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Abstract
Let E be a strictly convex real Banach space and let D⊆ E be a nonempty closed
convex subset of E. Let Ti : D−→ P (D), i = 1, 2, 3, . . . be a countable family of
quasinonexpansive multivalued maps that are continuous with respect to the
Hausdorff metric, P (D) is the family of proximinal and bounded subsets of D.
Supposing that the family has at least one common fixed point, we show that a
Krasnoselskii–Mann-type sequence converges strongly to a common fixed point. Our
result generalizes and complements some important results for single-valued and
multivalued quasinonexpansive maps.

MSC: 47H09; 47H10; 47J25

Keywords: Stirctly convex Banach space; Multivalued quasinonexpansive maps;
Hausdorff metric; Countable family of maps; Strong convergence

1 Introduction
Nonexpansive maps, that is, maps T : C → C, C subset of a normed space X, such that
‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C, constitute an important part of nonlinear operators
that have been studied by numerous authors. Iterative processes for such maps turn out
to be key tools in such areas as signal processing and image restoration (see, e.g., Byrne
[1]). A proper superclass of the class of nonexpansive maps is that of quasinonexpansive
maps, that is, maps T : C → C, C subset of a normed space X, such that ‖Tx – y‖ ≤ ‖x – y‖
for all x, y ∈ C with Ty = y. This class was introduced by Diaz and Metcalfe [2] and Dotson
[3] independently. For a nonexpansive map T : C → C, Edelstein and O’brien [4] showed
that ‖xn – Txn‖ → 0 (uniformly), where xn+1 = λxn + (1 –λ)Txn, n ≥ 0, x0 ∈ C arbitrary and
C a convex and bounded nonempty subset of any normed linear space. Their result gave
an affirmative answer to the question of whether strict convexity of X can be dropped in
showing that the sequence {xn} defined by the algorithm above converges strongly to a
fixed point of T (see Krasnoslskii [5], Edelstein [6] and Schaefer [7]). Concerning quasi-
nonexpansive maps, Dotson [3] showed that the Mann sequence xn+1 = αnxn + (1 –αn)Txn,
n ≥ 0, x0 ∈ K satisfies ‖xn – Txn‖ → 0 in a uniformly convex space. Unlike the case of non-
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expansive maps, this result does not hold in a general Banach space, as proved by Chidume
[8].

Given a normed space X and ∅ 	= C ⊂ X, CB(C), K(C), KC(C) and P(C) denote the
families of nonempty, closed and bounded, compact, compact and convex, and proximinal
and bounded subsets of C, respectively, where a subset D of X is called proximinal if its
distance from any point x in X is achieved, that is, dist(x, D) := inf{‖x – d‖ : d ∈ D} = ‖x –
d0‖, for some d0 ∈ D. The Hausdorff metric on CB(C) is defined by

dH (A, B) = max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
}

for all A, B ∈ CB(C). A map T : C → CB(C) is said to be nonexpansive if

dH (Tx, Ty) ≤ ‖x – y‖, ∀x, y ∈ C. (1.1)

We denote by F(T) the set of all fixed points of T , that is, F(T) := {x ∈ C : x ∈ Tx}. The
mapping T is called quasinonexpansive if

dH (Tx, Tp) ≤ ‖x – p‖, ∀x ∈ C, p ∈ F(T). (1.2)

For several decades, the fixed-point theory for multivalued maps has continued to re-
ceive the attention of many mathematicians (see, e.g., [9–18]). This may be connected to
its numerous applications in so many areas, such as Game Theory, Market Economy, and
Non-Smooth Differential Equations. Several works have been devoted to approximation of
the fixed points of quasinonexpansive maps. Shahzad and Zegeye [19], using the Ishikawa
iteration scheme, proved strong convergence theorems for quasinonexpansive multival-
ued maps in the setting of uniformly convex Banach space. Chidume and Minjibir [20]
proved that a Krasnoselski sequence converges strongly to a fixed point of a multivalued
quasinonexpansive map in uniformly convex spaces. They proved the following theorem.

Theorem CM ([20]) Let D be a nonempty closed convex subset of a uniformly convex real
Banach space E. Suppose that T : D → CB(D) is a multivalued quasinonexpansive map-
ping such that Tp = {p} for some p ∈ F(T). Then, for any fixed x0 ∈ D and λ ∈ (0; 1), the
sequence {xn} defined iteratively, by xn+1 = (1 – λ)xn + λyn; yn ∈ Txn, n = 0, 1, 2, . . . . Then,
limn dist(xn, Txn) = 0.

Under additional mild compactness-type conditions, they obtained strong convergence
of {xn} to a fixed point of the multivalued map.

Many authors devote time to studying methods for approximating common fixed points
of the family of nonexpansive mapings and their generalizations, see, e.g., Uddin et al. [21].
The extension of the work of Chidume and Minjibir [20] to a finite family of quasinonex-
pansive mappings was given by Diop et al. [22]. They developed the algorithm:

⎧⎪⎪⎨
⎪⎪⎩

x0 ∈ D;

xn+1 = λ0xn +
∑m

i=1 λiyn, yn ∈ Tixn, n ≥ 0;

λ0,λi ∈ (0, 1),
∑

i=0 λi = 1,

(1.3)
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where Ti : D −→ CB(D), i = 1, 2, 3, . . . , m are a finite family of multivalued quasinonexpan-
sive mappings such that Tip = {p} for every common fixed point and for all i. They proved
that if D is a nonempty closed convex subset of a uniformly convex real Banach space and
the maps Tis have a common fixed point, then limn−→∞ dist(xn, Tixn) = 0 for each i. They
further obtained strong convergence of {xn} to a common fixed point under additional
mild conditions.

It is our purpose in this paper to develop a Krasnoselskii–Mann-type algorithm for ap-
proximating a common fixed point of a countable family of quasinonexpansive mappings
in the setting of strictly convex Banach spaces and prove the strong convergence of the gen-
erated sequence to a common fixed point, given that such fixed point exists. The method
of proof is akin to that of Dotson [3].

2 Preliminaries
In this section we state three lemmas that are used in the next section.

Lemma 2.1 ([3]) Let E be a strictly convex Banach space. If we let x, y ∈ E such that ‖x‖ ≤
‖y‖ and ‖(1 – λ)y + λx‖ = ‖y‖, for some λ ∈ (0, 1), then y = x.

Lemma 2.2 ([23]) If K is a compact subset of a Banach space E, then the closed convex hull
of K , co(K) is compact.

Lemma 2.3 ([20]) If x, y, z ∈ D such that Ty = {z}, then

‖u – z‖ ≤ dH (Tx, Ty), ∀u ∈ Tx. (2.1)

3 Main results
We first prove the following lemmas that are key to the proof of our main theorem.

Lemma 3.1 Let E be a strictly convex Banach space and let {xn}n ⊆ E.
(i) If {λi}m

i=1 ⊆ (0, 1) such that
∑m

i=1 λi = 1, ‖xi‖ ≤ ‖x1‖, for all i and ‖∑m
i=1 λixi‖ = ‖x1‖,

then xi = x1, for all i.
(ii) If {λi}i ⊆ (0, 1) such that

∑∞
i=1 λi = 1, ‖xi‖ ≤ ‖x1‖, for all i and ‖∑∞

i=1 λixi‖ = ‖x1‖,
then xi = x1, for all i.

Proof
(i) We proceed by induction. For m = 2 the assertion holds by Lemma 2.1. Suppose the

assertion holds for some n ≥ 2. Let {λi}n+1
i=1 ⊆ (0, 1) such that

∑n+1
i=1 λi = 1,

‖xi‖ ≤ ‖x1‖, for all i and ‖∑n+1
i=1 λixi‖ = ‖x1‖. Set Wk :=

∑k
i=1 λixi, k ≥ 1. We have

‖Wn+1‖ =
∥∥∥∥Wn–1 + (λn + λn+1)

(
λn

(λn + λn+1)
xn +

λn+1

(λn + λn+1)
xn+1

)∥∥∥∥

= ‖x1‖.

Since
∥∥∥∥

λn

(λn + λn+1)
xn +

λn+1

(λn + λn+1)
xn+1

∥∥∥∥ ≤ ‖x1‖,
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by an inductive hypothesis we have

x1 = x = · · · = xn–1 =
λn

(λn + λn+1)
xn +

λn+1

(λn + λn+1)
xn+1. (3.1)

We now show xn+1 = xn. If this is not the case, then xn
‖x1‖ , xn+1

‖x1‖ ∈ BE and xn
‖x1‖ 	= xn+1

‖x1‖ (if
x1 = 0 the assertion follows immediately). By the strict convexity of E, we must have

∥∥∥∥
λn

(λn + λn+1)

(
xn

‖x1‖
)

+
λn+1

(λn + λn+1)

(
xn+1

‖x1‖
)∥∥∥∥ < 1.

This yields

∥∥∥∥
λn

(λn + λn+1)
xn +

λn+1

(λn + λn+1)
xn+1

∥∥∥∥ < ‖x1‖,

contradicting (3.1). Therefore, xn = xn+1. It then follows from (3.1) that xi = xj, for
all i, j.

(ii) We first note that the series
∑∞

i=1 λixi ∈ E by the hypotheses. Let i0 ∈N. We have

∥∥∥∥∥
i0∑

i=1

λixi +
(
1 – λ∗) ∞∑

i=i0+1

λi

(1 – λ∗)
xi

∥∥∥∥∥ = ‖x1‖,

where λ∗ =
∑i0

i=1 λi. Noting that

∥∥∥∥∥
∞∑

i=i0+1

λi

(1 – λ∗)
xi

∥∥∥∥∥ ≤
(

1
(1 – λ∗)

∞∑
i=i0+1

λi

)
‖x1‖ = ‖x1‖,

we conclude by (i) that xi0 = x1. Since i0 ∈N was arbitrarily chosen, it follows that
xi = x1, for all i. �

Lemma 3.2 Let D be a nonempty, closed and convex subset of a normed space E. Let
Ti : D −→ CB(D) be quasinonexpansive for all i ∈ N. Let λi ∈ (0, 1), for all i ∈ N∪ {0} with∑∞

i=0 λi = 1. Suppose D is bounded or {Ti}i is uniformly bounded (that is,
⋃∞

i=1 Ti(B) is
bounded for each bounded subset B of D). For any x0 ∈ D, define the sequence {xn}n itera-
tively by xn+1 = λ0xn +

∑∞
i=1 λiui,n, where ui,n ∈ Tixn, for all n ≥ 0. Suppose p ∈ ⋂∞

i=1 F(Ti)
such that Tip = {p}, for all i ∈N. Then,

(i) ‖xn+1 – p‖ ≤ ‖xn – p‖, for all n ≥ 1.
(ii) If {xn}n clusters at y and z, then ‖y – p‖ = ‖z – p‖.

Proof We first note that the series
∑∞

i=1 λiui,n is absolutely convergent if D is bounded or
{Ti}i is uniformly bounded. Also, since D is closed and convex, the infinite sum belongs to
D for each n. Thus, the iterative sequence is well defined.
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(i) By Lemma 2.3 and the quasinonexpansiveness of Tis, we have

‖xn+1 – p‖ =

∥∥∥∥∥λ0(xn – p) +
∞∑
i=1

λi(ui,n – p)

∥∥∥∥∥

≤ λ0‖xn – p‖ +
∞∑
i=1

λi
∥∥(ui,n – p)

∥∥

≤ λ0‖xn – p‖ +
∞∑
i=1

λidH (Tixn, Tp)

≤ λ0‖xn – p‖ +
∞∑
i=1

λi‖xn – p‖

= ‖xn – p‖, ∀n ≥ 1.

Hence, ‖xn+1 – p‖ ≤ ‖xn – p‖, ∀n ≥ 1.
(ii) Let {wn}n and {vn}n be two subsequences of {xn}n such that wn −→ y and vn −→ z.

From (i), we have that limn−→∞ ‖xn – p‖ exists. Therefore,

‖y – p‖ ≤ ‖y – wn‖ + ‖wn – p‖

and letting n go to infinity, we have

‖y – p‖ ≤ lim
n−→∞‖xn – p‖.

Also,

‖wn – p‖ ≤ ‖wn – y‖ + ‖y – p‖.

Letting n go to infinity, we have

lim
n−→∞‖xn – p‖ ≤ ‖y – p‖.

It then follows that ‖y – p‖ = limn−→∞ ‖xn – p‖. Similarly, we obtain
‖z – p‖ = limn−→∞ ‖xn – p‖. Hence, ‖y – p‖ = ‖z – p‖. �

Remark 1 We note that Lemma 3.2 applies to the sequence generated by a finite family:

xn+1 = λ0xn +
m∑

i=1

λiui,n, ui,n ∈ Tixn, n ≥ 0, (3.2)

where λi ∈ (0, 1), i = 1, 2, 3, . . . , m and
∑m

i=0 λi = 1. Indeed, Let i ∈ N and assume that Ti =
Tm, for all i ≥ m; for each n, define the following

αi :=

⎧⎨
⎩

λi, 0 � i � m – 1,
λm

2i–m+1 , i ≥ m,
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ui,n :=

⎧⎨
⎩

ui,n, 1 � i � m – 1,

um,n, i ≥ m.

Then,

xn+1 = λ0xn +
m∑

i=1

λiui,n

= λ0xn +
m–1∑
i=1

λiui,n +

( ∞∑
i=1

1
2i

)
λmum,n

= λ0xn +
m–1∑
i=1

λiui,n +
∞∑
i=1

λm

2i um,n

= λ0xn +
m–1∑
i=1

λiui,n +
∞∑

i=m

λm

2i–m+1 um,n

= α0xn +
m–1∑
i=1

αiui +
∞∑

i=m

αium,n

= α0xn +
∞∑
i=1

αium,n.

3.1 Convergence theorems for a finite family
Theorem 3.3 Let E be a strictly convex real Banach space and D be a nonempty, closed and
convex subset of E. Let Ti : D −→P(D) be quasinonexpansive and continuous with respect
to the Hausdorff metric, for all i ∈ Iwith

⋂m
i=1 F(Ti) 	= ∅ and Tip = {p}, for all p ∈ ⋂m

i=1 F(Ti).
Suppose Ti(D) is contained in a compact set K for all i ∈ I. For any x0 ∈ D define a sequence
{xn}n iteratively, by

xn+1 = λ0,nxn +
m∑

i=1

λi,nui,n, ui,n ∈ Tixn, n ≥ 0, (3.3)

where {λi,n}n ⊆ (0, 1), i ∈ I ∪ {0},
∑m

i=0 λi,n = 1, n ≥ 0. If for each i ∈ I ∪ {0}, {λi,n}n clusters
at some point of (0, 1), then {xn}n converges strongly to a common fixed point of Tis.

Proof The fact that the finite union of compact sets is compact together with Lemma 2.2
make the set co(K ∪ {x0}) compact. Since {λi,n}n clusters at some point of (0, 1), for each
i ∈ I ∪ {0}, and {xn}n≥1 ⊆ co(K ∪ {x0}), we obtain {λi,nk }k ⊆ {λi,n}n and {xnk }k ⊆ {xn}n≥1

such that {λi,nk } converges to λi in (0, 1), for each i, and xnk −→ x∗ ∈ co(K ∪ {x0}) ⊆ D.
This implies dH (Tixnk , Tix∗) −→ 0. Also, since the corresponding sequences {ui,nk }k ⊆ K ,
it follows that there exists {ui,nkj

}j ⊆ {ui,nk }k such that ui,nkj
−→ ui

∗ ∈ D for each i. Let wi
∗ ∈

Tix∗ such that ‖wi
∗ – ui

∗‖ = infui∈Tix∗ ‖ui – ui
∗‖ (such wi

∗ exists, since Tix∗ is proximinal
for each i). Hence,

∥∥wi
∗ – ui

∗∥∥ ≤ inf
ui∈Tix∗ ‖ui – ui,nkj

‖ +
∥∥ui,nkj

– ui
∗∥∥

≤ sup
v∈Tixnkj

inf
ui∈Tix∗ ‖ui – v‖ +

∥∥ui,nkj
– ui

∗∥∥

≤ dH
(
Tixnkj

, Tix∗) +
∥∥ui,nkj

– ui
∗∥∥, ∀j ≥ 1.
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Letting j go to infinity, we have ‖wi
∗ – ui

∗‖ = 0. Hence, ui
∗ = wi

∗ ∈ Tix∗. Therefore,

xnkj +1 = λ0,nkj
xnkj

+
m∑

i=1

λi,nkj
ui,nkj

−→ λ0x∗ +
m∑

i=1

λiui
∗.

Thus, {xn}n clusters at x∗ and λ0x∗ +
∑m

i=1 λiui
∗. By Lemma 3.2(ii) and Remark 1, we have

∥∥∥∥∥λ0
(
x∗ – p

)
+

m∑
i=1

λi
(
ui

∗ – p
)
∥∥∥∥∥ =

∥∥x∗ – p
∥∥.

Also, by Lemma 2.3 and the definition of a quasinonespansive multivalued map, we have
that ‖ui

∗ – p‖ ≤ ‖x∗ – p‖, for each i ∈ I. Since E is strictly convex, we have by Lemma 3.1(i)
that x∗ – p = ui

∗ – p, for all i. This implies x∗ = ui
∗ ∈ Tix∗, for all i. Thus, x∗ ∈ ⋂m

i=1 F(Ti)
and so Tix∗ = {x∗}, for all i. Using Lemma 3.2(i) we conclude that xn −→ x∗. Hence, the
sequence defined above converges strongly to a common fixed point of Tis. �

Corollary 3.4 Let E be a strictly convex real Banach space and D be a nonempty, closed
and convex subset of E. Let Ti : D −→ P(D), i = 1, 2, 3, . . . , m be quasinonexpansive and
continuous with respect to the Hausdorff metric such that

⋂m
i=1 F(Ti) 	= ∅ and Tip = {p}, for

all p ∈ ⋂m
i=1 F(Ti). Suppose there is a compact set K in D containing Ti(D) for all i. For any

x0 ∈ D, define a sequence {xn}n iteratively by

xn+1 = λ0xn +
m∑

i=1

λiui,n, ui,n ∈ Tixn, n ≥ 0, (3.4)

where for each i, λi ∈ (0, 1) and
∑m

i=0 λi = 1. Then, {xn}n converges strongly to an element of⋂m
i=1 F(Ti).

Proof We take {λi,n}n to be the constant sequence {λi}n for each i. Then, {λi,n}n clusters at
λi for each i and so Theorem 3.3 applies. �

Corollary 3.5 ([5]) Let E be a uniformly convex normed space and D be a nonempty, closed
and convex subset of E. Let f : D −→ D be nonexpansive and f (D) ⊆ K ⊆ D, K compact. For
any x0 ∈ D, let a sequence {xn}n be defined iteratively by

xn+1 =
1
2

xn +
1
2

f (xn), n ≥ 0. (3.5)

Then, {xn}n converges strongly to a fixed point of f .

Proof By the Schauder fixed-point theorem [7], we have that F(f ) 	= ∅. Also, define T :
D −→P(D) by Tx = {f (x)}. Then, the proof follows from Corollary 3.4. �

Corollary 3.6 ([3]) Let E be a strictly convex normed space and D be a nonempty, closed
and convex subset of E. Let f : D −→ D be continuous and quasinonexpansive and f (D) ⊆
K ⊆ D, K compact. For any x0 ∈ D, {tn}n ⊆ (0, 1) such that {tn}n clusters at some t ∈ (0, 1)
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let a sequence {xn}n be defined iteratively by

xn+1 = (1 – tn)xn + tnf (xn), n ≥ 0. (3.6)

Then, {xn}n converges strongly to a fixed point of f .

Proof By the Schauder fixed-point theorem [7], we have that F(f ) 	= ∅. Also, define T :
D −→P(D) by Tx = {f (x)}. Then, the proof follows from Corollary 3.4. �

3.2 Convergence theorems for an infinite family
Theorem 3.7 Let E be a strictly convex real Banach space and let D be a nonempty, closed
and convex subset of E. Let Ti : D −→ P(D) be quasinonexpansive and continuous with
respect to the Hausdorff metric, for all i ∈ N with

⋂∞
i=1 F(Ti) 	= ∅ and Tip = {p}, for all p ∈⋂∞

i=1 F(Ti). Suppose there is a compact set K in D containing Ti(D) for all i ∈ N. For any
x0 ∈ D define a sequence {xn}n iteratively, by

xn+1 = λ0xn +
∞∑
i=1

λiui,n, ui,n ∈ Tixn, n ≥ 0, (3.7)

where ‖ui,n – ui,j‖ ≤ dist(Tixn, ui,j) for all j ≤ n, λi ∈ (0, 1), i ∈ N ∪ {0},
∑∞

i=0 λi = 1. Then,
{xn}n converges strongly to a common fixed point of Tis.

Proof In the iterative formula, ui,n is well defined since Tixn is proximal for every i. Also,
the series in the formula is convergent since (Ti(D))i is uniformly bounded and

∑∞
i=0 λi

is convergent. Furthermore, since D is closed and convex, the series belongs to D. Thus,
the sequence {xn}n is well defined and contained in co(K ∪ {x0}). Moreover, by Lemma 2.2
co(K ∪ {x0}) is compact. It follows that there exists {xnk }k ⊆ {xn}n such that xnk −→ x∗ ∈
co(K ∪ {x0}) ⊆ D. This implies dH (Tixnk , Tix∗) −→ 0 for every i. From the choice of ui,n ∈
Tixn in the iterative algorithm, we have

‖ui,nk – ui,nl‖ ≤ max
{
dist(Tixnk , ui,nl ), dist(Tixnl , ui,nk )

} ≤ dH (Tixnk , Tixnl ) → 0

as k, l → ∞ for all i. Hence, {ui,nk } has a limit u∗
i ∈ D. Let wi

∗ ∈ Tix∗ such that ‖wi
∗ – ui

∗‖ =
infui∈Tix∗ ‖ui – ui

∗‖ (Tix∗ is proximinal). Then,

∥∥wi
∗ – ui

∗∥∥ ≤ inf
ui∈Tix∗ ‖ui – ui,nk ‖ +

∥∥ui,nk – ui
∗∥∥

≤ sup
v∈Tixnk

inf
ui∈Tix∗ ‖ui – v‖ +

∥∥ui,nk – ui
∗∥∥

≤ dH
(
Tixnk , Tix∗) +

∥∥ui,nk – ui
∗∥∥, ∀j ≥ 1.

Since Ti is continuous, letting k go to infinity we have ‖wi
∗ – ui

∗‖ = 0. Hence, ui
∗ = wi

∗ ∈
Tix∗. Therefore,

xnk +1 = λ0xnk +
∞∑
i=1

λiui,nk −→ λ0x∗ +
∞∑
i=1

λiui
∗.
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Thus, {xn}n clusters at x∗ and λ0x∗ +
∑∞

i=1 λiui
∗. By Lemma 3.2(ii), we have that

∥∥∥∥∥λ0
(
x∗ – p

)
+

∞∑
i=1

λi
(
ui

∗ – p
)
∥∥∥∥∥ =

∥∥x∗ – p
∥∥.

Also, by Lemma 2.3 and the definition of a quasinonexpansive multivalued map, we have
that ‖ui

∗ –p‖ ≤ ‖x∗ –p‖, for each i ∈N. Thus, we have by Lemma 3.1(ii) that x∗ –p = ui
∗ –p

for all i. This implies x∗ = ui
∗ ∈ Tix∗ for all i. It follows that x∗ ∈ ⋂∞

i=1 F(Ti) and so Tix∗ =
{x∗}. Using Lemma 3.2(i) we conclude that xn −→ x∗. Hence, {xn} converges strongly to an
element of

⋂∞
i=1 F(Ti). �

4 Numerical experiments
The results of the numerical experiments carried out are presented in this section. All
the codes and figures were written/generated using MATLAB R14a on a PC: Intel(R)
Core(TM) i5-3427U CPU @ 1.80 GHz 2.30 GHz.

We consider the family (Ti) of mappings defined by Ti : [0,ααα] ⊆ X → X, Tix = [0, x
i ],

i = 1, 2, . . . , where ααα is a fixed vector in X, X a strictly convex Banach space, and [x, y]
denotes the set {αx + (1 – α)y : α ∈ [0, 1]}. This is a family of quasinonexpansive mappings
having a common fixed point of 0. We use three different sets of parameters (λ(1)

i,n ), (λ(2)
i,n )

and (λ(3)
i,n ), where

Table 1 Numerical experiment for the three sets of parameters: (λ(1)
i,n ), (λ

(2)
i,n ) and (λ(3)

i,n )

S/N Dim. x0 (λ(1)
i,n ) (λ(2)

i,n ) (λ(3)
i,n )

N ‖xN‖ Time (s) N ‖xN‖ Time (s) N ‖xN‖ Time (s)

1 3 i1 30 6.2E–09 3.6E–04 18 4.6E–09 2.2E–04 9 1.5E–09 1.3E–04
2 10 i2 28 7.9E–09 3.1E–04 18 4.6E–09 2.2E–04 9 1.5E–09 1.3E–04
3 10 i3 32 8.5E–09 4.3E–04 20 8.4E–09 2.3E–04 10 1.2E–09 1.6E–04
4 20 i4 31 7.6E–09 5.2E–04 20 3.8E–09 1.5E–04 10 5.6E–10 1.0E–04
5 30 i5 30 9.1E–09 4.2E–04 19 6.8E–09 1.3E–04 9 6.5E–09 8.6E–05
6 15 i6 28 6.6E–09 3.2E–04 18 3.8E–09 1.3E–04 9 1.2E–09 1.7E–04
7 40 i7 30 5.3E–09 3.5E–04 19 3.9E–09 1.2E–04 9 3.8E–09 9.5E–05
8 50 i8 28 6.5E–09 6.7E–04 18 3.7E–09 2.2E–04 9 1.2E–09 1.2E–04
9 30 i9 28 8.7E–09 4.5E–04 18 5.0E–09 2.1E–04 9 1.7E–09 1.0E–04
10 10 i10 28 7.1E–09 3.2E–04 18 4.0E–09 1.3E–04 9 1.3E–09 1.0E–04
11 25 i11 30 8.3E–09 4.1E–04 19 6.2E–09 2.2E–04 9 6.0E–09 1.3E–04
12 45 i12 30 8.3E–09 3.4E–04 19 6.3E–09 1.3E–04 9 6.0E–09 8.6E–05
13 60 i13 30 9.2E–09 6.9E–04 19 6.9E–09 2.0E–04 9 6.7E–09 1.0E–04
14 100 i14 32 6.9E–09 7.5E–04 20 6.8E–09 1.3E–04 10 1.1E–09 1.5E–04
15 90 i15 33 6.6E–09 3.7E–04 21 4.1E–09 1.3E–04 10 1.8E–09 1.1E–04
16 35 i16 30 6.9E–09 3.4E–04 19 5.1E–09 1.3E–04 9 5.0E–09 1.0E–04
17 120 i17 33 9.7E–09 5.5E–04 21 6.3E–09 1.2E–04 10 2.7E–09 1.6E–04
18 65 i18 31 5.4E–09 3.6E–04 19 8.1E–09 1.2E–04 9 7.8E–09 1.3E–04
19 10 i19 33 8.0E–09 4.3E–04 21 5.2E–09 1.6E–04 10 2.3E–09 1.9E–04
20 100 i20 28 8.2E–09 3.6E–04 18 4.7E–09 2.3E–04 9 1.5E–09 1.1E–04
21 55 i21 32 5.7E–09 3.8E–04 20 5.7E–09 1.2E–04 10 8.5E–09 1.5E–04
22 130 i22 32 6.6E–09 4.5E–04 24 8.4E–09 2.8E–04 11 1.9E–10 1.6E–04
23 100 i23 28 6.7E–09 4.0E–04 18 3.9E–09 1.4E–04 9 1.2E–09 8.9E–04
24 4 i24 31 6.2E–09 5.4E–04 19 9.2E–09 1.4E–04 9 8.9E–09 1.4E–04
25 80 i25 30 6.4E–09 3.5E–04 19 4.8E–09 2.2E–04 9 4.6E–09 1.0E–04
26 200 i26 32 6.1E–09 7.4E–04 20 6.0E–09 2.2E–04 10 5.9E–10 1.8E–04
27 300 i27 31 7.3E–09 4.7E–04 20 3.6E–09 2.6E–04 10 5.5E–09 1.9E–04
28 400 i28 34 7.8E–09 4.3E–04 22 3.4E–09 1.8E–04 10 4.5E–09 1.2E–04
29 500 i29 33 5.6E–09 4.5E–04 21 3.7E–09 2.1E–04 10 1.6E–09 1.9E–04
30 1000 i30 34 5.3E–09 4.9E–04 21 6.8E–09 3.4E–04 10 3.0E–09 1.6E–04
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Table 2 Initial points used in Table 1

i1 i2 i3 i4
(1, 2, 3) (1, 12 ,

1
3 , . . . , 1

10 ) (1, 3, 5, . . . , 10) (1, 1, . . . , 1)

i5 i6 i7 i8
(1, 1, 1 · · · , 1) (1, 14 ,

1
9 , . . . , 1

225 ) ( 12 ,
1
2 , . . . , 12 ) (1, 18 ,

1
27 , . . . , 1

125,000 )

i9 i10 i11 i12
( 14 ,

1
4 , . . . , 14 ) (1, 13 , . . . , 1

19 ) (1, 1, . . . , 1) ( 34 ,
3
4 , . . . , 34 )

i13 i14 i15 i16
( 57 ,

5
7 , . . . , 57 ) ( 85 ,

8
5 , . . . , 85 ) (3, 3, 3, . . . , 3) ( 7

10 ,
7
10 , . . . , 7

10 )

i17 i18 i19 i20
(4, 4, 4, . . . , 4) ( 45 ,

4
5 , . . . , 45 ) (1, 3, 5, . . . , 19) (1, 12 ,

1
3 , . . . , 1

100 )

i21 i22 i23 i24
( 95 ,

9
5 , . . . , 95 ) (1, 4, 7, . . . , 301), (1, 2.5, 4, . . . , 195) (2, 3, 4, 5)

i25 i26 i27 i28
( 37 ,

3
7 , . . . , 37 ) (1, 1, 1, . . . , 1) ( 12 ,

1
2 , . . . , 12 ) ( 72 ,

7
2 , . . . , 72 )

i29 i30
( 87 ,

8
7 , . . . , 87 ) ( 32 ,

3
2 , . . . , 32 )

Figure 1 Graph corresponding to (λ(1)
i,n )

• λ
(1)
i,n := 1

M+1 , for all i, for all n,
• λ

(2)
0,n := 1

3 , λ(2)
i,n = 2

3M , i = 1, 2, . . . , M, for all n, and
• λ

(3)
0,n := 1

3n , and λ
(3)
i,n = 3n–1

3nM , i = 1, 2, . . . , M,
with M being the number of maps.

All the three sets of parameters above verify the requirements of our theorems: (λ(j)
i,n) ⊆

(0, 1), j = 1, 2, 3,
∑M

i=0 λ
(j)
i,n = 1 and λ

(j)
i,n → λ∗

j ∈ (0, 1), j = 1, 2, 3. We note here that while our
algorithm (3.7) involves an infinite sum, for the purpose of implementation on a computer,
one has to use one finite term at a time. In Table 1, we report the outcome of the numerical
implementation of our algorithm for the given maps Ti defined above and for X = R

n. In
the table, we use a tolerance of ε = 10–8, S/N denotes the serial number, Dim. denotes
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Figure 2 Graph corresponding to (λ(2)
i,n )

Figure 3 Graph corresponding to (λ(3)
i,n )

dimension (i.e., the n for which X = R
n), x0 refers to the initial term, which is given in

Table 2, N denotes the smallest n such that ‖xn‖ < ε and Time represents the CPU time in
seconds.

It is clear from Table 1 that the convergence is faster, with regard to the number of iter-
ations, for the case of (λ(3)

i,n ) in which the values of λ change with n. Following the case of
(λ(3)

i,n ) is the case of (λ(2)
i,n ), while the case of (λ(1)

i,n ) has the highest number of iterations. With
respect to CPU time, there is not much difference between the case of (λ(2)

i,n ) and that of
(λ(3)

i,n ), both of which have a lower CPU time than the case of (λ(1)
i,n ).
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Figures 1–3 represent the graphs depicting the convergence of our algorithm for the
three sets of parameters: (λ(1)

i,n ), (λ(2)
i,n ) and (λ(3)

i,n ) (given above), respectively.
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