We have q̇(t+) ∈ T (t, q(t)) and

q̇
(
t+) – q̇

(
t–) ∈ –

∑

i∈J2(t,q(t))

R+∇fi(t, ·)(q(t)
)
.

Hence, there exist nonnegative real numbers λ̄i, for i ∈ J2(t, q(t)), such that

q̇
(
t+) – q̇

(
t–) = –

∑

i∈J2(t,q(t))

λ̄i∇fi(t, ·)(q(t)
)

for all w ∈ T (t, q(t))

〈
q̇
(
t–) – q̇

(
t+), w – q̇

(
t+)〉 =

∑

i∈J2(t,q(t))

λ̄i
〈∇fi(t, ·)(q(t)

)
, w – q̇

(
t+)〉.

However, using the previous proposition, for all w ∈ T (t, q(t)) and for all i ∈ J2(t, q(t)), we
have

〈∇fi(t, ·)(q(t)
)
, w – q̇

(
t+)〉 =

(
∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, w
〉)

–
(
∂fi
(·, q(t)

)
(t)

+
〈∇fi(t, ·)(q(t)

)
, q̇
(
t+)〉)

= ∂fi
(·, q(t)

)
(t) +

〈∇fi(t, ·)(q(t)
)
, w
〉
)

≤ 0.

Hence,

〈
q̇
(
t–) – q̇

(
t+), w – q̇

(
t+)〉≤ 0 ∀w ∈ T

(
t, q(t)

)
.

As T (t, q(t)) is a closed convex subset of Rd , the above is equivalent to

q̇
(
t+) = PT (t,q(t))

(
q̇
(
t–)).

The proof is complete. �
Finally, we observe that the limit trajectory satisfies the initial data. Indeed, with (10)

we have immediately q(0) = q0. Moreover, p0 ∈ T (0, q0) we can prove that q̇(0+) = p0 =
PT (0,q0)(p0) by the same kind of computations. Indeed, if t = t0 = 0, we may define ρt0 ∈
(0, min(ρ, T)) such that

J(s, y) ⊂ J
(
t0, q(t0)

)∀s ∈ [t0 – ρt0 , t0 + ρt0 ] ∩ [0, T] ∀y ∈ B̄
(
q(t0),ρt0

)

and we define Nt0 (respectively, ρ̃t0 and Ñt0 if J(t0, q(t0)) �= ∅). in the same way as previously.
Then, for all ρ̃ ∈ (0,ρt0 ] and for all N > ht0 (respectively, for all ρ̃ ∈ (0, ρ̃t0 ] and for all
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N > Ñt0 if J(t0, q(t0)) �= ∅) we define

n– = 0, n+ =
[ t0 + ρ̃

4(κ+1)

h

]
.

We obtain

Pn––1 = P–1 = p0, Pn+ = pN

(
t0 +

ρ̃

4(κ + 1)
h
)

.

Using the same computation as above, we obtain q̇(0+) = p0.

Remark 4.2 A similar existence result was proved in [9, Theorem 4.6]. Let us mention
that our proof does not require any second-order information or boundedness on the
constraints fi such as (A3) and (A4) used in [9]. In fact, the boundedness conditions on
|∇2fi(t, ·)(q)| and |∂2fi(·, q)(t)| + |∂(∇fi(·, ·)(q))(t)| used in [9] are not necessary in our anal-
ysis. Moreover, the condition (Rq) used in [9] is replaced here by the weak uniform Slater
condition A2. Our existence result is more specific to constraints inequalities, uses less
regularity assumptions on the constraints fi and could be seen as complementary to [9,
Theorem 3.2]. In fact, Theorem 3.2 in [9] gives a global existence result for second-order
differential inclusions involving a general abstract prox-regular and Lipschitz continuous
set C(t). When applying this result to the particular case of finite inequality constraints

C(t) =
{

q ∈R
d | fi(t, q) ≤ 0 ∀i ∈ {1, . . . , m}}, (18)

two main questions arise: under which conditions on the data fi the set C(t) is Lipschitz
continuous? and is prox-regular? It is well known that the sublevel of prox-regular func-
tions may fail to be prox-regular and also the prox-regularity of sets is not stable under
intersection (see [2] for more details). Our aim here is to give some verifiable and prac-
tical conditions on the data fi to satisfy both the prox-regularity and Lipschitz continuity
properties of the set C(t) in (18). Another way to obtain Theorem 4.1 is to assume A1–A3
to prove via Propositions 3.1 and 3.2 the prox-regularity and the Lipschitz continuity of the
set C(t) given in (18) and then apply the general Theorem 3.2 in [9]. For the convenience
of the reader, we prefer to give a direct and self-contained proof specific to constraints
inequalities based on the time-stepping algorithm. We mention that this technique for
proving the existence result for nonsmooth second-order differential inclusion problems
was also used in [7, 8, 27]. The following example shows that the Assumptions (A3) and
(A4) in [9] could not be satisfied.

5 Example
Let t ∈ [0, 1] and for i ∈ {1, 2}, fi : [0, T] ×R

2 →R be defined by

f1
(
t, (x, y)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

–y – t if x ≤ 0,

– 1
4 x2 – y – t if 0 ≤ x ≤ 1,

– 1
2 x + 1

4 – y – t if x ≥ 1,
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and

f2
(
t, (x, y)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

–y – t if x ≥ 4,

– 1
4 (4 – x)2 – y – t if 3 ≤ x ≤ 4,

1
2 (x – 4) + 1

4 – y – t if x ≤ 3.

Consider the problem P with the set C(t) = {q = (x, y) ∈ R
2 | fi(t, q) ≤ 0, i ∈ {1, 2}} and

g(t, q) = 0.
Observe that fi(·, ·), i ∈ {1, 2} are differentiable and their derivatives are Lipschitz contin-

uous with rank L =
√

5
2 . This shows that the Assumption A1(i) holds. Note that ∂f1(·, q)(t) =

∂f2(·, q)(t) = –1 and

∇f1(t, ·)(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, –1) if x ≤ 0,

(– 1
2 x, –1) if 0 ≤ x ≤ 1,

(– 1
2 , –1) if x ≥ 1,

and

∇f2(t, ·)((x, y)
)

=

⎧
⎪⎪⎨

⎪⎪⎩

(0, –1) if x ≥ 4,

( 1
2 (4 – x), –1) if 3 ≤ x ≤ 4,

( 1
2 , –1) if x ≤ 3.

Assumption A1(ii) is always true for v = (0, 1) and μ = 1. We also have ‖fi(t, ·)(x, y)‖ ≤ L
and therefore, Assumption A1(iii) holds. Assumption A2 is satisfied with the choice of
γ = 1

2 . If J(t, q) = {1, 2} we have

〈∇f1(t, ·)(q),∇f2(t, ·)(q)
〉
= –

1
2

1
2

+ (–1)(–1) =
3
4

≥ 0.

Hence, Assumption A4 holds. We have shown that Assumptions A1–A4 are satisfied for
the above problem. By Theorem 4.1, the problem has a solution.

Note that the second-order derivative with respect to the second variable q of f1 (of f2)
does not exist at q = (0, y) (at q = (4, y), respectively) for any y ∈R. Hence, f1, f2 /∈ C2([0, 1]×
R

2;R). This shows that the assumptions proposed in [7, 9, 27] cannot be applied to ensure
the existence solution for this example.

6 Conclusions
In this paper, we have presented some regularity conditions for the data to ensure the ex-
istence of solutions for a class of vibroimpact problems. These conditions require neither
the second-order differentiability nor convexity of the constraint functions. Some assump-
tions relate to the uniformly prox-regularity of the set of admissible positions. We also give
an example to illustrate the applicability of the provided assumptions.
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