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Abstract
We consider an abstract inclusion in a real Hilbert space, governed by an almost
history-dependent operator and a time-dependent multimapping with prox-regular
values. We establish the unique solvability of the inclusion under appropriate
assumptions on the data. The proof is based on the arguments of monotonicity, fixed
point, and prox-regularity. We then use our result in order to deduce some direct
consequences, including an existence and uniqueness result for a class of sweeping
processes associated with prox-regular sets. Finally, we provide an example in a finite
dimensional case inspired by a rheological model in solid mechanics.
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1 Introduction
A large variety of boundary valued problems arising in mechanics, physics, and engineer-
ing sciences lead, in a weak formulation, to nonlinear inclusions. Their solvability involves
arguments coming from nonlinear, set-valued, convex, and nonsmooth analysis, among
others. Currently, there is a growing interest in the solution of inclusions governed by a
special class of operators, the so-called almost history-dependent operators. Such kind of
problems arise in the study of different constitutive laws used in the viscoelasticity and vis-
coplasticity. They also describe the frictional or frictionless contact between a deformable
body and an obstacle. References in the field include [1, 5, 19, 20]. There, existence and
uniqueness results have been provided by using a fixed point theorem for almost history-
dependent operators.

Nevertheless, the inclusions studied in the previously cited papers have been associated
with a family of convex sets. Removing the convexity in the study of the corresponding
inclusions leads to important mathematical difficulties and gives rise to new and chal-
lenging mathematical problems. This can be achieved through the class of prox-regular
sets (also known as positively reached, weakly convex, O(2)-convex, ϕ-convex, proximally
smooth (see, e.g., [11] and the references therein)). Recall that a closed set is said to be
prox-regular [23] provided that its metric projection is single-valued and continuous on
a suitable enlargement of the set. Prox-regular sets share important properties with con-
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vex sets, including smoothness of distance function, hypomonotonicity of normals, and
global Lipschitz property of metric projection (see Sect. 2). Prox-regularity property has
been recognized as a key concept in variational analysis and its applications [16, 24, 28].
The good behavior of metric projection and distance function for prox-regular sets is ex-
tensively involved in the study of Moreau’s sweeping processes (that is, differential inclu-
sions driven by the normal cone of a moving set [15, 17, 18]) as shown in [3, 6–8, 10, 12–
14, 21, 27, 29] and the references therein. However, at the best of our knowledge, there are
few literature works concerning history-dependent inclusions governed by prox-regular
sets.

The aim of this current paper is to fill this gap. Indeed, here we consider a version of the
history-dependent inclusion considered in [19], associated with a family of prox-regular
sets. We provide an existence and uniqueness result and, to this end, we use various prop-
erties of the prox-regular sets, including the properties of the projection operators and
proximal normal cone. Extending the results in [19] to the nonconvex case represents the
main trait of novelty in our work.

The structure of the inclusion we consider in this paper is motivated by the study of
constitutive laws in solid mechanics, as we show in what follows. Let d ∈ {2, 3} and denote
by S

d the space of second order symmetric tensors on R
d or, equivalently, the space of

symmetric matrices of order d. Recall that the inner product and the Euclidean norm on
S

d are defined by

σ · τ = σijτij, ‖τ‖ = (τ · τ )
1
2 ∀σ = (σij),τ = (τij) ∈ S

d,

where the indices i, j run between 1 and d and the summation convention over repeated
indices is used. Consider a constitutive law derived by using the following rheological ar-
guments.

1) The model is obtained by connecting in series an elastic model with a viscoelastic (or
viscoplastic) model. Then, at each moment t in the interval of interest I , the strain field
satisfies the equality

ε(t) = ε1(t) + ε2(t), (1)

where ε1 and ε2 represent the strain field in the elastic and the viscoelastic (or viscoplastic)
model, respectively. We refer to ε1 and ε2 as the “regular” and “irregular” strain.

2) The regular strain satisfies the equality

ε1(t) = Bσ (t), (2)

where σ = σ (t) denotes the stress field and B : Sd → S
d represents the compliance operator

which could be nonlinear. This operator is supposed to be inversible, and its inverse will
be denoted by A, i.e., B–1 = A.

3) On the other hand, we assume that the irregular strain field is such that

ε2(t) ∈ N
(
C(t);σ (t) + Rσ (t)

)
, (3)



Nacry and Sofonea Fixed Point Theory Algorithms Sci Eng          (2022) 2022:5 Page 3 of 23

where C(t) is a subset of Sd to be defined and R is a memory operator. A popular example
of such an operator is given by

R(σ ) =
∫ t

0
D(t – s)σ (s) ds,

whereD(·) denotes a given relaxation tensor. Moreover, for any ω ∈ S
d , notation N(C(t),ω)

represents a set of Sd which depends on C(t). Note that (3) shows that at each time moment
t the irregular strain depends on the current value of the stress (i.e., σ (t)) and the history
of the stress process (described by the term Rσ (t)).

We now combine relations (1)–(3) to deduce that

ε(t) ∈ Bσ (t) + N
(
C(t);σ (t) + Rσ (t)

)
. (4)

A concrete example of constitutive law of the form (4) can be obtained by taking R ≡ 0
and N(C(t),ω) = ∂ψC(t)(ω) for any ω ∈ S

d , where C(t) ⊂ S
d is a given convex set (say the

von Mises convex) and ∂ψC(t) represents the Moreau–Rockafellar subdifferential of the
indicator function (in the sense of convex analysis) ψC(t) of the set C(t). This leads to the
well-known Hencky law

ε(t) ∈ Bσ (t) + ∂ψC(t)
(
σ (t)

)
, (5)

see, e.g., [22, 26] and the references therein. Note that in (5) we assume that the convex
C is time-dependent, and this could arise when C depends on the temperature field, for
instance.

Now, we are looking for a stress function σ which, applied to the deformable body, keeps
it in equilibrium, i.e., the strain field vanishes. Then, at each moment t ∈ I , we have

–Bσ (t) ∈ N
(
C(t);σ (t) + Rσ (t)

)

and, using the notation ω = ε1 combined with equalities (2) and B–1 = A, we find that

–ω(t) ∈ N
(
C(t); Aω(t) + RAω(t)

)
.

Therefore, with the notationRAω(t) = Sω(t) we arrive at the following inclusion problem.

Problem 1 Find a regular strain function ω : I → S
d such that

–ω(t) ∈ N
(
C(t); Aω(t) + Sω(t)

)
for all t ∈ I. (6)

Motivated by the above mechanical problem, in this paper we shall study inclusions
of the form (6) in the abstract framework of real Hilbert spaces, under the assumption
that C(t) represents a family of prox-regular sets and S is an almost history-dependent
operator.

The rest of the manuscript is organized as follows. In Sect. 2 we recall some notation
and preliminaries which are used in the rest of the paper. In Sect. 3 we introduce the
abstract history-dependent inclusion and state the main existence and uniqueness result,
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Theorem 3.1, together with its consequences. The proof of the theorem is given in Sect. 4
based on a fixed point argument. Finally, in Sect. 5 we provide an example of Problem 1
for which our abstract results work.

2 Notation and preliminaries
In the whole paper, all vector spaces will be real vector spaces. We use R+ for the set of
nonnegative reals, that is, R+ := [0, +∞). The letter T stands for an extended nonnegative
real, i.e., T ∈R+ ∪{+∞} and I := [0, T] ∩R+. In what follows X is a (real) Hilbert space en-
dowed with its inner product (·, ·)X and its associated norm ‖ · ‖X . The open (resp. closed)
ball with respect to the norm ‖ · ‖X centered at x ∈ X with radius r > 0 is denoted by
B(x, r) (resp. B[x, r]). The letter UX (resp. BX ) stands for the open (resp. closed) unit ball
of X centered at the origin 0X , that is, UX := B(0X , 1) (resp. BX := B[0X , 1]). The strong and
weak convergences in X will be denoted by → and ⇀, respectively, and are considered
as n → ∞, even if we do not mention it explicitly. Recall that ‖ · ‖X enjoys the so-called
sequential Kadec–Klee property, that is, every sequence (xn)n ⊂ X satisfying xn ⇀ x along
with ‖xn‖X → ‖x‖X for some x ∈ X converges strongly to x.

Projections and nonlinear operators The metric projection multimapping ProjS : X ⇒ X
associated with a nonempty subset S ⊂ X is defined as

ProjS(x) :=
{

y ∈ S : dS(x) = ‖x – y‖X
}

for all x ∈ X,

where dS(·) (or d(·, S)) is the distance function from S, that is,

dS(x) :=: d(x, S) := inf
y∈S

‖x – y‖X for all x ∈ X.

When the set ProjS(x) is reduced to a singleton for some vector x ∈ X, we say that the
metric projection of x on S is well defined. In such a case, the unique element of ProjS(x)
is denoted by projS(x) or PS(x). It is an exercise to check that, for any x, x′ ∈ X,

x′ ∈ ProjS(x) ⇐⇒ x′ ∈ S and
(
x – x′, y – x′)

X ≤ 1
2
∥∥y – x′∥∥2

X for all y ∈ S. (7)

It is known (and not difficult to establish) that the multimapping ProjS(·) is monotone,
that is,

(p1 – p2, x1 – x2)X ≥ 0,

for every x1, x2 ∈ X, p1 ∈ ProjS(x1), and p2 ∈ ProjS(x2).
In the development below, the concept of strong monotonicity of operators will be

needed. Recall that an operator A : X → X is said to be strongly monotone with constant
mA > 0 provided that

(Au – Av, u – v)X ≥ mA‖u – v‖2
X for all u, v ∈ X. (8)

Operators enjoying the Lipschitz property will be also used. We say that the operator A :
Y → X is Lipschitz continuous with constant LA > 0 on Y ⊂ X provided that

‖Au – Av‖X ≤ LA‖u – v‖X for all u, v ∈ Y . (9)
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The following result on strongly monotone Lipschitz continuous operators will be cru-
cial in our study.

Proposition 2.1 Let A : X → X be a strongly monotone Lipschitz continuous operator with
respective constants mA > 0 and LA > 0. Then A : X → X is invertible, and its inverse A–1 :
X → X is also strongly monotone and Lipschitz continuous with respective mA

L2
A

and 1
mA

,
respectively.

For the proof of Proposition 2.1, we refer to [25, Theorem 1.24].

Proximal normal cone We now assume that S ⊂ X and U is a nonempty open subset
of X. Then the proximal normal cone to S at x ∈ X is defined as the set

N(S; x) :=

⎧
⎨

⎩
{v ∈ X : ∃r > 0, x ∈ ProjS(x + rv)} if x ∈ S,

∅ otherwise.

For each x ∈ S, it is known that N(S; x) is a convex cone (not necessarily closed), containing
0X . Further, it can be checked that, for given (v, x) ∈ X × S, the inclusion v ∈ N(S; x) holds
if and only if there is some real σ ≥ 0 such that

(
v, x′ – x

)
X ≤ σ

∥∥x′ – x
∥∥2

X for all x′ ∈ S.

From the above definition, it is not difficult to see that that for any v ∈ X with ProjS(v) �= ∅
the following inclusion holds:

v – w ∈ N(S; w) for all w ∈ ProjS(v). (10)

We conclude this part devoted to the proximal normal cone by recalling that if S is con-
vex, then the following equality holds:

N(S; x) =
{

v ∈ X :
(
v, x′ – x

)
X ≤ 0,∀x′ ∈ S

}
for all x ∈ S.

Prox-regular sets We now recall the notion of prox-regular sets in Hilbert spaces. For
historical comments, proofs, and further results, we refer to the survey by G. Colombo and
L. Thibault [11] (see also the forthcoming monograph [28]) and the references therein.

Definition 2.2 Let S be a nonempty closed subset of X, and let r ∈ (0, +∞]. One says
that S is r-prox-regular (or uniformly prox-regular with constant r) whenever for all x ∈ S,
v ∈ N(S; x) ∩BX and t ∈ (0, r] one has

x ∈ ProjS(x + tv).

Concerning this definition we have the following comments. First, note that if S is r-
prox-regular, then it is r′-prox-regular for any 0 < r′ < r. Further, it is known that the class
of ∞-prox-regular subsets of X is nothing but the class of nonempty closed convex sets
of X.
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Given a nonempty subset S ⊂ X, we denote by Ur(S) and Enlr(S) the r-open and closed
enlargement of S, that is,

Ur(S) :=
{

x ∈ X : dS(x) < r
}

and

Enlr (S) :=
{

x ∈ X : dS(x) ≤ r
}

.

Moreover, if r := +∞, we set 1/r := 0 and Ur(S) := X.
The following theorem provides some useful characterizations and properties of uni-

form prox-regular sets.

Theorem 2.3 Let S be a nonempty closed subset of X. The following assertions are equiv-
alent for any extended real r ∈ (0, +∞].

(a) The set S is r-prox-regular.
(b) For all x1, x2 ∈ S and ζ ∈ N(S; x1) ∩BX , one has

(ζ , x2 – x1)X ≤ 1
2r

‖x1 – x2‖2
X .

(c) For all x1, x2 ∈ S, ζ1 ∈ N(S; x1) ∩BX , and ζ2 ∈ N(S; x2) ∩BX , one has

(ζ1 – ζ2, x1 – x2)X ≥ –
1
r
‖x1 – x2‖2

X .

(d) For any 0 < s < r, projS(x) is well defined for every x ∈ Us(S) and the mapping projS(·)
is (1 – s/r)–1-Lipschitz continuous therein, i.e.,

∥∥projS(x) – projS
(
x′)∥∥

X ≤ 1
1 – s/r

∥∥x – x′∥∥
X for all x, x′ ∈ Us(S).

(e) The function x �→ d2
S(x) is C1,1 on Ur(S) and

∇d2
S(x) = 2

(
x – projS(x)

)
for all x ∈ Ur(S).

(f ) For any 0 < s < r, the function x �→ d2
S(x) + s

r–s‖x‖2
X is convex on any open convex

subset of Us(S).

Let N be any of the normal cones in the sense of the Fréchet, Mordukhovich, or Clarke
(see, e.g., [9, 16, 28] for the definitions and basic properties). It is known that assertions (b)
and (c) with the truncated normal cone N (S; ·)∩BX in place of the truncated proximal one
N(S; ·) ∩ BX are also equivalent to the r-prox-regularity of S. Further, any r-prox-regular
set S enjoys the following normal regularity:

N (S; x) = N(S; x) for all x ∈ S.

Moreover, taking r = ∞ in Theorem 2.3 leads to the following result.
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Corollary 2.4 Let S be a nonempty closed subset of X. The following assertions are equiv-
alent.

(a) The set S is convex.
(b) For all x1, x2 ∈ S, ζ1 ∈ N(S; x1), and ζ2 ∈ N(S; x2), one has

(ζ1 – ζ2, x1 – x2)X ≥ 0.

(c) For every x ∈ X , projS(x) is well defined and the mapping projS(·) is 1-Lipschitz
continuous, i.e.,

∥∥projS(x) – projS
(
x′)∥∥

X ≤ ∥∥x – x′∥∥
X .

(d) The function x �→ d2
S(x) is C1,1 on X and

∇d2
S(x) = 2

(
x – projS(x)

)
for all x ∈ X.

(e) The function x �→ d2
S(x) is convex on X .

We now proceed with two results strongly involved in the proof of our main theorem
below. The first one is related to inclusion (10) for prox-regular sets.

Lemma 2.5 ([3]) Let r ∈ (0, +∞], S be an r-prox-regular set of X, and let x, x′ ∈ X. If x–x′ ∈
N(S; x′) and ‖x – x′‖X ≤ r (resp. ‖x – x′‖X < r), then x′ ∈ ProjS(x) (resp. x′ = projS(x)).

The second result deals with some convergence properties of prox-regular sets.

Lemma 2.6 Let (Sn)n∈N be a sequence of r-prox-regular subsets of X for some r ∈ (0, +∞],
and let also S be an r-prox-regular subset of X. Then, for every x ∈ Ur(S) such that
d(x, Sn) → d(x, S), one has that projSn (x) is well defined for n ∈N large enough and

projSn (x) → projS(x) in X.

Proof Fix any x ∈ Ur(S) and assume that d(x, Sn) → d(x, S). Take real 0 < s′ < r such that
d(x, S) < s′ and take s ∈ R such that s′ < s < r. Since d(x, S) < s′, there is an integer N ∈ N

such that for every integer n ≥ N one has d(x, Sn) < s′. Set V := B(x, s–s′) and fix any integer
n ≥ N . For every y ∈ V , we have

d(y, Sn) ≤ d(x, Sn) + ‖y – x‖X < s′ + s – s′ = s,

so V ⊂ Us(Sn) and, similarly, V ⊂ Us(S). Define the function fn : V → R by

fn(y) := d(y, Sn)2 +
s

r – s
‖y‖2

X for all y ∈ V

and the function f : V →R by

f (y) := d(y, S)2 +
s

r – s
‖y‖2

X for all y ∈ V .
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According to Theorem 2.3, the functions fn and f are convex and Fréchet differentiable
on V . Moreover,

∇fn(y) = 2
(
y – projSn (y)

)
+

2s
r – s

y, ∇f (y) = 2
(
y – projS(y)

)
+

2s
r – s

y (11)

for each y ∈ V . Set vn := x – projSn (x) for every n ≥ N . Note that the sequence (vn)n≥N is
bounded since, by assumption, (dSn (x))n≥N converges in R. Let (vs(n))n≥N be any weakly
convergent subsequence of the sequence (vn)n≥N . Let v be its limit with respect to the
weak topology on X. Fix any z ∈ V . Keeping in mind that fs(n)(·) is a convex function, for
each integer n ≥ N , we may write

(∇fs(n)(x), z – x
)

X ≤ fs(n)(z) – fs(n)(x).

Then, passing to the limit as n → ∞, we find that

(
2v +

2s
r – s

x, z – x
)

X
≤ f (z) – f (x).

Since z ∈ V is arbitrary, we get 2v + 2s
r–s x ∈ ∂f (x) = {∇f (x)}, i.e.,

∇f (x) = 2v +
2s

r – s
x.

Coming back to (11), we see that v = x – projS(x). Therefore, the whole sequence (vn)n≥N

converges weakly in X to x – projS(x). On the other hand, we obviously have

‖vn‖X = d(x, Sn) → d(x, S) =
∥∥x – projS(x)

∥∥
X .

These two ingredients allow us to apply the Kadec–Klee property of the norm of X to
obtain the strong convergence vn → x – projS(x) in X. It results from the above that the
whole sequence (vn)n≥N converges to x – projS(x) in X, which means that projSn (x) →
projS(x) in X. The proof is then complete. �

Examples and counter-examples Theorem 2.3 shows that prox-regular and convex sets
share many properties, including the differentiability of distance function, the existence
of nearest points, and (hypo)monotonicity of normals, among others. This naturally led
several authors to study preservation of prox-regularity under various set operations. In
what follows we shall use an example based on the following general result.

Lemma 2.7 ([28]) If S1 and S2 are r-prox-regular sets of X for some r > 0, then S1 ∪ S2 is
min{g/2, r}-prox-regular whenever g := inf(c1,c2)∈S1×S2 ‖c1 – c2‖ > 0.

Remark 2.8 For the convenience of the reader, we also provide the following counter-
examples.

a) [11] Given real r > 0, there is an r-prox-regular set S of R2 such that Q := S ∩R× {0}
fails to be uniformly (even locally !) prox-regular.
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b) The inverse image of a uniformly prox-regular set by a continuous linear mapping
may fail to be prox-regular. Indeed, the above sets Q and S satisfy A–1(Q) = S with
A : R→R

2 defined by

A(x) := (x, 0) for all x ∈R.

c) [4, Example 7] The direct image of a uniformly prox-regular set by a continuous
linear mapping may fail to be prox-regular.

d) [2] The sublevel {f ≤ 0} (resp. the level {f = 0}) is not prox-regular even for smooth
functions. This can be seen in a straightforward way with the function f : R2 →R

defined by

f (x, y) := xy for all (x, y) ∈ R
2.

Finally, we recall that, despite the above counter-examples, sufficient conditions ensur-
ing the prox-regularity of C := {f1 ≤ 0, . . . , fp ≤ 0, h1 = 0, . . . , hq = 0} are developed in [2] in
the framework of Hilbert spaces.

History-dependent and almost history-dependent operators For a normed space (Y ,‖ ·
‖Y ), we denote by C(I; Y ) the space of continuous functions defined on I with values in Y ,
i.e.,

C(I; Y ) = {v : I → Y : v is continuous}.

The case T > 0 (i.e., I = [0, T]) leads to the space C([0, T]; Y ) which is a normed space
equipped with the norm ‖ · ‖C([0,T];Y ) defined by

‖v‖C([0,T];Y ) := max
t∈[0,T]

∥
∥v(t)

∥
∥

Y for all v ∈ C
(
[0, T]; Y

)
.

It is well known that C([0, T]; Y ) is a Banach space whenever Y is a Banach space. The
case I = R+ leads to the space C(R+; Y ). If Y is a Banach space, then C(R+; Y ) can be or-
ganized in a canonical way as a Fréchet space, i.e., a complete metric space in which the
corresponding topology is induced by a countable family of seminorms.

The vector space of continuously differentiable functions on I with values in Y is denoted
by C1(I; Y ). Obviously, for any function v : I → Y , the inclusion v ∈ C1(I; Y ) holds if and
only if v ∈ C(I; Y ) and v̇ ∈ C(I; Y ). Here and in what follows, v̇(·) stands for the derivative
of the function v(·). For a function v ∈ C1(I; Y ), the following equality will be used in the
next section of this manuscript:

v(t) =
∫ t

0
v̇(s) ds + v(0) for all t ∈ I.

Everywhere below, given two normed spaces Y and Z and an operator S : C(I; Y ) →
C(I; Z), for any function u ∈ C(I; X), we use the shorthand notation Su(t) to represent
the value of the function Su at the point t ∈ I , that is, Su(t) := (Su)(t).

We end this section with two important classes of operators defined on the space of
continuous functions.
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Definition 2.9 Let (Y ,‖ · ‖Y ) (resp. (Z,‖ · ‖Z)) be a normed space, and let K (resp. K ′) be
a nonempty closed subset of Y (resp. Z). An operator S : C(I; K) → C(I; K ′) is called:

a) history-dependent (h.d. for short), if for any nonempty compact set J ⊂ I , there
exists LS

J > 0 such that, for all u1, u2 ∈ C(I; K) and all t ∈ J ,

∥∥Su1(t) – Su2(t)
∥∥

Z ≤ LS
J

∫ t

0

∥∥u1(s) – u2(s)
∥∥

Y ds. (12)

b) almost history-dependent (a.h.d. for short), if for any nonempty compact set J ⊂ I ,
there exist lSJ ∈ [0, 1) and LS

J > 0 such that, for all u1, u2 ∈ C(I; K) and all t ∈ J ,

∥
∥Su1(t) – Su2(t)

∥
∥

Z ≤ lSJ
∥
∥u1(t) – u2(t)

∥
∥

Y + LS
J

∫ t

0

∥
∥u1(s) – u2(s)

∥
∥

Y ds. (13)

The next fixed point result makes clear the interest of such operators.

Theorem 2.10 Let K be a nonempty closed subset of a Banach space Y , and let 	 :
C(I; K) → C(I; K) be an almost history-dependent operator. Then 	 has a unique fixed
point, i.e., there exists a unique element η∗ ∈ C(I; K) such that 	η∗ = η∗.

A proof of Theorem 2.10 can be found in [26, pp. 41–45]. There, the main properties of
history-dependent and almost history-dependent operators are presented together with
various examples and applications.

3 Problem statement and main results
In this section we state an existence and uniqueness result for a time-dependent inclusion
involving nonlinear operators. To this end we consider a nonempty closed bounded subset
K ⊂ X, a multimapping C : I ⇒ X, and two operators A : X → X and S : C(I; X) → C(I; K).
As usual, Im(C) denotes the range of C(·), that is,

Im(C) :=
⋃

t∈I

C(t).

With the above data and notation at hand, we introduce the following inclusion problem.

Problem 2 Find a continuous function u : I → X such that

–u(t) ∈ N
(
C(t); Au(t) + Su(t)

)
for all t ∈ I. (14)

In the study of (14) we consider the following assumptions.
(C) The multimapping C : I ⇒ X has r-prox-regular values for some real r ∈ (0, +∞]

and, for every t ∈ I and every sequence (tn)n≥1 of I converging to t, one has

d
(
u, C(tn)

) → d
(
u, C(t)

)
for all u ∈ Ur

(
C(t)

)
. (15)

(A) The mapping A is mA-strongly monotone and LA-Lipschitz continuous for some
reals mA, LA > 0.



Nacry and Sofonea Fixed Point Theory Algorithms Sci Eng          (2022) 2022:5 Page 11 of 23

(S) For any nonempty compact set J ⊂ I , there exist lSJ > 0 and LS
J > 0 such that, for all

u1, u2 ∈ C(I; X) and t ∈ J , inequality (13) holds.
Note that, using Lemma 2.6, it follows that the Wijsman-type convergence (15) is equiv-

alent to the convergence in X

projSn (x) → projS(x) for all x ∈ Ur(S).

Our main result in the study of Problem 2 that we state here and prove in the next section
is the following.

Theorem 3.1 Assume (C), (A), and (S). Assume also that

mA < min
{

LA, L2/3
A

}
, (16)

s := sup
x∈Im(C)–K

∥∥A–1(x)
∥∥

X <
m3

A
L2

A

(
1 –

√

1 –
m4

A
L4

A

)
r (17)

along with

mA

2
>

2sL2
A

r
. (18)

In addition, assume that for any nonempty compact set J ⊂ I the following smallness con-
dition holds:

(
1

2mA
+

2s
r

)1/2

lSJ <
(

mA

2
–

2sL2
A

r

)1/2

. (19)

Then Problem 2 has at least a solution u(·). Moreover, the solution takes values in sBX :=
{sb : b ∈ BX} and is the unique solution of Problem 2 with this property.

Remark 3.2 As mentioned in the introduction, Problem 2 has been already studied in [19]
under the assumption that C(t) is a nonempty closed convex moving set (that is, ∞-prox-
regular). It should be noted that if r = ∞, then estimate (18) obviously holds, (17) means
that the operator A–1 is bounded on the set Im(C) – K , and (19) becomes

lSJ < mA.

This inequality plays a crucial role for the well-posedness of Problem 2 driven by a convex
set C(t) studied in [19]. There, the set K is possibly unbounded (say K = X), and there is
no need to assume the boundedness of the operator A–1.

In the rest of this section we present some consequences of Theorem 3.1.

Corollary 3.3 Assume (C), (A), (16), (17), and (18). Assume also thatS : C(I; X) → C(I; K)
is a history-dependent operator. Then Problem 2 has at least a solution u(·). Moreover, the
solution takes values in sBX := {sb : b ∈ BX} and is the unique solution of Problem 2 with
this property.
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Proof Since S is a history-dependent operator, Definition 2.9(a) guarantees that condition
(S) holds with lSJ = 0 for any compact J ⊂ I . We deduce from here that in this case the
smallness condition (19) is satisfied. Therefore, Corollary 3.3 is a direct consequence of
Theorem 3.1. �

Theorem 3.1 allows us to obtain an existence and uniqueness result for a first order
sweeping process. To present it, besides the data C, A, and S and their associated assump-
tions (C), (A), and (S), respectively, we consider an operator B : X → K and an element u0

such that:
(B) B : X → X is a Lipschitz continuous operator with values in Y ⊂ X .
(K) Y + K ⊂ K .
(U ) u0 ∈ X .
We are now in a position to introduce the following sweeping process.

Problem 3 Find a continuously differentiable function u : I → X such that

⎧
⎨

⎩
–u̇(t) ∈ N(C(t); Au̇(t) + Bu(t) + Su̇(t)) for all t ∈ I,

u(0) = u0.

Our first result in this section is the following.

Corollary 3.4 Assume that (C), (A), (S), (B), (K), (U ), (16), (17), (18), and (19). Then
Problem 2 has at least a solution u(·). Moreover, its derivative u̇(·) takes values in sBX :=
{sb : b ∈ BX} and u(·) is the unique solution of Problem 3 with this property.

Proof We use assumption (K) to introduce the operator S̃ : C(I; X) → C(I; K) defined by

S̃v(t) := B
(∫ t

0
v(s) ds + u0

)
+ Sv(t) for all t ∈ I, all v ∈ C(I; X). (20)

Next, we consider the auxiliary problem of finding a function v : I → X such that

–v(t) ∈ N
(
C(t); Av(t) + S̃v(t)

)
for all t ∈ I. (21)

Let LB > 0 be a Lipschitz constant of the operator B. We use assumptions (S) and (B) to
see that, for any nonempty compact set J ⊂ I , any functions v1, v2 ∈ C(I; X), and any t ∈ I ,
the following inequality holds:

∥
∥S̃v1(t) – S̃v2(t)

∥
∥

X ≤ lSJ
∥
∥v1(t) – v2(t)

∥
∥

X +
(
LB + LS

J
)∫ t

0

∥
∥v1(s) – v2(s)

∥
∥

X ds.

Therefore, we are in a position to apply Theorem 3.1 in order to obtain the existence of a
unique function v ∈ C(I; X) with values in sBX , which satisfies the time-dependent inclu-
sion (21). Denote by u : I → X the function defined by

u(t) := u0 +
∫ t

0
v(s) ds for all t ∈ I. (22)
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Then (20)–(22) imply that u is a solution of Problem 3 with regularity u ∈ C1(I; X). This
proves the existence part of the theorem. The uniqueness part follows from the unique
solvability of auxiliary problem (21), guaranteed by Theorem 3.1. �

A direct consequence of Corollary 3.4 is the following.

Corollary 3.5 Assume (K), (A), (B), (U ), (16), (17), and (18). Assume also that S :
C(I; X) → C(I; K) is a history-dependent operator. Then Problem 2 has at least a solution
u(·). Moreover, its derivative u̇(·) takes values in sBX := {sb : b ∈ BX} and u(·) is the unique
solution of Problem 2 with this property.

The proof of Corollary 3.5 follows from arguments similar to those used in the proof of
Corollary 3.3 and, therefore, we skip it.

4 Proof of Theorem 3.1
The proof of Theorem 3.1 will be carried out in several steps that we present below. We
start with a fixed point result for the projection mapping on a prox-regular set.

Lemma 4.1 Let C be an r-prox-regular subset of X for some r ∈ (0, +∞), and let B : X → X
be an mB-strongly monotone and LB-Lipschitz continuous operator with mB < min{LB, L2

B}.
Assume that

α := sup
x∈C–K

∥
∥B(x)

∥
∥

X < ρ(1 –
√

1 – ρmB)r =: β with ρ :=
mB

L2
B

. (23)

Then the following statements hold for any η ∈ K .
(a) For all z ∈ C and all θ ∈ (0, 1], one has z – θB(z – η) ∈ Enlθα(C) ⊂ Ur(C).
(b) For every s ∈ [ρα,β], the mapping C � z �→ projC(z – ρB(z – η)) is a contraction on

C of constant (1 – s/r)–1(1 – mBρ)1/2.
(c) There exists a unique element zη ∈ C such that

zη = projC
(
zη – ρB(zη – η)

)
= projC

(
zη – B(zη – η)

)
. (24)

Proof (a) Fix η ∈ K . Note that inclusion (a) follows directly from the estimates

dC
(
z – θB(z – η)

) ≤ dC(z) + θ
∥∥B(z – η)

∥∥
X ≤ θ sup

x∈C–K

∥∥B(x)
∥∥

X = θα < r,

valid for every z ∈ C and every θ ∈ (0, 1]. This allows us to consider the mapping 	 : C → C
defined by

	z := projC
(
z – ρB(z – η)

)
for all z ∈ C, (25)

where δ := mBρ = m2
B

L2
B

∈ (0, 1).
(b) We claim that 	 is a contraction on C. First, note that

1 + ρ2L2
B – 2ρmB = 1 – δ > 0. (26)
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Pick any s ∈ (ρα,β]. We have z –ρB(z –η) ∈ Enlρα(C) ⊂ Us(C) for all z ∈ C. Fix any z1, z2 ∈
C and set ui := zi – η for each i ∈ {1, 2}. Using the definition of 	 in (25) combined with
the κ := (1 – s/r)–1-Lipschitz property of projC(·) on the s-open enlargement Us(C) of C,
the mB-strong monotonicity of B, and (26), we see that

‖	z1 – 	z2‖2
X ≤ κ2∥∥(

z1 – ρB(z1 – η)
)

–
(
z2 – ρB(z2 – η)

)∥∥2
X

= κ2∥∥(u1 – u2) – ρ(Bu1 – Bu2)
∥∥2

X

= κ2‖u1 – u2‖2
X – 2ρκ2(u1 – u2, Bu1 – Bu2)X + (ρκ)2‖Bu1 – Bu2‖2

X

≤ κ2(1 + ρ2L2
B – 2ρmB

)‖u1 – u2‖2
X

= κ2(1 – δ)‖u1 – u2‖2
X = κ2(1 – δ)‖z1 – z2‖2

X .

On the other hand, an elementary computation shows that

κ2(1 – δ) < 1 ⇐⇒ 1 –
m2

B
L2

B
<

(
1 –

s
r

)2

⇐⇒ s2 – 2rs +
m2

Br2

L2
B

> 0

⇐⇒ (s – γ1)(s – γ2) > 0

with γ1 := r(1 +
√

1 – δ) > r(1 –
√

1 – δ) =: γ2 > β . Combining the above equivalences with
inclusion s ∈ (0,β], we deduce that κ2(1–δ) < 1, which is the desired inequality. Therefore,
the mapping 	 is a contraction on the nonempty closed subset C of the Hilbert space X
with constant κ(1 – δ) 1

2 . From the arbitrariness of s ∈ (ρα,β], it is easy to see that 	 is a
contraction on C with constant (1 – ρα/r)–1(1 – δ) 1

2 .
(c) The classical Banach fixed point theorem then guarantees the existence of unique

zη ∈ C such that 	zη = zη . Now, putting together this equality and the inclusion (10), we
get

–ρB(zη – η) ∈ N(C; zη)

or, equivalently (keeping in mind that N(C; zη) is a cone in X),

–B(zη – η) ∈ N(C; zη).

It remains to observe that (23) and assumption ρ ∈ (0, 1) (coming from inequality mB < L2
B)

imply that

–B(zη – η) =
(
zη – B(z – η)

)
– zη ∈ N(C; zη) ∩ rUX .

This inclusion and Lemma 2.5 entail that

zη = projC
(
zη – B(z – η)

)
,

which concludes the proof. �
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We now use Lemma 4.1 to deduce the following result.

Lemma 4.2 Assume (C) and let B : X → X be an mB-strongly monotone and LB-Lipschitz
continuous operator with mB < min{LB, L2

B}. Moreover, assume that

α := sup
x∈Im(C)–K

∥∥B(x)
∥∥

X < ρ(1 –
√

1 – ρmB)r =: β with ρ :=
mB

L2
B

.

Then, for any η ∈ C(I; K), there exists a unique continuous function zη : I → X such that

zη(t) = projC(t)
(
zη(t) – B

(
zη(t) – η(t)

))
for all t ∈ I.

Proof Let η ∈ C(I; K). Thanks to Lemma 4.1, we know that for every t ∈ I there exists a
unique element zη(t) ∈ C(t) such that

zη(t) = projC(t)
(
zη(t) – B

(
zη(t) – η(t)

))
= projC(t)

(
zη(t) – ρB

(
zη(t) – η(t)

))
.

This justifies the claimed existence and uniqueness property. It remains to establish that
zη(·) is a continuous function. Fix t ∈ I and consider a sequence (tn)n∈N of elements of I
which converges to t. Due to the closedness of I , we obviously have t ∈ I . For each n ∈ N,
denote Cn := C(tn), ηn := η(tn), ζn := zη(tn), and ωn := ζn – ρB(ζn – ηn). Set also C∞ := C(t),
η∞ := η(t), ζ∞ := zη(t), and ω∞ := ζ∞ – ρB(ζ∞ – η∞). With the above notation at hand, it
is clear that for every integer n ∈ N we have

ζ∞ = projC∞ (ω∞) and ζn = projCn (ωn),

hence,

‖ζ∞ – ζn‖X ≤ ∥∥projC∞ (ω∞) – projCn (ω∞)
∥∥

X +
∥∥projCn (ω∞) – projCn (ωn)

∥∥
X . (27)

We now estimate each of the two terms in the right-hand side of (27). We start by setting

u∞ := ζ∞ – η∞ and un := ζn – ηn for all n ∈N. (28)

It is readily seen that

‖u∞ – un‖X ≤ ‖ζ∞ – ζn‖X + ‖η∞ – ηn‖X for all n ∈N. (29)

Set δ := ρmB. Fix any real ε > 0 with ρα + ε < β and let s ∈ (ρα + ε,β). Since ζ∞ ∈ C∞ ⊂
Ur(C∞), we can use assumption (C) to see that d(ζ∞, Cn) → d(ζ∞, C∞) = 0. Thus, we can
find some integer N ≥ 1 such that

d(ζ∞, Cn) ≤ ε for all n ≥ N .

Fix for a moment an integer n ≥ N . We easily observe that

dCn (ω) ≤ dCn (ζ∞) + ρ
∥∥B(ζ∞ – η∞)

∥∥
X ≤ ε + ρα < s.
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On the other hand, Lemma 4.1(a) guarantees that

dCn (ωn) ≤ ρα < s

and the r-prox-regularity of Cn implies that

∥∥projCn (ω∞) – projCn (ωn)
∥∥

X ≤ κ‖ω∞ – ωn‖X

with κ := (1 – s/r)–1. Using this inequality, the definition of ω∞, ωn, and (28), we see that

∥∥projCn (ω∞) – projCn (ωn)
∥∥

X ≤ κ
∥∥ζ∞ – ρB(ζ∞ – η∞) – ζn + ρB(ζn – ηn)

∥∥
X

= κ
∥∥u∞ – un + ρ(Bun – Bu∞) + η∞ – ηn

∥∥
X

≤ κ
∥
∥u∞ – un + ρ(Bun – Bu∞)

∥
∥

X + ‖η∞ – ηn‖X . (30)

Moreover, using the mB-strong monotonicity of B and its LB-Lipschitz property yields

∥
∥(u∞ – un) – ρ(Bu∞ – Bun)

∥
∥2

X

≤ ‖u∞ – un‖2
X – 2ρ(u∞ – un, Bu∞ – Bun)X + ρ2‖Bu∞ – Bun‖2

X

≤ (
1 + ρ2L2

B – 2ρmB
)‖u∞ – un‖2

X = (1 – δ)‖u∞ – un‖2
X ,

or, equivalently,

∥
∥u∞ – un – ρ(Bu∞ – Bun)

∥
∥

X ≤ √
(1 – δ)‖u∞ – un‖X . (31)

Finally, letting L := κ
√

1 – δ and taking into account inequalities (31), (30), and (29) it
follows that

∥∥projCn (ω∞) – projCn (ωn)
∥∥

X ≤ L‖ζ∞ – ζn‖X + (1 + L)‖η∞ – ηn‖X .

Noting that L ∈ (0, 1) (see Lemma 4.1(b)) and coming back to inequality (27), we see that

(1 – L)‖ζn – ζ∞‖X ≤ ∥∥projC∞ (ω∞) – projCn (ω∞)
∥∥

X + (1 + L)‖ηn – η∞‖X . (32)

Next, using inequality

dD(ω∞) ≤ dD(ζ∞) + ρ
∥∥B(ζ∞ – θ )

∥∥
X = ρ

∥∥B(ζ∞ – θ )
∥∥

X ≤ ρα < r,

it follows that ω∞ ∈ Ur(C∞). Therefore, using assumption (C) and Theorem 2.6, we obtain
that

∥∥projC∞ (ω∞) – projCn (ω∞)
∥∥

X → 0.

It remains to use (32) and the continuity of the function η : I → K to see that ζn = z(tn) →
z(t) = ζ∞ in X, as n → ∞. This shows that the function zη : I → X is continuous and
concludes the proof. �

The next step is the following.



Nacry and Sofonea Fixed Point Theory Algorithms Sci Eng          (2022) 2022:5 Page 17 of 23

Lemma 4.3 Assume (C), (A), (16), (17), and (18). Then, for any η ∈ C(I; K), there exists a
unique continuous function uη : I → X such that

–uη(t) ∈ N
(
C(t); Auη(t) + η(t)

) ∩ sBX for all t ∈ I.

Proof Using Proposition 2.1, it follows that the operator A–1 is mA–1 := mA
L2

A
-strongly mono-

tone and LA–1 := 1
mA

-Lipschitz continuous. Note that mA–1 < min{LA–1 , L2
A–1} and, more-

over,

s < ρ(1 –
√

1 – ρmA–1 )r with ρ :=
mA–1

L2
A–1

.

Let η ∈ C(I; K) and denote by zη ∈ C(I; X) the function obtained in Lemma 4.2 with B :=
A–1. Then

zη(t) = projC(t)
(
zη(t) – uη(t)

)
for all t ∈ I

with uη ∈ C(I; X) defined by

uη(t) := A–1(zη(t) – η(t)
) ∈ sBX for all t ∈ I.

It follows from the definition of proximal normal cone that

(
zη(t) – uη(t)

)
– zη(t) = –uη(t) ∈ N

(
C(t); zη(t)

)
for all t ∈ I,

and this concludes the proof of the existence part of the lemma.
Now, let u1, u2 : I → X be two functions such that

–u1(t) ∈ N
(
C(t); Au1(t) + η(t)

) ∩ sBX and – u2(t) ∈ N
(
C(t); Au2(t) + η(t)

) ∩ sBX

for every t ∈ I . Fix any t ∈ I . Then, for each i ∈ {1, 2}, we have

Aui(t) + η(t) ∈ C(t)

along with

(
ui(t), Aui(t) + η(t) – v

)
X ≤ ‖ui(t)‖X

2r
∥
∥Aui(t) + η(t) – v

∥
∥2

X for all v ∈ C(t).

This implies that

(
u1(t), Au1(t) + η(t) –

(
Au2(t) + η(t)

))
X ≤ s

2r
∥
∥Au1(t) – Au2(t)

∥
∥2

X ,

(
u2(t), Au2(t) + η(t) –

(
Au1(t) + η(t)

))
X ≤ s

2r
∥∥Au1(t) – Au2(t)

∥∥2
X ,

and adding these inequalities yields

(
u1(t) – u2(t), Au1(t) – Au2(t)

)
X ≤ s

r
∥∥Au1(t) – Au2(t)

∥∥2
X .
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Using now the mA-strong monotonicity and the LA-Lipschitz property of the operator A,
we get

mA
∥
∥u1(t) – u2(t)

∥
∥2

X ≤ sL2
A

r
∥
∥u1(t) – u2(t)

∥
∥2

X .

We now use the the assumption mA > sL2
A

r to deduce that u1(t) = u2(t). �

Lemma 4.3 allows us to consider the operator 	 : C(I; K) → C(I; K) defined by

	η := Suη for all η ∈ C(I; K). (33)

We have the following result.

Lemma 4.4 Assume (C), (A), (H), (16), (17), (18), and (19). Then the operator 	 has a
unique fixed point η∗ ∈ C(I; K).

Proof According to Theorem 2.10, it is enough to prove that the operator 	 : C(I; K) →
C(I; K) is an almost history-dependent operator. Let η1, η2 ∈ C(I; K). Using Lemma 4.3,
we find two continuous functions u1 := uη1 : I → sBX and u2 := uη2 : I → sBX such that

–u1(t) ∈ N
(
C(t); Au1(t) + η1(t)

)
and –u2(t) ∈ N

(
C(t); Au2(t) + η2(t)

)
(34)

for all t ∈ I . Let J be a nonempty compact subset of I and let t ∈ J . Using (33) and as-
sumption (S) yields

∥∥	η1(t) – 	η2(t)
∥∥

X =
∥∥Su1(t) – Su2(t)

∥∥
X

≤ lSJ
∥∥u1(t) – u2(t)

∥∥
X + LS

J

∫ t

0

∥∥u1(s) – u2(s)
∥∥

X ds. (35)

On the other hand, from (34) we see that

Aui(t) + ηi(t) ∈ C(t)

for each i ∈ {1, 2} and, therefore,

(
ui(t), Aui(t) + ηi(t) – v

)
X ≤ s

2r
∥∥Aui(t) + ηi(t) – v

∥∥2
X for all v ∈ C(t).

Taking i = 1 and v := Au2(t) + η2(t) in the above estimate yields

(
u1(t), Au1(t) + η1(t) – Au2(t) – η2(t)

)
X ≤ s

2r
∥
∥Au1(t) + η1(t) – Au2(t) – η2(t)

∥
∥2

X .

Similarly, taking i = 2 and v := Au1(t) + η1(t), we get

(
u2(t), Au2(t) + η2(t) – Au1(t) – η1(t)

)
X ≤ s

2r
∥∥Au2(t) + η2(t) – Au1(t) – η1(t)

∥∥2
X .
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Adding the previous two inequalities, we find that

(
u1(t) – u2(t), Au1(t) – Au2(t)

)
X

≤ (
u1(t) – u2(t),η2(t) – η1(t)

)
X +

s
r
∥∥Au2(t) + η2(t) – Au1(t) – η1(t)

∥∥2
X .

Fix ε > 0 such that mA – ε2

2 – 2sL2
A

r > 0. Then, using the Cauchy–Schwarz inequality and the
elementary inequality 2ab ≤ (εa)2 + ( b

ε
)2 valid for every real a, b, we obtain that

(
u1(t) – u2(t),η2(t) – η1(t)

)
X ≤ ε2

2
∥
∥u1(t) – u2(t)

∥
∥2

X +
1

2ε2

∥
∥η1(t) – η2(t)

∥
∥2

X .

On the other hand, note that

∥
∥Au1(t) + η1(t) – Au2(t) – η2(t)

∥
∥2

X =
∥
∥Au1(t) – Au2(t)

∥
∥2

X +
∥
∥η1(t) – η2(t)

∥
∥2

X

+ 2
(
Au1(t) – Au2(t),η1(t) – η2(t)

)
X

≤ L2
A
∥∥u1(t) – u2(t)

∥∥2
X +

∥∥η1(t) – η2(t)
∥∥2

X

+ 2LA
∥∥u1(t) – u2(t)

∥∥
X

∥∥η1(t) – η2(t)
∥∥

X

≤ L2
A
∥∥u1(t) – u2(t)

∥∥2
X +

∥∥η1(t) – η2(t)
∥∥2

X

+ L2
A
∥
∥u1(t) – u2(t)

∥
∥2

X +
∥
∥η1(t) – η2(t)

∥
∥2

X

= 2L2
A
∥
∥u1(t) – u2(t)

∥
∥2

X + 2
∥
∥η1(t) – η2(t)

∥
∥2

X .

Therefore, setting aε := mA – ε2

2 – 2sL2
A

r , bε := 1
2ε2 + 2s

r and taking into account the strong
monotonicity of the operator A, we find that

∥
∥u1(t) – u2(t)

∥
∥2

X ≤ bε

aε

∥
∥η1(t) – η2(t)

∥
∥2

X .

Now, choosing ε := √mA, we get

∥∥u1(t) – u2(t)
∥∥

X ≤ c
∥∥η1(t) – η2(t)

∥∥
X

with c := ( 1
2mA

+ 2s
r )1/2( mA

2 – 2sL2
A

r )–1/2. Substituting this inequality in (35) yields

∥∥	η1(t) – 	η2(t)
∥∥

X =
∥∥Su1(t) – Su2(t)

∥∥
X

≤ clSJ
∥∥η1(t) – η2(t)

∥∥
X + cLS

J

∫ t

0

∥∥η1(s) – η2(s)
∥∥

X ds.

We now invoke the smallness assumption (19) to obtain that the operator 	 is an almost
history-dependent operator. It remains to apply Theorem 2.10 to complete the proof. �

We are now in a position to provide the proof of Theorem 3.1.
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Proof Let η∗ ∈ C(I; K) be the fixed point of the operator 	, and let u� := uη� ∈ C(I; X) be
the function given by Lemma 4.3 with η := η�. So, we have

–u�(t) ∈ N
(
C(t); Au(t) + η(t)

) ∩ sBX for all t ∈ I.

This inclusion combined with equality η� = 	η� = Su� implies that

–u�(t) ∈ N
(
C(t); Au�(t) + Su�(t)

) ∩ sBX for all t ∈ I,

which shows that u� is a solution to Problem 2. This proves the existence part of Theo-
rem 3.1. The uniqueness part is a direct consequence of the uniqueness of the fixed point
of the operator 	. �

5 An example
In this section we provide an example of Problem 2 for which our abstract results work. To
this end we consider two elements a1, a2 ∈ S

d and three real constants g1, g2, and k such
that

g1, g2, k > 0, (36)

k > g2, (37)

‖a1 – a2‖ > g1 + k, (38)

‖a1‖ + g1

‖a1 – a2‖ – g1 – g2
<

√
7

32
. (39)

We now introduce the sets

C1 =
{

x ∈ S
d : ‖x – a1‖ ≤ g1

}
, (40)

C2 =
{

x ∈ S
d : ‖x – a2‖ ≤ g2

}
, (41)

C(t) = C1 ∪ C2 ∀t ∈ I, (42)

K =
{

x ∈ S
d : ‖x – a2‖ ≤ k

}
. (43)

For the sake of simplicity, we only consider the setting where C(t) is autonomous, i.e.,
independent of time t. Nevertheless, we mention that the result below in this section can
be easily extended to the case when g1, g2 are real-valued positive functions depending on
t ∈ I and, in this case, the set C(t) will depend on t. We denote by PK : Sd → K the projec-
tion operator on the closed convex set K and consider the following inclusion problem.

Problem 4 Find a continuous function u : I → X such that

–u(t) ∈ N
(

C(t); u(t) + PK

(∫ t

0
u(s) ds

))
for all t ∈ I.

We have the following existence and uniqueness result.
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Theorem 5.1 Assume (36)–(39). Then Problem 4 has at least a solution u(·). Moreover, the
solution takes values in sB

Sd := {sb : b ∈ B
Sd } with s := ‖a1‖ + g1 and is the unique solution

of Problem 4 with this property.

Proof We apply Corollary 3.3 on the space X = S
d with C(t) defined by (40)–(42), K de-

fined by (43), and the operators A, S given by

Au = u ∀u ∈ S
d, (44)

Su(t) = PK

(∫ t

0
u(s) ds

)
∀u ∈ C

(
I;Sd). (45)

First, we remark that the sets C1 and C2 are convex and, therefore they are ∞-prox
regular. Moreover, using assumptions (37), (38), we see that

g := inf
(c1,c2)∈C1×C2

‖c1 – c2‖ > 0 = ‖a1 – a2‖ – g1 – g2 > 0.

Therefore, Lemma 2.7 guarantees that for each t ∈ I the set C(t) is r-prox-regular with

r =
1
2
(‖a1 – a2‖ – g1 – g2

)
. (46)

In addition, since C(t) does not depend on t, it follows that convergence (15) holds. We
conclude from here that assumption (C) is satisfied.

On the other hand, it is obvious to see that the operator A satisfies condition (A) with
mA = 1 and LA = 1 + ε for any ε > 0. Moreover, the operator S defined by (45) is history-
dependent operator (keeping in mind that PK is 1-Lipschitz on S

d). In addition, inequality
(16) is obviously satisfied.

We now show that with a convenient choice of ε, conditions (17) and (18) are satisfied.
To this end we use (37) and (38) to see that Im(C) – K = (C1 ∪ C2) – K = C1 and, therefore,

s := sup
x∈Im(C)–K

∥
∥A–1x

∥
∥ = sup

x∈C1
‖x‖ = ‖a1‖ + g1. (47)

Hence, using (46), (47) and equalities mA = 1, LA = 1 + ε, it follows that conditions (17),
(18) are equivalent with the inequalities

‖a1‖ + g1

‖a1 – a2‖ – g1 – g2
<

1
2(1 + ε)2

(
1 –

√

1 –
1

(1 + ε)4

)
, (48)

‖a1‖ + g1

‖a1 – a2‖ – g1 – g2
<

1
8(1 + ε)2 , (49)

respectively. Next, an elementary calculus reveals that

x >
√

7
4

�⇒
√

7
32

<
x
8

<
x
2
(
1 –

√
1 – x2

)
,

and, using this inequality with x = 1
(1+ε)2 , we deduce that

0 < ε <
2

√√
7

– 1 �⇒
√

7
32

<
1

8(1 + ε)2 <
1

2(1 + ε)2

(
1 –

√

1 –
1

(1 + ε)4

)
. (50)



Nacry and Sofonea Fixed Point Theory Algorithms Sci Eng          (2022) 2022:5 Page 22 of 23

Choose now 0 < ε < 2
4√7

– 1. Then, using (39) and (50), we find that (48) and (49) hold,
which implies that conditions (17) and (18) are satisfied, too. Theorem 5.1 is now a direct
consequence of Corollary 3.3. �
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