
Fixed Point Theory and Algorithms
for Sciences and Engineering

Saejung and Ardsalee Fixed Point Theory Algorithms Sci Eng          (2022) 2022:7 
https://doi.org/10.1186/s13663-022-00717-8

R E S E A R C H Open Access

A remark on Secelean–Wardowski’s fixed
point theorems
Satit Saejung1,2 and Pinya Ardsalee3*

*Correspondence:
ardsalee.p@msu.ac.th
3Department of Mathematics,
Mahasarakham University,
Mahasarakham, Thailand
Full list of author information is
available at the end of the article

Abstract
In this paper we give a simple proof of three fixed point theorems of Secelean and
Wardowski by using the fixed point result of Jachymski et al. Our result is established
with weaker assumptions than the three theorems. Furthermore, the recent result of
Secelean et al. in the setting of a complete metric space can be also deduced by our
theorem.
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1 Introduction
Banach’s contraction principle is one of the famous fixed point theorems which play a key
role in various branches in mathematical models. Many mathematicians have attempted
to generalize this result in many ways.

The fixed point theorem of Jachymski et al. [1] and that of Wardowski [5] were proposed
in 1995 and in 2012, respectively. Both of them are generalizations of Banach’s contraction
principle. In 2016, Secelean and Wardowski [4] established three fixed point theorems (see
Theorems SW1–SW3) which are the generalizations of Wardowski’s fixed point theorem
(see Theorem W).

In this paper, our purpose is to show that the results of Secelean and Wardowski can
be easily deduced from those of Jachymski et al. We discuss that some conditions of their
results can be omitted. Finally, we show that in the setting of complete metric spaces the
recent result of Secelean et al. [3] proposed in 2019 can be deduced from our theorem.

We now recall the following three theorems which are known as fixed point theorems of
Banach, of Jachymski et al., and of Wardowski, respectively. The definitions of the relevant
terms are given in Sect. 2.

Theorem B Suppose that (X, d) is a complete metric space and γ ∈ (0, 1). Suppose that a
mapping T : X → X satisfies

d(Tx, Ty) ≤ γ d(x, y) for all x, y ∈ X.

Then T has a unique fixed point, that is, there exists a unique element p ∈ X such that
p = Tp. Moreover, if x ∈ X, then limn d(Tnx, p) = 0.
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Theorem JMS Suppose that a semimetric space (X, D) is Hausdorff and complete. Suppose
that ϕ : [0,∞) → [0,∞) is nondecreasing and limn ϕn(t) = 0 for all t > 0. Suppose that T :
X → X satisfies the following condition:

D(Tx, Ty) ≤ ϕ
(
D(x, y)

)
for all x, y ∈ X.

Suppose that one of the three conditions in Proposition 5 holds (see Sect. 2). Then T has a
unique fixed point p ∈ X and limn D(Tnx, p) = 0 for all x ∈ X.

The following theorem of Wardowski is slightly modified to fit the presentation of the
more general setting of its generalization proposed by Secelean and Wardowski [4]. Let
us recall some notations. For a given metric space (X, d), let diam X := supx,y∈X d(x, y). For
each ν,λ ∈ (0,∞], the notation “ν > λ” means ν > λ if λ < ∞ and ν = ∞ if λ = ∞.

Theorem W Suppose that (X, d) is a complete metric space and ν > diam X. Suppose that
F : (0,ν) → (–∞,∞) satisfies the following conditions:

(A1) For each sequence {αn} ⊂ (0,ν), it follows that

lim
n

αn = 0 ⇔ lim
n

F(αn) = –∞;

(A2) F is increasing, that is, 0 < α < β < ν ⇒ F(α) < F(β);
(A3) There exists a real number λ ∈ (0, 1) such that limα→0+ αλF(α) = 0.

Suppose that τ > 0 and T : X → X satisfy

d(Tx, Ty) > 0 ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
d(x, y)

)
.

Then T has a unique fixed point p ∈ X and limn d(Tnx, p) = 0 for all x ∈ X.

Theorem B is just a special case of Theorem JMS where ϕ(t) := αt. Note that every com-
plete metric space (X, d) is a semimetric space which is Hausdorff and complete and sat-
isfies Condition (C3). In fact, the triangle inequality implies Condition (C3) (see Proposi-
tion 5 in Sect. 2).

Theorem B is also a special case of Theorem W. In fact, if d(Tx, Ty) ≤ γ d(x, y) for all
x, y ∈ X, then τ + F(d(Tx, Ty)) ≤ F(d(x, y)) for all x, y ∈ X with Tx 	= Ty where F(α) := lnα

and τ := – lnγ .
Let us recall three fixed point theorems of Secelean and Wardowski [4].

Theorem SW1 Suppose that (X, d) is a complete metric space and ν > diam X. Suppose
that F : (0,ν) → (–∞,∞) satisfies conditions (A1) and

(A2’) supt∈M F(t) < ∞ for every bounded set M ⊂ (0,ν).
Let μ > sup F := sup0<t<ν F(t). Suppose that T : X → X and ψ : (–∞,μ) → (–∞,μ) satisfy
the following conditions:

(B1) F(d(Tx, Ty)) ≤ ψ(F(d(x, y))) for each x, y ∈ X with Tx 	= Ty;
(B2) ψ is increasing and limn ψn(t) = –∞ for all t ∈ (–∞,μ);
(B3) There exists x0 ∈ X such that the sequence {Tnx0} is bounded.

Then T has a unique fixed point p ∈ X and limn d(Tnx, p) = 0 for all x ∈ X.



Saejung and Ardsalee Fixed Point Theory Algorithms Sci Eng          (2022) 2022:7 Page 3 of 7

Theorem SW2 Suppose that (X, d) is a complete metric space and ν > diam X. Suppose
that F : (0,ν) → (–∞,∞) satisfies Conditions (A1), (A2’), and (A3). Let μ > sup F . Suppose
that T : X → X and ψ : (–∞,μ) → (–∞,μ) satisfy Conditions (B1), (B2), and

(B4) there exist x0 ∈ X and an integer N such that x0 	= Tx0, ψN (F(d(x0, Tx0))) < 0, and
∑

k≥N |ψk(F(d(x0, Tx0)))|–1/λ < ∞ and λ is given from Condition (A3).
Then T has a unique fixed point p ∈ X and limn d(Tnx, p) = 0 for all x ∈ X.

Theorem SW3 Suppose that (X, d) is a complete metric space and ν > diam X. Suppose
that F : (0,ν) → (–∞,∞) satisfies Condition (A1). Let μ > sup F . Suppose that T : X → X
and ψ : (–∞,μ) → (–∞,μ) satisfy Conditions (B1), (B2), and

(B5) ψ is continuous and the set of discontinuities of F is at most countable.
Then T has a unique fixed point p ∈ X and limn d(Tnx, p) = 0 for all x ∈ X.

Remark 1 Theorem SW1 improves Theorem W in the following ways:
• Condition (A3) in Theorem W is not required in Theorem SW1;
• Condition (A2) in Theorem W implies Condition (A2’) in Theorem SW1;
• If ψ(t) := t – τ for all t ∈ (–∞,∞), then Condition (B2) is satisfied.

2 Definitions and preliminaries
Definition 2 Suppose that X is a nonempty set and D : X ×X → [0,∞). We say that (X, D)
is a semimetric space if the following conditions are satisfied:

(1) D(x, y) = 0 ⇐⇒ x = y;
(2) D(x, y) = D(y, x) for all x, y ∈ X .

If a semimetric space (X, D) satisfies the triangle inequality, that is, D(x, y) ≤ D(x, z)+D(z, y)
for all x, y, z ∈ X, then we say that (X, D) is a metric space.

Definition 3 Suppose that {xn} is a sequence in a semimetric space (X, D). We say that
• {xn} converges to x ∈ X if limn D(xn, x) = 0;
• {xn} is Cauchy if limn sup{D(xl, xm) : l > m ≥ n} = 0.

Definition 4 We say that a semimetric space (X, D) is
• Hausdorff if x = y whenever limn D(xn, x) = limn D(xn, y) = 0;
• complete if whenever {xn} is a Cauchy sequence in X it follows that {xn} converges to

some element x ∈ X .

It is clear from the definition that every metric space is Hausdorff. The concept of semi-
metric spaces requires only few assumptions. It is natural to impose some further condi-
tion on the space. The following result was proposed by Jachymski et al. [1].

Proposition 5 ([1]) Suppose that (X, D) is a semimetric space. Then the following state-
ments are equivalent.

(C1) There exists a real number r > 0 such that

sup
{
β(x; r) : x ∈ X

}
< ∞,

where β(x; r) := sup{D(z, y) : D(x, z) < r and D(x, y) < r}.
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(C2) There are two real numbers δ,η > 0 such that D(x, y) ≤ η whenever x, y, z ∈ X with
D(x, z) + D(z, y) < δ.

(C3) For all sequences {xn}, {yn}, and {zn} in X , the following implication holds:

lim
n

D(xn, zn) = lim
n

D(zn, yn) = 0 �⇒ lim
n

D(xn, yn) 	= ∞.

3 Main results
In this paper, we show that Theorem SW1, Theorem SW2, and Theorem SW3 are not only
a consequence of Theorem JMS but they are also established with weaker assumptions (see
Remark 7).

Theorem 6 Suppose that (X, d) is a complete metric space and ν > diam X. Suppose that
F : (0,ν) → (–∞,∞) satisfies Condition (A1). Let μ > sup F . Suppose that T : X → X and
ψ : (–∞,μ) → (–∞,μ) satisfy Conditions (B1) and (B2). Then T has a unique fixed point
p ∈ X and limn d(Tnx, p) = 0 for all x ∈ X.

Remark 7 Our result improves the three theorems of Secelean and Wardowski in the fol-
lowing ways.

(a) Conditions (A2’) and (B3) are not required as was the case in Theorem SW1.
(b) Conditions (A2’), (A3), and (B4) are not required as was the case in Theorem SW2.
(c) Condition (B5) is not required as was the case in Theorem SW3.

We start with the following easy lemma.

Lemma 8 Let ν ∈ (0,∞]. Suppose that F : (0,ν) → (–∞,∞) satisfies Condition (A1). Sup-
pose that {αn} is a sequence in (0,ν). Then

lim
n

eF(αn) = 0 ⇐⇒ lim
n

αn = 0.

Lemma 9 Suppose that (X, d) is a metric space. Let ν > diam X. Suppose that F : (0,ν) →
(–∞,∞) satisfies Condition (A1). Define D : X × X → [0,∞) by

D(x, y) :=

⎧
⎨

⎩
eF(d(x,y)) if x 	= y;

0 if x = y.

Then the following statements hold:
(1) (X, D) is a Hausdorff semimetric space satisfying Condition (C3).
(2) If (X, d) is complete, then (X, D) is complete.

Proof It is clear that (X, D) is a semimetric space.
(1) We show that (X, D) is Hausdorff. To see this, let {xn} be a sequence in X and

x, y ∈ X such that limn D(xn, x) = limn D(xn, y) = 0. By Lemma 8, we have limn d(xn, x) =
limn d(xn, y) = 0. It follows from the triangle inequality of d that x = y. To see that (X, D)
satisfies Condition (C3), let {xn}, {yn}, and {zn} be sequences in X such that limn D(xn, zn) =
limn D(zn, yn) = 0. It follows from Lemma 8 that limn d(xn, zn) = limn d(zn, yn) = 0. This im-
plies that limn d(xn, yn) = 0 and hence limn D(xn, yn) = 0 	= ∞.
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(2) Suppose that (X, d) is complete. To see that (X, D) is complete, let {xn} be a Cauchy
sequence in the semimetric space (X, D), that is,

lim
n

sup
{

D(xl, xm) : l > m ≥ n
}

= 0.

We show that limn γn = 0 where γn := sup{d(xl, xm) : l > m ≥ n}. Note that γn+1 ≤ γn for
all n ≥ 1. Suppose limn γn 	= 0. Then there exists ε0 > 0 such that γn > ε0 for all n ≥ 1. In
particular, for each n ≥ 1, there exist two integers l(n) > m(n) ≥ n such that d(xl(n), xm(n)) >
ε0 which implies that limn d(xl(n), xm(n)) 	= 0. It follows from Lemma 8 that

lim
n

D(xl(n), xm(n)) 	= 0,

which is a contradiction. Therefore, limn γn = 0, that is, the sequence {xn} is Cauchy in
(X, d). Since (X, d) is complete, there is an element x ∈ X such that limn d(xn, x) = 0 and
hence limn D(xn, x) = 0. This completes the proof. �

Lemma 10 Let μ ∈ (0,∞]. Suppose that ψ : (–∞,μ) → (–∞,μ) is increasing and
limn ψn(t) = –∞ for all t ∈ (–∞,μ). Define ϕ : [0,μ) → [0,μ) by

ϕ(t) :=

⎧
⎨

⎩
0 if t = 0;

eψ(ln t) if t ∈ (0,μ).

Then ϕ is nondecreasing and limn ϕn(t) = 0 for all t ∈ (0,μ).

Proof It is clear that ϕ is increasing. Let t ∈ (0,μ). It is easy to see that ϕn(t) = eψn(ln t) for
all n ≥ 1. In particular, since limn ψn(ln t) = –∞, we have limn ϕn(t) = 0. �

We are now ready to prove our main result.

Proof of Theorem 6 Suppose that X, d, F , T , and ψ are as the prerequisite of our The-
orem 6. We define D : X × X → [0,∞) and ϕ : [0,μ) → [0,μ) as in our Lemma 9 and
Lemma 10, respectively. In particular, (X, D) is a semimetric space which is Hausdorff and
complete and satisfies Condition (C3). We now prove that

D(Tx, Ty) ≤ ϕ
(
D(x, y)

)
for all x, y ∈ X.

The inequality holds trivially if Tx = Ty. Now, suppose that x, y ∈ X with d(Tx, Ty) > 0. This
implies that

F
(
d(Tx, Ty)

) ≤ ψ
(
F
(
d(x, y)

))
.

Hence

D(Tx, Ty) = eF(d(Tx,Ty)) ≤ eψ(F(d(x,y))) = eψ(ln(D(x,y))) = ϕ
(
D(x, y)

)
.

By Theorem JMS, the mapping T has a unique fixed point p ∈ X and limn D(Tnx, p) = 0
for all x ∈ X. In particular, limn d(Tnx, p) = 0 for all x ∈ X. This completes the proof. �
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In 2019, Secelean et al. [3] established some fixed point theorems which generalize The-
orem W by considering it in quasi-metric spaces and the function F satisfying only Con-
dition (W1). The notion of quasi-metric spaces is more general than that of metric spaces.
However, in the setting of metric spaces, we can show that some result in [3] can deduced
by our Theorem 6. Let us recall their result in the setting of complete metric spaces.

Theorem SMW Suppose that (X, d) is a complete metric space. Suppose that F : (0,∞) →
(–∞,∞) satisfies Condition (A2). Let μ > sup F . Suppose that T : X → X and ψ :
(–∞,μ) → (–∞,μ) satisfy Conditions (B1) and

(B2’) ψ is continuous and increasing and ψ(t) < t for all t ∈ (–∞,μ).
Then T has a unique fixed point p ∈ X and limn d(Tnx, p) = 0 for all x ∈ X.

To deduce Theorem SMW from our result, we need the following two lemmas.

Lemma 11 ([2]) Let F : (0,∞) → (–∞,∞) be an increasing function and {tn} be a sequence
in (0,∞). Then the following hold:

(a) If limn F(tn) = –∞, then limn tn = 0;
(b) If inf F = –∞ and limn tn = 0, then limn F(tn) = –∞.

Lemma 12 ([3]) Let μ > sup F . Suppose that ψ : (–∞,μ) → (–∞,μ) is continuous, in-
creasing, and ψ(t) < t for all t ∈ (–∞,μ). Then limn ψn(t) = –∞ for all t ∈ (–∞,μ).

A proof of Theorem SMW via our Theorem 6 where ν = ∞ We consider the following two
cases.

Case 1: For each x0 ∈ X , there exists a nonnegative integer n such that Tn+1x0 = Tnx0.
This implies that p := Tnx0 is a fixed point of T . Note that T cannot have more than
one fixed point. The conclusion follows.

Case 2: There exists x0 ∈ X such that Tn+1x0 	= Tnx0 for all n ≥ 0. This implies that

F
(
d
(
Tn+2x0, Tn+1x0

)) ≤ ψ
(
F
(
d
(
Tn+1x0, Tnx0

)))

≤ ψ2(F
(
d
(
Tnx0, Tn–1x0

)))

...

≤ ψn+1(F
(
d(Tx0, x0)

))
.

It follows from Lemma 12 that limn ψn(F(d(Tx0, x0))) = –∞, and hence limn F(d(Tn+2x0,
Tn+1x0)) = –∞. In particular, inf F = –∞. It follows from Lemma 11 that F satisfies Condi-
tion (A1). Note that ψ satisfies Condition (B2) by Lemma 12. Hence the conclusion follows
from our Theorem 6. �
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