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Abstract
In this paper, an inertial S-iteration iterative process for approximating a common
fixed point of a finite family of quasi-Bregman nonexpansive mappings is introduced
and studied in a reflexive Banach space. A strong convergence theorem is proved.
Some applications of the theorem are presented. The results presented here improve,
extend, and generalize some recent results in the literature.
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1 Introduction
Let E be a real reflexive Banach space with dual space E∗. Throughout this paper we shall
assume that f : E → (–∞, +∞) is a proper, lower semicontinuous, and convex function.
We denote by dom f := {x ∈ E : f (x) < +∞}, the domain of f . Let x ∈ int dom f , then the
subdifferential of f at x is the convex function defined by

∂f (x) =
{

x∗ ∈ E∗ : f (x) +
〈
x∗, y – x

〉 ≤ f (y),∀y ∈ E
}

.

The Fenchel conjugate of f is the function f ∗ : E∗ → (–∞, +∞] defined by

f ∗(x∗) = sup
{〈

x∗, x
〉
– f (x) : x ∈ E

}
.

It is known that the Young–Fenchel inequality,

〈
x∗, x

〉 ≤ f (x) + f
(
x∗), ∀x ∈ E, x∗ ∈ E∗,

holds. A function f is coercive [12] if the sublevel set of f is bounded; equivalently,

lim‖x‖→∞ f (x) = +∞.

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13663-022-00719-6
https://crossmark.crossref.org/dialog/?doi=10.1186/s13663-022-00719-6&domain=pdf
https://orcid.org/0000-0003-4379-2418
mailto:bashiralik@yahoo.com


Ali and Adam Fixed Point Theory Algorithms Sci Eng          (2022) 2022:9 Page 2 of 16

A function f is said to be strongly coercive if

lim‖x‖→∞
f (x)
‖x‖ = +∞.

For any x ∈ int dom f and y ∈ E, the derivative of f at x in the direction of y is defined by

f 0(x, y) = lim
t→0

f (x + ty) – f (x)
t

. (1.1)

The function f is said to be Gâteaux differentiable at x if the limit (1.1) exists for any
y. In this case, the gradient of f at x is the function ∇f (x) : E → (–∞, +∞] defined by
〈∇f (x), y〉 = f 0(x, y) for any y ∈ E. The function f is said to be Gâteaux differentiable if it
is Gâteaux differentiable at every point x ∈ int dom f . Furthermore, f is said to be Fréchet
differentiable at x if this limit (1.1) is attained uniformly in y, ‖y‖ = 1; f is said to be uni-
formly Fréchet differentiable on a subset C of E if the limit (1.1) is attained uniformly for
x ∈ C and ‖y‖ = 1. It is well known that if f is Gâteaux differentiable (respectively Fréchet
differentiable) on int dom f , then f is continuous and its Gâteaux derivative ∇f is norm-
to-weak∗ continuous (respectively continuous) on int dom f , see, for example, [2, 3, 6]. Let
f : E → (–∞, +∞) be a convex and Gâteaux differentiable function. The Bregman distance
with respect to f , Df : dom f × int dom f → [0, +∞) is defined as

Df (x, y) = f (x) – f (y) –
〈∇f (y), x – y

〉
.

Let C be a nonempty closed and convex subset of E. Let T : C → E be a mapping, then
• A point v ∈ C is said to be an asymptotic fixed point of T if for any sequence {xn} ⊂ C

which converges weakly to v, limn→∞ ‖xn – Txn‖ = 0. The set of asymptotic fixed
points of T is denoted by F̂(T);

• T is said to be Bregman relatively nonexpansive if F(T) = ∅, F(T) = F̂(T), and
Df (x, Ty) ≤ Df (x, y) for any x ∈ C, y ∈ F(T);

• T is said to be quasi-Bregman nonexpansive if F(T) = ∅ and Df (x, Ty) ≤ Df (x, y) for
any x ∈ C, y ∈ F(T);

• (I – T) is demiclosed at y ∈ E if having a sequence {vn} in C converging weakly to u
and {vn – Tvn} converging strongly to y implies that (I – T)u = y where I is the identity
mapping. From this we get that (I – T) is demiclosed at zero if whenever a sequence
{vn} in C converges weakly to u and {vn – Tvn} converges strongly to 0 then u ∈ F(T).

Agarwal et al. [1] introduced and studied a two-step iterative process called the S-iteration
process. They proved a convergence theorem for fixed points of nearly asymptotically non-
expansive mappings. Since then various modifications of the S-iteration scheme and also
multistep schemes were studied by many authors for solutions of some nonlinear prob-
lems, see, for example, [10, 11, 15] and the references therein.

Suparatulatorn et al. [24] introduced and studied an iteration method called modified
S-iteration process which is defined by

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ C;

yn = (1 – βn)xn + βnS1xn;

xn+1 = (1 – αn)S1xn + αnS2yn,
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where C is a nonempty closed convex subset of a real Banach space, S1, S2 are G-
nonexpansive mappings, and {αn}, {βn} ⊂ (0, 1). They proved that the sequence gener-
ated by the iterative algorithm converges weakly to a common fixed point of two G-
nonexpansive mappings in a uniformly convex Banach space.

Recently, Phon-on et al. [17] studied the following inertial modified S-iteration process
by combining the inertial extrapolation and modified S-iteration process to speed up the
convergence of the modified S-iteration process:

⎧
⎪⎪⎨

⎪⎪⎩

wn = xn + γn(xn – xn–1);

yn = (1 – βn)wn + βnS1wn;

xn+1 = (1 – αn)S1wn + αnS2yn,

n ≥ 1, where S1, S2 are nonexpansive mappings, {Siwn – wn} bounded for i = 1, 2, {Siwn – y}
is bounded for i = 1, 2, and for any y ∈ F(S1) ∩ F(S2),

∑∞
n=1 γn < ∞, {γn} ⊂ [0,γ ], 0 ≤ γ < 1,

{αn}, {βn} ⊂ [δ, 1 – δ] for some δ ∈ (0, 0.5).
They proved, under some assumptions, that the sequence generated by the algorithm

converges weakly to a common fixed point of two nonexpansive mappings in a uniformly
convex Banach space. Several inertial algorithms were studied by numerous authors to
speed up the convergence processes of iterative schemes, see, for example, [13, 18–20]
and the references contained therein.

Motivated by the results of Phon-on et al. [17] and Suparatulatorn et al. [24], we raised
the following interesting questions:

1. Can one iteratively approximate solutions of inertial modified S-iteration process in
real Banach spaces more general than uniformly convex spaces?

2. Can the result also be proved for a common fixed point of a finite family of
quasi-Bregman nonexpansive mappings?

3. Can a strong convergence theorem be proved without assuming that the operator is
semicompact?

In this paper, we answer the questions in the affirmative. We introduce and study the fol-
lowing algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ C, C = C1;

wn = xn + γn(xn – xn–1);

y1n = ∇f ∗(βn∇fwn + (1 – βn)∇f S1wn);

yin = ∇f ∗(βn∇f Si–1wn + (1 – βn)∇f Siy(i–1)n), 2 ≤ i ≤ m;

Cin = {v ∈ Cn : Df (v, yin) ≤ Df (v, wn)};
Cn+1 =

⋂m
i=1 Cin;

xn+1 = �Cn+1
f x0,

(1.2)

where C is a nonempty, closed, and convex subset of a reflexive Banach space E, for
some natural number m ≥ 2, {Si}m

i=1 is a finite family of quasi-Bregman nonexpansive self-
mappings of C, {γn}, {βn} ⊂ (a, b) are sequences such that 0 < a < b < 1. Then we prove
that the sequence generated by the algorithm (1.2) converges to a common fixed point
of a finite family of quasi-Bregman nonexpansive mappings. Furthermore, we apply our
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theorem to solution of some equilibrium problem and zeros of some maximal monotone
operators.

2 Preliminaries
Let f : E → (–∞, +∞) be a convex and Gâteaux differentiable function. The modulus of
total convexity of f at x ∈ int dom f is the function vf (x, ·) : [0, +∞) → [0, +∞) defined by

vf (x, t) := inf
{

Df (y, x) : y ∈ dom f ,‖y – x‖ = t
}

.

The function f is called totally convex at x if vf (x, t) > 0 whenever t > 0. The function f
is called totally convex if it is totally convex at every point x ∈ int dom f and is said to be
totally convex on bounded subsets if vf (B, t) > 0 for any nonempty bounded subset B of
E and t > 0, where the modulus of total convexity of the function f on the set B is the
function vf : int dom f × [0, +∞) → [0, +∞) defined by

vf (B, t) := inf
{

vf (x, t) : x ∈ B ∩ dom f
}

.

The function f is said to be Legendre if it satisfies the following conditions:
(1) int dom f = ∅ and the subdifferential ∂f is single-valued on its domain;
(2) int dom f ∗ = ∅ and ∂f ∗ is single-valued on its domain.
If E is a reflexive Banach space, we have the following:
(i) f is Legendre if and only if f ∗ is Legendre (see [4, Corollary 55]).

(ii) If f is Legendre, then ∇f is a bijection satisfying ∇f = (∇f ∗)–1,
ran∇f = dom∇f ∗ = int dom f ∗ and ran∇f ∗ = dom f = int dom f (see [4,
Theorem 5.10]).

If the Banach space E is smooth and strictly convex, the function 1
p‖ · ‖p with p ∈ (1,∞) is

Legendre.
The Bregman projection [7] with respect to f of x ∈ int dom f onto a nonempty closed

convex subset C ⊂ int dom f is defined as the unique vector �C
f x ∈ C, which satisfies

Df
(
�C

f x, x
)

= inf
{

Df (y, x), y ∈ C
}

.

Lemma 2.1 ([8]) Let C be a nonempty closed and convex subset of a reflexive Banach space
E. Let f : E → R be a Gâteaux differentiable and totally convex function and let x ∈ E.
Then

(1) z = �C
f x if and only if 〈∇fx – ∇fz, y – z〉 ≤ 0,∀y ∈ C;

(2) Df (y,�C
f x) + Df (�C

f x, x) ≤ Df (y, x),∀x ∈ E, y ∈ C.

Lemma 2.2 ([8, 14]) Let E be a reflexive Banach space. Let f : E →R be a strongly coercive
Bregman function and let V be the function defined by

Vf
(
x, x∗) = f (x) –

〈
x, x∗〉 + f ∗(x∗), x ∈ E, x∗ ∈ E∗.

Then the following hold:
(1) Df (x,∇f ∗(x∗)) = V (x, x∗),∀x ∈ E, x∗ ∈ E∗;
(2) Vf (x, x∗) + 〈∇f ∗(x∗) – x, y∗〉 ≤ Vf (x, x∗ + y∗).
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Lemma 2.3 ([22]) If f : E →R is uniformly Fréchet differentiable and bounded on bounded
subsets of E, then ∇f is uniformly continuous on bounded subsets of E from strong topology
of E to the strong topology of E∗.

Theorem 2.4 ([25]) Let E be a reflexive Banach space and let f : E → R be a convex func-
tion which is bounded on bounded subsets of E. Then the following are equivalent:

(1) f is strongly coercive and uniformly convex on bounded subsets of E.
(2) dom f ∗ = E∗, f ∗ is bounded and uniformly smooth on bounded subsets of E∗.
(3) dom f ∗ = E∗, f ∗ is Fréchet differentiable and ∇f ∗ is norm-to-norm uniformly

continuous on bounded subsets of E∗.

Theorem 2.5 ([25]) Let E be a reflexive Banach space and let f : E → R be a continuous
convex function which is strongly coercive. Then the following are equivalent:

(1) f is bounded and uniformly smooth on bounded subsets of E.
(2) f ∗ is Fréchet differentiable and f ∗ is norm-to-norm uniformly continuous on bounded

subsets of E∗.
(3) dom f ∗ = E∗, f ∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Lemma 2.6 Let E be a reflexive Banach space, let r > 0 be a constant, let ρr be the gauge
of uniform convexity of f , and let f : E → R be a convex function which is bounded and
uniformly convex on bounded subsets of E. Then, for any x ∈ E, y∗, z∗ ∈ Br and α ∈ (0, 1),

Vf
(
x,αy∗ + (1 – α)z∗) ≤ αVf

(
x, y∗) + (1 – α)Vf

(
x, z∗) – α(1 – α)ρr

∗(∥∥y∗ – z∗∥∥)
.

Lemma 2.7 ([16]) Let E be a Banach space and f : E → R be a Gâteaux differentiable
function which is uniformly convex on bounded subsets of E. Let {xn} and {yn} be bounded
sequences in E. Then

lim
n→∞ Df (xn, yn) = 0 if and only if lim

n→∞‖xn – yn‖ = 0.

Lemma 2.8 ([21]) Let f : E → R be a Gâteaux differentiable and totally convex function.
If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, the sequence {xn} is bounded, too.

The function f is called sequentially consistent if for any two sequences {un} and {vn} in
E such that the first one is bounded:

lim
n→∞ Df (un, vn) = 0 implies lim

n→∞‖un – vn‖ = 0.

Lemma 2.9 ([9]) The function f is totally convex on bounded subsets if and only if the
function f is sequentially consistent.

3 Main results
Theorem 3.1 Let C be a nonempty, closed, and convex subset of a reflexive Banach space
E, and let f : E → R be a strongly coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of E. Let {Si}m

i=1 be a finite
family of quasi-Bregman nonexpansive self mappings of C such that Si is Li-Lipschitz and
(I –Si) is demiclosed at 0 for each i ∈ {1, 2, . . . , m}. Assume 	 =

⋂m
i=1 F(Si) = ∅. Let a sequence

{xn} be generated by (1.2), then the sequence {xn} converges to �	
f x0.
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Proof We divide the proof into six steps.
Step 1. We show that Cn is closed and convex for any n ≥ 1.
Since C = C1, C1 is closed and convex.
Assume Cn is closed and convex for some n ≥ 1. Since for any y ∈ Cn, i = 1,

Df (y, y1n) ≤ Df (y, wn)

⇔ f (wn) – f (y1n) +
〈∇f (wn), y – wn

〉
–

〈∇f (y1n), y – y1n
〉 ≤ 0

⇔ f (wn) – f (y1n) +
〈∇f (y1n), y1n

〉
–

〈∇f (wn), wn
〉 ≤ 〈∇f (y1n) – ∇f (wn), y

〉

and, for 2 ≤ i ≤ m,

Df (y, yin) ≤ Df (y, wn)

⇔ f (wn) – f (yin) +
〈∇f (wn), y – wn

〉
–

〈∇f (yin), y – yin
〉 ≤ 0

⇔ f (wn) – f (yin) +
〈∇f (yin), yin

〉
–

〈∇f (wn), wn
〉 ≤ 〈∇f (yin) – ∇f (wn), y

〉
,

we have that Cn+1 is closed and convex. Therefore, Cn is closed and convex for any n ≥ 1.
Step 2. We show that 	 ⊂ Cn for any n ≥ 1.
For n = 1, 	 ⊂ C = C1.
Now assume 	 ⊂ Cn for some n ≥ 1. Let u ∈ 	, then by Lemma 2.6, we have for i = 1,

Df (u, y1n) = Df
(
u,∇f ∗(βn∇f (wn) + (1 – βn)∇f

(
S1(wn)

)))

= Vf
(
u,βn∇f (wn) + (1 – βn)∇f

(
S1(wn)

))

= f (u) –
〈
u,βn∇f (wn) + (1 – βn)∇f

(
S1(wn)

)〉

+ f ∗(βn∇f (wn) + (1 – βn)∇f
(
S1(wn)

))

= βnf (u) + (1 – βn)f (u) – βn
〈
u,∇f (wn)

〉
– (1 – βn)

〈
u,∇f

(
S1(wn)

)〉

+ f ∗(βn∇f (wn) + (1 – βn)∇f
(
S1(wn)

))

≤ βnf (u) + (1 – βn)f (u) – βn
〈
u,∇f (wn)

〉
– (1 – βn)

〈
u,∇f

(
S1(wn)

)〉

+ βnf ∗(∇f (wn)
)

+ (1 – βn)f ∗(∇f
(
S1(wn)

))

= βn
[
f (u) –

〈
u,∇f (wn)

〉
+ f ∗(∇f (wn)

)]

+ (1 – βn)
[
f (u) –

〈
u,∇f

(
S1(wn)

)〉
+ f ∗(∇f

(
S1(wn)

))]

= βnDf (u, wn) + (1 – βn)Df
(
u, S1(wn)

)

≤ βnDf (u, wn) + (1 – βn)Df (u, wn)

= Df (u, wn) (3.1)

Now for 2 ≤ i ≤ m, we have

Df (u, yin)

= Df
(
u,∇f ∗(βn∇f (Si–1wn) + (1 – βn)∇f (Siy(i–1)n)

))

= Vf
(
u,βn∇f (Si–1wn) + (1 – βn)∇f (Siy(i–1)n)

)
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= f (u) –
〈
u,αn∇f (Si–1wn) + (1 – βn)∇f (S2y(i–1)n)

〉

+ f ∗(βn∇f (Si–1wn) + (1 – βn)∇f (Siy(i–1)n)
)

= βnf (u) + (1 – βn)f (u) – βn
〈
u,∇f (Si–1wn)

〉

– (1 – βn)
〈
u,∇f (Siy(i–1)n)

〉

+ f ∗(βn∇f (Si–1wn) + (1 – βn)∇f (Siy(i–1)n)
)

≤ βnf (u) + (1 – βn)f (u) – βn
〈
u,∇f (Si–1wn)

〉

– (1 – βn)
〈
u,∇f (Siy(i–1)n)

〉

+ βnf ∗(∇f (Si–1wn)
)

+ (1 – βn)f ∗(∇f (Siy(i–1)n)
)

= βn
[
f (u) –

〈
u,∇f (Si–1wn)

〉
+ f ∗(∇f (Si–1wn)

)]

+ (1 – βn)
[
f (u) –

〈
u,∇f (Siy(i–1)n)

〉
+ f ∗(∇f (Siy(i–1)n)

)]

= βnDf (u, Si–1wn) + (1 – βn)Df (u, Siy(i–1)n)

≤ βnDf (u, wn) + (1 – βn)Df (u, y(i–1)n)

≤ βnDf (u, wn) + (1 – βn)
[
βnDf (u, wn) + (1 – βn)Df (u, y(i–2)n)

]

=
(
βn + βn(1 – βn)

)
Df (u, wn) + (1 – βn)2Df (u, y(i–2)n)

≤ βn
(
1 + (1 – βn)

)
Df (u, wn)

+ (1 – βn)2[βnDf (u, wn) + (1 – βn)Df (u, y(i–3)n)
]

= βn
(
1 + (1 – βn) + (1 – βn)2)Df (u, wn) + (1 – βn)3Df (u, y(i–3)n)

≤
...

≤ βn
(
1 + (1 – βn) + (1 – βn)2 + · · · + (1 – βn)i–1)Df (u, wn)

+ (1 – βn)iDf (u, wn)

= βn

[
1 – (1 – βn)i

1 – (1 – βn)

]
Df (u, wn) + (1 – βn)iDf (u, wn)

= Df (u, wn). (3.2)

Hence 	 ⊂ Cn for any n ≥ 1.
Step 3. We shall show that {xn} is a Cauchy sequence.
Since 	 ⊂ Cn+1 ⊂ Cn and xn = �Cn

f x0 ⊂ Cn, by Lemma 2.1, we have that Df (xn, x0) ≤
Df (xn+1, x0) and also Df (xn, x0) ≤ Df (u, x0), u ∈ 	. Hence Df (xn, x0) is nondecreasing and
bounded. So, limn→∞ Df (xn, x0) exists. Furthermore, by Lemma 2.8, {xn} is bounded.
Also, since xn = �Cn

f x0, it follows from Lemma 2.1 that Df (xk , xn) = Df (xk ,�Cn
f x0) ≤

Df (xk , x0) – Df (xn, x0) → 0 as n, k → ∞. Since f is totally convex on bounded subsets of E,
f is sequentially consistent. Therefore ‖xn – xk‖ → 0 as n, k → ∞. Hence, {xn} is a Cauchy
sequence.

Step 4. We show that

lim
n→∞‖xn – wn‖ = lim

n→∞‖xn – yin‖
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= lim
n→∞‖y(i+1)n – yin‖

= lim
n→∞

∥∥(I – S1)wn
∥∥

= lim
n→∞

∥∥(I – Si)y(i–1)n
∥∥ = 0,

for each i ∈ {1, 2, . . . , m}.
Since xn+1 ∈ Cn+1 ⊂ Cn, by Lemma 2.1, we have Df (xn+1, xn) ≤ Df (xn+1, x0) – Df (xn, x0).

Taking the limit as n → ∞, we have lim
n→∞Df (xn+1, xn) = 0.

Since f is totally convex on bounded subsets of E, f is sequentially consistent. Therefore

‖xn+1 – xn‖ → 0 as n → ∞. (3.3)

From (1.2) we get

‖xn – wn‖ =
∥∥γn(xn – xn–1)

∥∥ ≤ ‖xn – xn–1‖,

which implies

lim
n→∞‖xn – wn‖ = 0. (3.4)

Since {xn} is bounded, (3.4) implies that {wn} is also bounded and

‖xn+1 – wn‖ ≤ ‖xn+1 – xn‖ + ‖xn – wn‖.

Thus, we get

lim
n→∞‖xn+1 – wn‖ = 0.

By Lemma 2.7,

lim
n→∞ Df (xn+1, wn) = 0.

Since xn+1 ∈ Cn, for 1 ≤ i ≤ m, from (1.2) we have Df (xn+1, yin) ≤ Df (xn+1, wn). Hence
limn→∞ Df (xn+1, yin) = 0, ∀i ∈ {1, 2, 3, . . . , m}. Since f is totally convex on bounded subsets
of E, f is sequentially consistent. Therefore

‖xn+1 – yin‖ → 0 as n → ∞,∀i ∈ {1, 2, 3, . . . , m}. (3.5)

Observe that ‖xn – yin‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – yin‖,∀i ∈ {1, 2, 3, . . . , m}, which implies

lim
n→∞‖xn – yin‖ = 0, ∀i ∈ {1, 2, 3, . . . , m}. (3.6)

Also, ‖yin – wn‖ ≤ ‖yin – xn‖ + ‖xn – wn‖. Thus,

lim
n→∞‖yin – wn‖ = 0, ∀i ∈ {1, 2, 3, . . . , m}. (3.7)
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Since ∇f is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→∞‖∇fyin – ∇fwn‖ = 0, ∀i ∈ {1, 2, 3, . . . , m}. (3.8)

Since {wn} is bounded, (3.7) implies that {yin} is also bounded.
Thus, for 1 ≤ i ≤ m – 1, we have ‖y(i+1)n – yin‖ ≤ ‖y(i+1)n – xn+1‖ + ‖xn+1 – yin‖, so that

lim
n→∞‖y(i+1)n – yin‖ = 0. (3.9)

Since ∇f is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→∞‖∇fy(i+1)n – ∇fyin‖ = 0, ∀i ∈ {1, 2, 3, . . . , m – 1}. (3.10)

From (1.2)

‖∇fy1n – ∇fwn‖ = (1 – βn)‖∇f S1wn – ∇fwn‖.

From (3.7), we have

0 = lim
n→∞‖∇fy1n – ∇fwn‖ = lim

n→∞(1 – βn)‖∇f S1wn – ∇fwn‖.

Hence

lim
n→∞‖∇f S1wn – ∇fwn‖ = 0. (3.11)

This implies that as ∇f ∗ is norm-to-norm uniformly continuous on bounded subsets of
E∗,

lim
n→∞‖wn – S1wn‖ = 0. (3.12)

Now

‖y1n – S1wn‖ ≤ ‖y1n – wn‖ + ‖wn – S1wn‖,

which implies

lim
n→∞‖y1n – S1wn‖ = 0.

Thus

‖y2n – S1wn‖ ≤ ‖y2n – y1n‖ + ‖y1n – S1wn‖

gives

lim
n→∞‖y2n – S1wn‖ = 0.
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Since ∇f is norm-to-norm uniformly continuous on bounded subsets of E, we have

lim
n→∞‖∇fy2n – ∇fS1wn‖ = 0.

Again, from (1.2), we have

‖∇fy2n – ∇f S1wn‖ = (1 – βn)‖∇f S2y1n – ∇f S1wn‖.

Therefore,

lim
n→∞‖∇fS2y1n – ∇f S1wn‖ = 0.

Since ∇f ∗ is norm-to-norm uniformly continuous on bounded subsets of E∗, we have

lim
n→∞‖S2y1n – S1wn‖ = 0.

Thus

‖y1n – S2y1n‖ ≤ ‖y1n – wn‖ + ‖wn – S1wn‖ + ‖S1wn – S2y1n‖

gives

lim
n→∞

∥∥(I – S2)y1n
∥∥ = 0. (3.13)

Now

‖y3n – S2wn‖ ≤ ‖y3n – y2n‖ + ‖y2n – y1n‖ + ‖y1n – S2y1n‖ + ‖S2y1n – S2wn‖
≤ ‖y3n – y2n‖ + ‖y2n – y1n‖ + ‖y1n – S2y1n‖ + L2‖y1n – wn‖.

This implies limn→∞ ‖y3n – S2wn‖ = 0.
From this and the fact that ∇f is norm-to-norm uniformly continuous on bounded sub-

sets of E, we have

lim
n→∞‖∇fy3n – ∇fS2wn‖ = 0.

Similarly, from (1.2) we have

‖∇fy3n – ∇f S2wn‖ = (1 – βn)‖∇f S3y2n – ∇f S2wn‖.

Therefore,

lim
n→∞‖∇fS3y2n – ∇f S2wn‖ = 0.

Since ∇f ∗ is norm-to-norm uniformly continuous on bounded subsets of E∗, we have

lim
n→∞‖S3y2n – S2wn‖ = 0.
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From the following inequality:

‖y2n – S3y2n‖ ≤ ‖y2n – y1n‖ + ‖y1n – S2y1n‖ + ‖S2y1n – S2wn‖ + ‖S2wn – S3y2n‖
≤ ‖y2n – y1n‖ + ‖y1n – S2y1n‖ + L2‖y1n – wn‖ + ‖S2wn – S3y2n‖,

we get

lim
n→∞

∥∥(I – S3)y2n
∥∥ = 0. (3.14)

Also,

‖y4n – S3wn‖ ≤ ‖y4n – y3n‖ + ‖y3n – y2n‖ + ‖y2n – S3y2n‖ + ‖S3y2n – S3wn‖
≤ ‖y4n – y3n‖ + ‖y3n – y2n‖ + ‖y2n – S3y2n‖ + L3‖y2n – wn‖,

implies limn→∞ ‖y4n – S3wn‖ = 0.
Since ∇f is norm-to-norm uniformly continuous on bounded subsets of E, we have

limn→∞ ‖∇fy4n – ∇fS3wn‖ = 0.
From (1.2) we have

‖∇fy4n – ∇f S3wn‖ = (1 – βn)‖∇f S4y3n – ∇f S3wn‖.

Therefore,

lim
n→∞‖∇fS4y3n – ∇f S3wn‖ = 0.

Since ∇f ∗ is norm-to-norm uniformly continuous on bounded subsets of E∗, we have

lim
n→∞‖S4y3n – S3wn‖ = 0.

From the inequality

‖y3n – S4y3n‖ ≤ ‖y3n – y2n‖ + ‖y2n – S3y2n‖ + ‖S3y2n – S3wn‖ + ‖S3wn – S4y3n‖
≤ ‖y3n – y2n‖ + ‖y2n – S3y2n‖ + L3‖y2n – wn‖ + ‖S3wn – S4y3n‖,

we get

lim
n→∞

∥∥(I – S4)y3n
∥∥ = 0. (3.15)

Continuing in this fashion, we get

lim
n→∞

∥∥(I – S1)wn
∥∥ = lim

n→∞
∥∥(I – S2)y1n

∥∥

= lim
n→∞

∥∥(I – S3)y2n
∥∥

= lim
n→∞

∥∥(I – S4)y3n
∥∥
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...

= lim
n→∞

∥∥(I – Sm)y(m–1)n
∥∥ = 0.

Step 5. We show that {xn} converges to an element of 	.
Since {xn} is a Cauchy sequence, we assume that xn → x∗ as n → ∞. From the fact that

lim
n→∞‖xn – wn‖ = lim

n→∞‖xn – yin‖ = 0, ∀i ∈ {1, 2, 3, . . . , m},

we have that

wn → x∗, yin → x∗ as n → ∞,∀i ∈ {1, 2, 3, . . . , m}.

Since I – Si, i ∈ {1, 2, 3, . . . , m} are demiclosed at 0 and

lim
n→∞

∥∥(I – S1)wn
∥∥ = lim

n→∞
∥∥(I – Si)y(i–1)n

∥∥ = 0 for 2 ≤ i ≤ m,

we have x∗ ∈ ⋂m
i=1 F(Si). Therefore, x∗ ∈ 	.

Step 6. We show that x∗ = �	
f x0.

Let y = �	
f x0. Since x∗ ∈ 	, we have that

Df (y, x0) ≤ Df
(
x∗, x0

)
. (3.16)

Since y ∈ 	 ⊂ Cn and xn = �Cn
f x0, we have

Df (xn, x0) ≤ Df (y, x0)

and, taking into account that xn → x∗, obtain

Df
(
x∗, x0

) ≤ Df (y, x0). (3.17)

Combining (3.16) and (3.17) yields

Df (y, x0) = Df
(
x∗, x0

)
.

Hence, x∗ = y = �	
f x0. �

Corollary 3.2 Let C be a nonempty, closed, and convex subset of a reflexive Banach space
E, and let f : E → R a strongly coercive Legendre function which is bounded, uniformly
Fréchet differentiable and totally convex on bounded subsets of E. Let {Si}m

i=1 be a finite
family of Bregman relatively nonexpansive mappings such that Si, i = 1, 2, 3, . . . , m are Li-
Lipschitz and (I – Si), i = 1, 2, . . . , m are demiclosed at 0. Assume 	 =

⋂m
i=1 F(Si) = ∅. Let a
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sequence {xn} be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ C, C = C1;

wn = xn + γn(xn – xn–1);

y1n = ∇f ∗(βn∇fwn + (1 – βn)∇f S1wn);

yin = ∇f ∗(βn∇f Si–1wn + (1 – βn)∇f Siy(i–1)n);

Cin = {v ∈ Cn : Df (v, yin) ≤ Df (v, wn)};
Cn+1 =

⋂m
i=1 Cin;

xn+1 = �Cn+1
f x0;

(3.18)

where {γn} and {βn} ⊂ (a, b), 0 < a < b < 1, are sequences. Then the sequence {xn} converges
to a point z ∈ 	, where z = �	

f x0.

Corollary 3.3 Let E be a uniformly convex real Banach space. Let {Si}m
i=1 be a finite family

of nonexpansive mappings. Assume 	 =
⋂m

i=1 F(Si)} = ∅. Let a sequence {xn} be generated
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ C, C = C1;

wn = xn + γn(xn – xn–1);

y1n = (βnwn + (1 – βn)S1wn);

yin = (βnSi–1wn + (1 – βn)Siy(i–1)n);

Cin = {v ∈ Cn : ‖yin – v‖ ≤ ‖wn – v‖};
Cn+1 =

⋂m
i=1 Cin;

xn+1 = PCn+1 x0,

(3.19)

where {γn} and {βn} are sequences in (0, 1). Then the sequence {xn} converges to a point
z ∈ 	, where z = P	x0.

4 Applications
4.1 Application to the equilibrium problem
Let C be a nonempty closed convex subset of a real Banach space E, and let F : C × C →R

be a bifunction.
The equilibrium problem with respect to F and C is to find z ∈ C such that

F(z, y) ≥ 0, ∀y ∈ C.

The set of solutions of the equilibrium problem above is denoted by EP(F). For solving the
equilibrium problem, we assume that F satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0, ∀x, y ∈ C;
(A3) for each x, y, z ∈ C, limt↓0 F(tz + (1 – t)x, y) ≤ F(x, y);
(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

The resolvent of a bifunction F is the operator Resf
F : E → 2C defined by

Resf
F x =

{
z ∈ C : F(z, y) +

〈∇f (z) – ∇f (x), y – z
〉 ≥ 0,∀y ∈ C

}
.
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Lemma 4.1 ([23]) Let E be a reflexive Banach space, and C be a nonempty closed convex
subset of E. Let f : E → (–∞, +∞) be a Legendre function. If the bifunction F : C × C → R

satisfies conditions (A1)–(A4), then the following holds:
(1) Resf

F is single-valued;
(2) Resf

F is Bregman firmly nonexpansive;
(3) Fix(ResF ) = EP(F);
(4) EP(F) is a closed and convex subset of C;
(5) For all x ∈ E and for all q ∈ Fix(ResF ),

Df
(
q, Resf

F x
)

+ Df
(
Resf

F x, x
) ≤ Df (q, x).

Theorem 4.2 Let C and Q be nonempty, closed, and convex subsets of a reflexive Banach
space E, and Let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. Let Fi : C ×
C →R, i = 1, 2, 3, . . . , m be bifunctions satisfying conditions (A1)–(A4) such that Resf

Fi are
Li-Lipschitz for 1 ≤ i ≤ m. Assume 	 =

⋂m
i=1 EP(Fi) = ∅. Let a sequence {xn} be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ C, C = C1;

wn = xn + γn(xn – xn–1);

y1n = ∇f ∗(βn∇fwn + (1 – βn)∇f Resf
F1 wn);

yin = ∇f ∗(βn∇f Resf
Fi–1 wn + (1 – βn)∇f Resf

Fi y(i–1)n);

Cin = {v ∈ Cn : Df (v, yin) ≤ Df (v, wn)};
Cn+1 =

⋂m
i=1 Cin;

xn+1 = �Cn+1
f x0,

(4.1)

where {γn}, {βn} ⊂ (a, b), 0 < a < b < 1, are sequences and Resf
Fi are the resolvents of Fi,

i ∈ {1, 2, . . . , m}. Then the sequence {xn} converges to z = P	
f x0.

Proof Putting Si = Resf
Fi in Theorem 3.1, we get the desired result. �

4.2 Application to the maximal monotone operator
A set-valued mapping B ⊂ E × E∗ with domain D(B) = {x ∈ E : Bx = ∅} and range R(B) =
∪{Bx : x ∈ D(B)} is said to be monotone if 〈x – y, x∗ – y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ B,
see, for example, [2]. A monotone mapping B ⊂ E × E∗ is said to be maximal monotone
if its graph G(B) = {(x, y) : y ∈ Bx} is not properly contained in the graph of any other
monotone mapping. We know that if B is maximal monotone, then the zero of B, B–1(0) =
{x ∈ E : 0 ∈ Bx} is closed and convex. Define the resolvent of B, ResB

f : E → 2E by

ResB
f x = (∇f + B)–1 ◦ ∇fx.

We know the following (see [5]):
(1) ResB

f is single valued;
(2) Fix(ResB

f ) = B–10.
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Lemma 4.3 ([21]) Let B : E → 2E∗ be a maximal monotone mapping such that B–1(0) = ∅.
Then for all x ∈ E and q ∈ B–1(0), we have

Df
(
q, ResB

f x
)

+ Df
(
Resf x, x

) ≤ Df (q, x).

Theorem 4.4 Let C be a nonempty, closed, and convex subset of a reflexive Banach space
E, and let f : E → R be a strongly coercive Legendre function which is bounded, uni-
formly Fréchet differentiable and totally convex on bounded subsets of E. Let Bi : E → 2E∗

i = 1, 2, 3, . . . , m be maximal monotone operators such that ResBi
f are Li-Lipschitz for

1 ≤ i ≤ m. Assume 	 =
⋂m

i=1 Bi
–1(0) = ∅. Let a sequence {xn} be generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0, x1 ∈ C, C = C1;

wn = xn + γn(xn – xn–1);

y1n = ∇f ∗(βn∇fwn + (1 – βn)∇f ResB1
f wn);

yin = ∇f ∗(βn∇f ResBi–1
f wn + (1 – αn)∇f ResBi

f y(i–1)n), 2 ≤ i ≤ m;

Cin = {v ∈ Cn : Df (v, yin) ≤ Df (v, wn)};
Cn+1 =

⋂m
i=1 Cin;

xn+1 = �Cn+1
f x0,

(4.2)

where {γn}, {βn} ⊂ (a, b), 0 < a < b < 1, are sequences and ResBi
f are the resolvents of Bi.

Then the sequence {xn} converges to a point z ∈ 	, where z = P	
f x0.

Proof Putting Si = ResBi
f in Theorem 3.1, we get the desired result. �
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