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Abstract
In this paper, we introduce the class of rectangular quasi b-metric spaces as a
generalization of rectangular metric spaces, rectangular quasi-metric spaces,
rectangular b-metric spaces, define generalized (α,ψ )-contraction mappings and
study fixed point results for the maps introduced in the setting of rectangular quasi
b-metric spaces. Our results extend and generalize related fixed point results in the
literature, in particular, the works of Karapinar and Lakzian (J. Funct. Spaces
2014:914398, 2014), Alharbi et al. (J. Math. Anal. 9(3):47–60, 2018), and Khuangsatung
et al. (Thai J. Math. 2020:89–101, 2020) from rectangular quasi metric space and
rectangular b-metric space to rectangular quasi b-metric spaces. We also provide
examples in support of our main findings. Furthermore, we applied one of our results
to determine the existence of a solution to an integral equation.

Keywords: Fixed points; Rectangular quasi b-metric spaces; Generalized
(α,ψ )-contraction mappings

1 Introduction
Fixed point theory is an important tool in the study of nonlinear analysis. It is considered to
be the key connection between pure and applied mathematics. It is also widely applied in
different fields of study such as Economics, Chemistry, Physics, and almost all Engineering
areas. The contraction mapping principle introduced by Banach [4] has a wide range of
applications in fixed point theory. The Banach contraction principle has been extended
and generalized in different directions by different researchers. For more details see ([5–
22]). In 2014, Lin et al. [23] introduced the concept of rectangular quasi metric space and
proved the fixed point theorem for the Meir-Keeler contractive mappings in the setting of
rectangular quasi metric Spaces.

In 2014, Karapinar and Lakzian [1] defined (α,ψ)-contractive mapping in rectangular
quasi metric space and proved fixed point theorems for the maps introduced. In 2015,
George et al. [24] announced the notion of rectangular b-metric space as a generaliza-
tion of metric, b-metric space, and rectangular metric space; many authors initiated and
studied a lot of existing fixed point theorems in such spaces. Alharbi et al. [2] defined
(α)-contractive mapping and proved fixed point theorems in rectangular b-metric space.
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Afterward, several research papers were published on the existence of fixed point results
for single-valued and multi-valued mappings in the setting of rectangular quasi metric
Spaces.

Very recently, Khuangsatung et al. [3] introduced the notion of ψ-contraction and stud-
ied fixed point results for ψ-contraction mappings in complete rectangular quasi metric
spaces and proved the existence and uniqueness of fixed points.

Inspired and motivated by the works of Karapinar and Lakzian [1], Alharbi et al. [2], and
Khuangsatung et al. [3], the main purpose of this paper is to establish fixed point results
for generalized (α,ψ)-contraction mappings in the setting of rectangular quasi b-metric
spaces.

2 Preliminaries
In what follows, we recall basic definition and results on the topics for the sake of com-
pleteness.

Notation We need the following symbols and class of functions to prove certain results
of this section:

• R+ = [0,∞);
• R is the set of all real numbers;
• N is the set of all natural numbers;
• � = {ψ : R+ → R+, such that, ψ is non-decreasing, continuous,

∑∞
k=1 skψk(t) < ∞,

sψ(t) < t for t > 0 and ψ(0) = 0 if and only if t = 0, where ψk is the kth iterate of ψ and
s ≥ 1}.

Definition 1 ([6]) Let X be a nonempty set and s ≥ 1 be a given real number. A function
d : X × X → R+ is a b-metric if and only if for all x, y, z ∈ X, the following conditions are
satisfied:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].
The pair (X, d) is called a b-metric space.

It should be noted that the class of b-metric spaces is effectively larger than that of metric
spaces since a b-metric is a metric when s = 1.

Definition 2 ([7]) Let X be a nonempty set and d : X × X → R+ be a function satisfying
the following conditions:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and all distinct point u, v ∈ X\{x, y}.
Then d is called a rectangular metric on X, and the pair (X, d) is called a rectangular metric
space.

Definition 3 ([11]) Let X be a nonempty set, s ≥ 1 be a given real number, and d : X ×X →
R+ be a function satisfying the following conditions:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
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(iii) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] for all x, y ∈ X and all distinct point
u, v ∈ X\{x, y}.

Then d is called a rectangular b-metric on X, and the pair (X, d) is called a rectangular
b-metric space.

Note: Every metric space is a rectangular metric space, and every rectangular metric
space is a rectangular b-metric space with coefficient s = 1.

It is evident that any rectangular metric space is a rectangular b-metric space, but the
converse is not true in general.

We give an example to show that not every rectangular b-metric space is a rectangular
metric space.

Example 1 ([11]) Let X = N , α > 0 and d : X × X → R+ such that:
(i) d(x, y) = d(y, x) for all x, y ∈ X ;

(ii) d(x, y) = 0, if and only if x = y;
(iii) d(x, y) = 4α, if x, y ∈ {1, 2} and x �= y;
(iv) d(x, y) = α, if x, y /∈ {1, 2} and x �= y.

Then (X, d) is a rectangular b-metric space with coefficient s = 4
3 > 1, but (X, d) is not a

rectangular metric space, as d(1, 2) = 4α � 3α = d(1, 3) + d(3, 4) + d(4, 2).

The following is the definition of the notion of rectangular quasi metric space.

Definition 4 ([23]) Let X be a nonempty set and d : X × X → R+ be a function satisfying
the following conditions:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and all distinct point u, v ∈ X\{x, y}.

Then d is called a rectangular quasi metric on X, and the pair (X, d) is called a rectangular
quasi metric space.

Note: Any rectangular metric space is a rectangular quasi metric space, but the converse
is not true in general.

We give an example to show that not every rectangular quasi metric on a set X is a
rectangular metric space on X.

Example 2 ([23]) Let X = {t, 2t, 3t, 4t, 5t} with t > 0 as a constant, α > 0 and define d :
X × X → R+ by

(i) d(x, x) = 0 for all x ∈ X ;
(ii) d(t, 2t) = d(2t, t) = 3α;

(iii) d(t, 3t) = d(2t, 3t) = d(3t, t) = d(3t, 2t) = α;
(iv) d(t, 4t) = d(2t, 4t) = d(3t, 4t) = d(4t, t) = d(4t, 2t) = d(4t, 3t) = 2α;
(v) d(t, 5t) = d(2t, 5t) = d(3t, 5t) = d(4t, 5t) = 3

2α;
(vi) d(5t, t) = d(5t, 2t) = d(5t, 3t) = d(5t, 4t) = 5

4α.
Then (X, d) is a rectangular quasi metric space, but for the fact that d(t, 5t) = 3

2α � 5
4α =

d(5t, t), (X, d) is not a rectangular metric space.

Definition 5 ([25]) Let X be a nonempty set, T : X −→ X be a self-mapping of a set X and
α : X × X → R+. Then T is called an α-admissible if x, y ∈ X,

α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.
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Definition 6 ([3]) Let (X, d) be a rectangular quasi metric space and {xn} be a sequence
in X and x ∈ X. Then

(i) {xn} is called convergent to x ∈ X if limn−→∞ d(xn, x) = 0 = limn−→∞ d(x, xn) and this
fact is represented by limn−→∞ xn = x or xn → x as n → ∞.

(ii) {xn} is called the Cauchy sequence in (X, d) if
limn−→∞ d(xn, xn+p) = 0 = limn−→∞ d(xn+p, xn) for all p > 0.

(iii) (X, d) is called complete rectangular quasi metric space if every Cauchy sequence in
X converges to some x ∈ X .

3 Main results
In this section, we introduce rectangular quasi b-metric spaces, define generalized (α,ψ)-
contraction mappings, and study fixed point results for the mappings introduced in the
setting of rectangular quasi b-metric spaces.

We start by introducing the notion of a rectangular quasi b-metric space as follows:

Definition 7 Let X be a nonempty set, s ≥ 1, and suppose that the mapping d : X × X →
R+ satisfies the following conditions:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] for all x, y ∈ X and all distinct points

u, v ∈ X\{x, y}.
Then d is called a rectangular quasi b-metric on X, and the pair (X, d) is called a rectan-
gular quasi b-metric space.

Now, we give an example of a rectangular quasi b-metric space.

Example 3 Let X = A ∪ B, where A = { 1
2 , 1

3 , 1
4 , 1

5 } and B = [1, 2]. Define the generalized
metric d on X as follows

d( 1
2 , 1

3 ) = d( 1
4 , 1

5 ) = 0.3; d( 1
3 , 1

2 ) = d( 1
5 , 1

4 ) = d( 1
3 , 1

4 ) = 0.1;
d( 1

2 , 1
4 ) = d( 1

3 , 1
5 ) = 0.6; d( 1

4 , 1
2 ) = d( 1

5 , 1
3 ) = 0.4;

d( 1
2 , 1

5 ) = 1.05; d( 1
5 , 1

2 ) = d( 1
4 , 1

3 ) = 0.5;
d( 1

2 , 1
2 ) = d( 1

3 , 1
3 ) = d( 1

4 , 1
4 ) = d( 1

5 , 1
5 ) = 0;

and d(x, y) = |x – y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A.
Then (X, d) is a rectangular quasi b-metric space with coefficient s = 3

2 > 1. Indeed Con-
dition (i) in Definition 7 trivially holds.

Now, we show condition (ii) in Definition 7 holds:
Case (i) If x, y ∈ A, then

d(x, y) = d( 1
2 , 1

3 ) = 0.3 ≤ s[d( 1
2 , u) + d(u, v) + d(v, 1

3 )] when u, v ∈ { 1
4 , 1

5 }.
d(x, y) = d( 1

3 , 1
2 ) = 0.1 ≤ s[d( 1

3 , u) + d(u, v) + d(v, 1
2 )] when u, v ∈ { 1

4 , 1
5 }.

d(x, y) = d( 1
3 , 1

4 ) = 0.1 ≤ s[d( 1
3 , u) + d(u, v) + d(v, 1

4 )] when u, v ∈ { 1
2 , 1

5 }.
d(x, y) = d( 1

4 , 1
3 ) = 0.5 ≤ s[d( 1

4 , u) + d(u, v) + d(v, 1
3 )] when u, v ∈ { 1

2 , 1
5 }.

d(x, y) = d( 1
4 , 1

5 ) = 0.3 ≤ s[d( 1
4 , u) + d(u, v) + d(v, 1

4 )] when u, v ∈ { 1
2 , 1

3 }.
d(x, y) = d( 1

5 , 1
4 ) = 0.1 ≤ s[d( 1

5 , u) + d(u, v) + d(v, 1
4 )] when u, v ∈ { 1

2 , 1
3 }.

d(x, y) = d( 1
2 , 1

4 ) = 0.6 ≤ s[d( 1
2 , u) + d(u, v) + d(v, 1

4 )] when u, v ∈ { 1
3 , 1

5 }.
d(x, y) = d( 1

4 , 1
2 ) = 0.4 ≤ s[d( 1

4 , u) + d(u, v) + d(v, 1
2 )] when u, v ∈ { 1

3 , 1
5 }.

d(x, y) = d( 1
2 , 1

5 ) = 1.05 ≤ s[d( 1
2 , u) + d(u, v) + d(v, 1

5 )] when u, v ∈ { 1
3 , 1

4 }.
d(x, y) = d( 1

5 , 1
2 ) = 0.5 ≤ s[d( 1

5 , u) + d(u, v) + d(v, 1
2 )] when u, v ∈ { 1

3 , 1
4 }.

d(x, y) = d( 1
3 , 1

5 ) = 0.6 ≤ s[d( 1
3 , u) + d(u, v) + d(v, 1

5 )] when u, v ∈ { 1
2 , 1

4 }.
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d(x, y) = d( 1
5 , 1

3 ) = 0.4 ≤ s[d( 1
5 , u) + d(u, v) + d(v, 1

3 )] when u, v ∈ { 1
2 , 1

4 }.
Case (ii) If x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A, then

d(x, y) = |x – y| ≤ s|x – u| + |u – v| + |v – y| for all distinct points u, v ∈ X\{x, y}.
But (X, d) is neither a metric space, a rectangular metric space nor a rectangular quasi

metric space because the triangle inequality, symmetry, and rectangular inequality fail
respectively as follows:

d( 1
2 , 1

4 ) = 0.6 � 0.4 = d( 1
2 , 1

3 ) + d( 1
3 , 1

4 ) = 0.3 + 0.1,
d( 1

2 , 1
4 ) = 0.6 �= 0.4 = d( 1

4 , 1
2 ), and

d( 1
2 , 1

5 ) = 1.05 � 0.7 = d( 1
2 , 1

3 ) + d( 1
3 , 1

4 ) + d( 1
4 , 1

5 ).

We next give the definitions of rectangular quasi b-convergence of a sequence and com-
pleteness of rectangular quasi b-metric spaces.

Definition 8 Let (X, d) be a rectangular quasi b-metric space and {xn} be a sequence in X
and x ∈ X. Then

(i) {xn} is said to be convergent to x if limn−→∞ d(xn, x) = 0 = limn−→∞ d(x, xn) and this
fact is represented by limn−→∞ xn = x or xn → x as n → ∞.

(ii) {xn} is called the Cauchy sequence in (X, d) if
limn−→∞ d(xn, xn+p) = 0 = limn−→∞ d(xn+p, xn) for all p > 0.

(iii) (X, d) is called complete rectangular quasi b-metric space if every Cauchy sequence
in X converges to some x ∈ X .

Remark 1 Let (X, d) be a rectangular quasi b-metric space. For x ∈ X, we define the open
ball with center x and radius r > 0 by

Br(x, r) =
{

y ∈ X : max
{

d(x, y), d(y, x)
}

< r
}

.

In general, an open ball in a rectangular metric space need not be an open set. A rectangu-
lar quasi b-metric space need not be continuous. A convergent sequence in a rectangular
quasi b-metric space need not be a Cauchy. A rectangular quasi b-metric space need not
be a Hausdorff, and hence the uniqueness of limits cannot be guaranteed.

Now, we give an example to support Remark 1.

Example 4 Let X = A ∪ B, where A = { 1
n , n ∈ N}, and B = {0, 3}. Define the function d :

X × X → R+ such that

d(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x = y;
9
2 if x, y ∈ A;
1
n if x ∈ A, y ∈ B;

1
n+1 if x ∈ B, y ∈ A;

2 if x, y ∈ B.

The function d is a rectangular quasi b-metric space with s = 2. But d is neither a rectan-
gular quasi metric nor a rectangular b-metric space because

d( 1
2 , 1

3 ) = 9
2 � 11

4 = d( 1
2 , 0) + d(0, 3) + d(3, 1

3 ) and
d( 1

3 , 0) = 1
3 �= 1

4 = d(0, 1
3 ).
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It is also clear that
limn−→∞ d( 1

2n , 0) = limn−→∞ 1
n = 0 = limn−→∞ d(0, 1

2n ) = limn−→∞ 1
n+1 and

limn−→∞ d( 1
2n , 3) = limn−→∞ 1

n = 0 = limn−→∞ d(3, 1
2n ) = limn−→∞ 1

n+1 ,
that is, the sequence { 1

2n } has two different limits the numbers 0 and 3.
In addition, the sequence { 1

2n } is rectangular quasi b-convergent, but not a rectangular
quasi b-Cauchy sequence, because

limn−→∞ d(xn, xn+p) = limn−→∞ d( 1
2n , 1

2n+p ) = 9
2 = limn−→∞ d(xn+p, xn) =

limn−→∞ d( 1
2n+p , 1

2n ).

In the following, we define an (α,ψ)-contraction mapping in the setting of rectangular
quasi b-metric space.

Definition 9 Let (X, d) be a rectangular quasi b-metric space and T : X −→ X be a given
mapping. We say that T is a generalized (α,ψ)-contraction mapping if there exist two
functions α : X × X → R+ and ψ ∈ � such that

α(x, y)d(Tx, Ty) ≤ ψ
(
M(x, y)

)
for all x, y ∈ X, (1)

where M(x, y) = max{d(x, y), d(x,Tx)d(x,Ty)
1+d(x,Ty)+d(y,Tx) , d(x, Tx), d(y, Ty)}.

Now, we state and prove the following fixed point theorem.

Theorem 1 Let (X, d) be a complete rectangular quasi b-metric space and T : X −→ X be
generalized (α,ψ)- contraction mapping. Suppose that

(i) T is an α-admissible mapping;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, α(Tx0, x0) ≥ 1, α(x0, T2x0) ≥ 1, and

α(T2x0, x0) ≥ 1;
(iii) T is continuous.

Then T has a fixed point.

Proof By (ii) above, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and α(Tx0, x0) ≥ 1. Now, we
construct a sequence {xn} in X by xn+1 = Txn = Tn+1x0 for all n ≥ 0. Suppose that xn0 = xn0+1

for some n0 ≥ 0. Since Txn0 = xn0+1, the point u = xn0 forms a fixed point of T . Hence, that
completes the proof. We assume that xn �= xn+1 for all n ≥ 0.

Since T is α-admissible, we have α(x0, x1) = α(x0, Tx0) ≥ 1 ⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.
Utilizing the expression above, we obtain that

α(xn, xn+1) ≥ 1, for all n = 0, 1, . . . , (2)

and α(x1, x0) = α(Tx0, x0) ≥ 1 ⇒ α(Tx1, Tx0) = α(x2, x1) ≥ 1. Utilizing the expression above,
we obtain that

α(xn+1, xn) ≥ 1, for all n = 0, 1, . . . . (3)

In a similar way, we derive that α(x0, x2) = α(x0, T2x0) ≥ 1 ⇒ α(Tx0, Tx2) = α(x1, x3) ≥ 1.
Recursively, we get that

α(xn, xn+2) ≥ 1, for all n = 0, 1, . . . . (4)
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Analogously, we can easily derive that

α(xn+2, xn) ≥ 1, for all n = 0, 1, . . . . (5)

Step 1: We show that limn−→∞ d(xn, xn+1) = 0 = limn−→∞ d(xn+1, xn) and limn−→∞ d(xn,
xn+2) = 0 = limn−→∞ d(xn+2, xn).

Regarding (1), we have

d(xn, xn+1) = d(Txn–1, Txn)

≤ α(xn–1, xn)d(Txn–1, Txn)

≤ ψ
(
M(xn–1, xn)

)
, for all n ≥ 1, (6)

where

M(xn–1, xn)

= max

{

d(xn–1, xn),
d(xn–1, Txn–1)d(xn–1, Txn)

1 + d(xn–1, Txn) + d(xn, Txn–1)
, d(xn–1, Txn–1), d(xn, Txn)

}

= max

{

d(xn–1, xn),
d(xn–1, xn)d(xn–1, xn+1)

1 + d(xn–1, xn+1) + d(xn, xn)
, d(xn–1, xn), d(xn, xn+1)

}

= max
{

d(xn–1, xn), d(xn, xn+1)
}

.

If M(xn–1, xn) = d(xn, xn+1), then from (6), we get

d(xn, xn+1) ≤ ψ
(
d(xn, xn+1)

) ≤ sψ
(
d(xn, xn+1)

)
< d(xn, xn+1),

which is a contradiction. Hence, M(xn–1, xn) = d(xn–1, xn).
We let en = d(xn, xn+1), ln = d(xn+1, xn), e∗

n = d(xn, xn+2) and l∗n = d(xn+2, xn) for all n ≥ 0.
By using (6), we get

en = d(xn, xn+1) = d(Txn–1, Txn) ≤ ψ
(
d(xn–1, xn)

)

= ψ
(
d(Txn–2, Txn–1)

)

≤ ψ2(d(xn–2, xn–1)
)

...

≤ ψn(d(x0, x1)
)

= ψn(e0) −→ 0 as n −→ ∞. (7)

Also,

ln = d(xn+1, xn) = d(Txn, Txn–1)

≤ α(xn, xn–1)d(Txn, Txn–1)

≤ ψ
(
M(xn, xn–1)

)
, for all n ≥ 1, (8)

where

M(xn, xn–1)

= max

{

d(xn, xn–1),
d(xn, Txn)d(xn, Txn–1)

1 + d(xn, Txn–1) + d(xn–1, Txn)
, d(xn, Txn), d(xn–1, Txn–1)

}
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= max

{

d(xn, xn–1),
d(xn, xn+1)d(xn, xn)

1 + d(xn, xn) + d(xn–1, xn+1)
, d(xn, xn+1), d(xn–1, xn)

}

= max
{

d(xn, xn–1), d(xn, xn+1), d(xn–1, xn)
}

.

We consider three different cases:
Case (i) If M(xn, xn–1) = d(xn–1, xn), then by (8), we get

d(xn+1, xn) ≤ ψ
(
d(xn–1, xn)

) ≤ ψn(d(x0, x1)
)

= ψn(e0) −→ 0 as n −→ ∞.

Case (ii) If M(xn, xn–1) = d(xn, xn+1), then by (8), we get

d(xn+1, xn) ≤ ψ
(
d(xn, xn+1)

) ≤ ψn(d(x0, x1)
)

= ψn(e0) −→ 0 as n −→ ∞.

Case (iii) If M(xn, xn–1) = d(xn, xn–1), then by (8), we get

ln = d(xn+1, xn) = d(Txn, Txn–1) ≤ ψ
(
d(xn, xn–1)

)

= ψ
(
d(Txn–1, Txn–2)

)

≤ ψ2(d(xn–1, xn–2)
)

...

≤ ψn(d(x1, x0)
)

= ψn(l0) −→ 0 as n −→ ∞.

From Case (i)-Case (iii), we get

ln = d(xn+1, xn) −→ 0 as n −→ ∞. (9)

From (7) and (9), we deduce that

lim
n−→∞ d(xn, xn+1) = 0 = lim

n−→∞ d(xn+1, xn). (10)

Now, we show limn−→∞ d(xn, xn+2) = 0 = limn−→∞ d(xn+2, xn).

e∗
n = d(xn, xn+2) = d(Txn–1, Txn+1)

≤ α(xn–1, xn+1)d(Txn–1, Txn+1)

≤ ψ
(
M(xn–1, xn+1)

)
, for all n ≥ 1 (11)

where

M(xn–1, xn+1) = max

{

d(xn–1, xn+1),
d(xn–1, Txn–1)d(xn–1, Txn+1)

1 + d(xn–1, Txn+1) + d(xn+1, Txn–1)
, d(xn–1, Txn–1),

d(xn+1, Txn+1)
}

= max

{

d(xn–1, xn+1),
d(xn–1, xn)d(xn–1, xn+2)

1 + d(xn–1, xn+2) + d(xn+1, xn)
, d(xn–1, xn),

d(xn+1, xn+2)
}
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= max
{

d(xn–1, xn+1), d(xn–1, xn), d(xn+1, xn+2)
}

.

We consider three different cases:
Case (i) If M(xn, xn–1) = d(xn–1, xn+1), then by (11), we get

d(xn, xn+2) ≤ ψ
(
d(xn–1, xn+1)

) ≤ ψn–1(d(x0, x2)
)

= ψn–1(e∗
0
) −→ 0 as n −→ ∞.

Case (ii) If M(xn–1, xn+1) = d(xn–1, xn), then by (11), we get

d(xn, xn+2) ≤ ψ
(
d(xn–1, xn)

) ≤ ψn–1(d(x0, x1)
)

= ψn–1(e0) −→ 0 as n −→ ∞.

Case (iii) If M(xn–1, xn+1) = d(xn+1, xn+2), then by (11), we get d(xn, xn+2) ≤ ψ(d(xn+1,
xn+2)) ≤ ψn+1(d(x0, x1)) = ψn+1(e0) −→ 0 as n −→ ∞.

From Case (i)-Case (iii), we get

e∗
n = d(xn, xn+2) −→ 0 as n −→ ∞, (12)

d(xn+2, xn) = d(Txn+1, Txn–1) ≤ α(xn+1, xn–1)d(Txn+1, Txn–1) ≤ ψ
(
M(xn+1, xn–1)

)
,

for all n ≥ 1, (13)

where

M(xn+1, xn–1) = max

{

d(xn+1, xn–1),
d(xn+1, Txn+1)d(xn+1, Txn–1)

1 + d(xn+1, Txn–1) + d(xn–1, Txn+1)
, d(xn+1, Txn+1),

d(xn–1, Txn–1)
}

= max

{

d(xn+1, xn–1),
d(xn+1, xn+2)d(xn+1, xn)

1 + d(xn+1, xn) + d(xn–1, xn+2)
, d(xn+1, xn+2),

d(xn–1, xn)
}

= max
{

d(xn+1, xn–1), d(xn+1, xn+2), d(xn–1, xn)
}

.

We consider three different cases:
Case (i) If M(xn+1, xn–1) = d(xn+1, xn–1), then by (13), we get

d(xn+2, xn) ≤ ψ
(
d(xn+1, xn–1)

) ≤ ψn+1(d(x2, x0)
)

= ψn+1(l∗0
) −→ 0 as n −→ ∞.

Case (ii) If M(xn+1, xn–1) = d(xn+1, xn+2), then by (13), we get

d(xn+2, xn) ≤ ψ
(
d(xn+1, xn+2)

) ≤ ψn+1(d(x0, x1)
)

= ψn+1(e0) −→ 0 as n −→ ∞.

Case (iii) If M(xn+1, xn–1) = d(xn–1, xn), then by (13), we get

d(xn+2, xn) ≤ ψ
(
d(xn–1, xn)

) ≤ ψn–1(d(x0, x1)
)

= ψn–1(e0) −→ 0 as n −→ ∞. (14)
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From (12) and (14), we deduce that

lim
n−→∞ d(xn, xn+2) = 0 = lim

n−→∞ d(xn+2, xn).

Step 2: We shall prove that {xn} is a rectangular quasi b-Cauchy sequence, that is,

lim
n−→∞ d(xn, xn+p) = 0 = lim

n−→∞ d(xn+p, xn) for all p ∈ N .

Case (i) Suppose that for some n, m ∈ N with m > n, we have xn = xm, by (10)

d(xn, xn+1) = d(xn, Txn) = d(xm, Txm) = d(xm, xm+1)

≤ ψm–n(d(xn, xn+1)
)

≤ sψ
(
d(xn, xn+1)

)
< d(xn, xn+1),

which is a contradiction.
Case (ii) Suppose that for some n, m ∈ N with n > m, we have xn = xm, by (10)

d(xm+1, xm) = d(Txm, xm) = d(Txn, xn) = d(xn+1, xn)

≤ ψn–m(
d(xm+1, xm)

)

≤ sψ
(
d(xm+1, xm)

)
< d(xm+1, xm),

which is a contradiction.
Therefore, from Case (i) and Case (ii) xn �= xm for m �= n.
The case p = 1 and p = 2 is proved. Now we take p ≥ 3; arbitrary, we distinguish four

different cases:
Case (i) Let p = 2m, where m ≥ 2. By the rectangular inequality, we get

d(xn, xn+2m) ≤ s
[
d(xn, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+2m)

]

≤ sd(xn, xn+2) + sd(xn+2, xn+3) + s2[d(xn+3, xn+4) + d(xn+4, xn+5)

+ d(xn+5, xn+2m)
]

= sd(xn, xn+2) + sd(xn+2, xn+3) + s2d(xn+3, xn+4) + s2d(xn+4, xn+5)

+ s2d(xn+5, xn+2m)
...

≤ sd(xn, xn+2) + s3d(xn+2, xn+3) + s4d(xn+3, xn+4) + s5d(xn+4, xn+5) + · · ·
+ s2md(xn+2m–1, xn+2m)

= sd(xn, xn+2) +
n+2m–1∑

k=n+2

sk–n+1d(xk , xk+1)

≤ sd(xn, xn+2) +
n+2m–1∑

k=n+2

skψk(e0)

≤ sd(xn, xn+2) +
∞∑

k=n+2

skψk(e0).

By (14), limn−→∞ d(xn, xn+2) = 0 and
∑∞

k=n+2 skψk(e0) −→ 0 as n −→ ∞.
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Therefore,

lim
n,m−→∞ d(xn, xn+2m) = 0.

Case (ii) Let p = 2m + 1, where m ≥ 1. By the rectangular inequality, we get

d(xn, xn+2m+1) ≤ s
[
d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+2m+1)

]

≤ sd(xn, xn+1) + sd(xn+1, xn+2) + s2[d(xn+2, xn+3) + d(xn+3, xn+4)

+ d(xn+4, xn+2m+1)
]

= sd(xn, xn+1) + sd(xn+1, xn+2) + s2d(xn+2, xn+3) + s2d(xn+3, xn+4)

+ s2d(xn+4, xn+2m+1)
...

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3) + s4d(xn+3, xn+4) + · · ·
+ s2m+1d(xn+2m, xn+2m+1)

=
n+2m∑

k=n

sk–n+1d(xk , xk+1)

=
n+2m∑

k=n

sk–n+1ψk(e0)

≤
n+2m∑

k=n

skψk(e0)

≤
∞∑

k=n

skψk(e0) −→ 0 as n −→ ∞.

Thus, we obtain

lim
n,m−→∞ d(xn, xn+2m+1) = 0.

Case (iii) Let p = 2m, where m ≥ 2. By the rectangular inequality, we get

d(xn+2m, xn) ≤ s
[
d(xn+2m, xn+2m–2) + d(xn+2m–2, xn+2m–3) + d(xn+2m–3, xn)

]

≤ sd(xn+2m, xn+2m–2) + sd(xn+2m–2, xn+2m–3) + s2[d(xn+2m–3, xn+2m–4)

+ d(xn+2m–4, xn+2m–5) + d(xn+2m–5, xn)
]

= sd(xn+2m, xn+2m–2) + sd(xn+2m–2, xn+2m–3) + s2d(xn+2m–3, xn+2m–4)

+ s2d(xn+2m–4, xn+2m–5) + s2d(xn+2m–5, xn)
...

≤ sd(xn+2m, xn+2m–2) + sn+2m–2d(xn+2m–2, xn+2m–3)

+ sn+2m–3d(xn+2m–3, xn+2m–4) + sn+2m–4d(xn+2m–4, xn+2m–5) + · · ·
+ sn–1d(xn–1, xn)
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= sd(xn+2m, xn+2m–2) +
n+2m–1∑

k=n–1

skd(xk , xk+1)

≤ sd(xn+2m, xn+2m–2) +
n+2m–1∑

k=n–1

skψk(l∗0
)

≤ sd(xn+2m, xn+2m–2) +
∞∑

k=n–1

skψk(l∗0
)
.

Since limm,n−→∞ d(xn+2m, xn+2m–2) = 0 and
∑∞

k=n–1 skψk(l∗0) −→ 0 as n −→ ∞, we have

lim
n,m−→∞ d(xn+2m, xn) = 0.

Case (iv): Let p = 2m + 1, where m ≥ 1. By the rectangular inequality, we get

d(xn+2m+1, xn) ≤ s
[
d(xn+2m+1, xn+2m) + d(xn+2m, xn+2m–1) + d(xn+2m–1, xn)

]

≤ sd(xn+2m+1, xn+2m) + sd(xn+2m, xn+2m–1) + s2[d(xn+2m–1, xn+2m–2)

+ d(xn+2m–2, xn+2m–3) + d(xn+2m–3, xn)
]

= sd(xn+2m+1, xn+2m) + sd(xn+2m, xn+2m–1) + s2d(xn+2m–1, xn+2m–2)

+ s2d(xn+2m–2, xn+2m–3) + s2d(xn+2m–3, xn)
...

≤ sn+2m+1d(xn+2m+1, xn+2m) + sn+2md(xn+2m, xn+2m–1)

+ sn+2m–1d(xn+2m–1, xn+2m–2) + sn+2m–2d(xn+2m–2, xn+2m–3)

+ · · · + sn+1d(xn+1, xn)

=
n+2m∑

k=n+1

skd(xk+1, xk)

=
n+2m∑

k=n+1

sk–n+1ψk(l0)

≤
n+2m∑

k=n+1

skψk(l0)

≤
∞∑

k=n+1

skψk(l0) −→ 0 as n −→ ∞.

Thus, we obtain

lim
n,m−→∞ d(xn+2m+1, xn) = 0.

Finally, from Case (i)-Case (iv), we get limn−→∞ d(xn, xn+p) = 0 = limn−→∞ d(xn+p, xn) for all
p ≥ 3.

Thus, {xn} is a rectangular quasi b-Cauchy sequence in (X, d).
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Since X is a complete rectangular quasi b-metric space, there exists u ∈ X such that

lim
n−→∞ xn = u, i.e., lim

n−→∞ d(xn, u) = 0 = lim
n−→∞ d(u, xn). (15)

Now, we shaw that u is a fixed point of T .
Since T is continuous, from (15), we have u = limn−→∞ xn+1 = limn−→∞ T(xn) =

T(limn−→∞ xn) = Tu, which gives u = Tu.
Thus, u is a fixed point of T . �

Now, we state the following fixed point theorem by removing the continuity assumption
of T from Theorem 1.

Theorem 2 Let (X, d) be a complete rectangular quasi b-metric space and T : X −→ X be
generalized (α,ψ)-contraction mapping. Suppose that

(i) T is an α-admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, α(Tx0, x0) ≥ 1, α(x0, T2x0) ≥ 1, and

α(T2x0, x0) ≥ 1;
(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn −→ x ∈ X as

n −→ ∞, then α(xn, x) ≥ 1 for all n ≥ 0.
Then, T has a fixed point.

Proof Following the proof of Theorems 1, we know that the sequence {xn} defined by
xn+1 = Txn for all n ≥ 0 is rectangular quasi b- converges to a point u in X. It is sufficient
to show that T admits a fixed point. By the rectangular inequality of rectangular quasi
b-metric space, property of ψ , and (iii), we have

d(u, Tu) ≤ sd(u, xn) + sd(xn, xn+1) + sd(xn+1, Tu)

= sd(u, xn) + sd(xn, xn+1) + sd(Txn, Tu)

≤ sd(u, xn) + sd(xn, xn+1) + sα(xn, u)d(Txn, Tu)

≤ sd(u, xn) + sd(xn, xn+1) + sψ
(
M(xn, u)

)
, (16)

where

M(xn, u) = max

{

d(xn, u),
d(xn, Txn)d(xn, Tu)

1 + d(xn, Tu) + d(u, Txn)
, d(xn, Txn), d(u, Tu)

}

= max

{

d(xn, u),
d(xn, xn+1)d(xn, Tu)

1 + d(xn, Tu) + d(u, xn+1)
, d(xn, xn+1), d(u, Tu)

}

= max
{

d(xn, u), d(xn, xn+1), d(u, Tu)
}

.

We consider three different cases:
Case (i) If M(xn, u) = d(xn, u), then by (16), we get

d(u, Tu) ≤ sd(u, xn) + sd(xn, xn+1) + sψ
(
d(xn, u)

)

< sd(u, xn) + sd(xn, xn+1) + d(xn, u).
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Letting n −→ ∞ in the above inequality, from (10) and (15), we get that

d(u, Tu) ≤ 0.

Case (ii) If M(xn, u) = d(xn, xn+1), then by (16), we get

d(u, Tu) ≤ sd(u, xn) + sd(xn, xn+1) + sψ
(
d(xn, xn+1)

)
s

< sd(u, xn) + sd(xn, xn+1) + d(xn, xn+1).

Letting n −→ ∞ in the above inequality, from (10) and (15), we get that

d(u, Tu) ≤ 0.

Case (iii) If M(xn, u) = d(u, Tu), then by (16), we get

d(u, Tu) ≤ sd(u, xn) + sd(xn, xn+1) + sψ
(
d(u, Tu)

)

< sd(u, xn) + sd(xn, xn+1) + d(u, Tu).

Letting n −→ ∞ in the above inequality, from (10) and (15), we get that 0 ≤ 0 it is general
truth.

Clearly d(u, Tu) ≥ 0, from Case (i)-Case (iii), we can obtain

d(u, Tu) = 0. (17)

Also,

d(Tu, u) ≤ sd(Tu, xn) + sd(xn, xn+1) + sd(xn+1, u)

= sd(Tu, Txn–1) + sd(xn, xn+1) + sd(xn+1, u)

≤ sα(u, xn–1)d(Tu, Txn–1) + sd(xn, xn+1) + sd(xn+1, u)

≤ sψ
(
M(u, xn–1)

)
+ sd(xn, xn+1) + sd(xn+1, u)), (18)

where

M(u, xn–1) = max

{

d(u, xn–1),
d(u, Tu)d(u, Txn–1)

1 + d(u, Txn–1) + d(xn–1, Tu)
, d(u, Tu), d(xn–1, Txn–1)

}

= max

{

d(u, xn–1),
d(u, Tu)d(u, xn)

1 + d(u, xn) + d(xn–1, Tu)
, d(u, Tu), d(xn–1, xn)

}

= max
{

d(u, xn–1), d(xn, xn+1), d(u, Tu)
}

.

We consider three different cases:
Case (i) If M(u, xn–1) = d(u, xn–1), then by (18), we get

d(Tu, u) ≤ sψ
(
d(u, xn–1)

)
+ sd(xn, xn+1) + sd(xn+1, u)

< d(u, xn–1) + sd(xn, xn+1) + sd(xn+1, u).
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Letting n −→ ∞ in the above equality, from (10) and (15), we get that

d(Tu, u) ≤ 0.

Case (ii) If M(u, xn–1) = d(xn, xn+1), then by (18), we get

d(Tu, u) ≤ sψ
(
d(xn, xn+1)

)
+ sd(xn, xn+1) + sd(xn+1, u)

< d(xn, xn+1) + sd(xn, xn+1) + sd(xn+1, u).

Letting n −→ ∞ in the above inequality, from (10) and (15), we get that

d(Tu, u) ≤ 0.

Case (iii) If M(u, xn–1) = d(u, Tu), then by (18), we get

d(Tu, u) ≤ sψ
(
d(u, Tu)

)
+ sd(xn, xn+1) + sd(xn+1, u)

< d(u, Tu) + sd(xn, xn+1) + sd(xn+1, u).

Letting n −→ ∞ in the above inequality, from (10), (15), and (17), we get that

d(Tu, u) ≤ 0.

Clearly d(u, Tu) ≥ 0, from Case (i)-Case (iii), we can obtain

d(Tu, u) = 0. (19)

From (17) and (19), it follows that d(u, Tu) = 0 = d(Tu, u). So that, Tu = u.
Thus, u is a fixed point of T . �

To assure the uniqueness of the fixed point of T , we will consider the following condition.

Property U For all x, y ∈ Fix(T), we have α(x, y) ≥ 1 and α(y, x) ≥ 1, where Fix(T) denotes
the set of all fixed points of T .

Theorem 3 Adding condition (U) to the hypothesis of Theorem 1 (res. Theorem 2), one
obtains uniqueness of the fixed point of T .

Proof From the proofs of Theorem 1 and Theorem 2, Fix(T) �= ∅. Suppose that u and v are
two distinct fixed points of T .

By condition (U), α(Tu, Tv) = α(u, v) ≥ 1 and α(Tv, Tu) = α(v, u) ≥ 1.
Thus, by α-admissibility of T and the above relation, we can obtain

d(u, v) ≤ α(u, v)d(u, v) = α(Tu, Tv)d(Tu, Tv) ≤ ψ
(
M(u, v)

)
,
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where

M(u, v) = max

{

d(u, v),
d(u.Tu)d(u, Tv)

1 + d(u, Tv) + d(v, Tu)
, d(u, Tu), d(v, Tv)

}

= max

{

d(u, v),
d(u.u)d(u, v)

1 + d(u, v) + d(v, u)
, d(u, u), d(v, v)

}

= d(u, v).

On account of the fact that sψ(t) < t, for all t > 0, and inequality above, we get that

d(u, v) ≤ ψ
(
d(u, v)

) ≤ sψ
(
d(u, v)

)
< d(u, v), (20)

which is a contradiction. Similarly,

d(v, u) ≤ α(v, u)d(v, u) = α(Tv, Tu)d(Tv, Tu) ≤ ψ
(
M(v, u)

)
,

where

M(v, u) = max

{

d(v, u),
d(v.Tv)d(v, Tu)

1 + d(v, Tu) + d(u, Tv)
, d(v, Tv), d(u, Tu)

}

= max

{

d(v, u),
d(v.v)d(v, u)

1 + d(v, u) + d(u, v)
, d(v, v), d(u, u)

}

= d(v, u).

On account of the fact that sψ(t) < t, for all t > 0, and inequality above, we get that

d(v, u) ≤ ψ
(
d(v, u)

) ≤ sψ
(
d(v, u)

)
< d(v, u), (21)

which is a contradiction. From (20) and (21), we get that d(u, v) = 0 = d(v, u). Therefore,
u = v.

Thus, T has a unique fixed point. �

Now, we give an example in support of Theorem 2.

Example 5 Let X = A ∪ B, where A = {0, 1
2 , 1

3 , 1
4 , 1

5 } and B = [1, 2]. We define d on X as
follows

d(0, 1
2 ) = d( 1

2 , 1
3 ) = d( 1

4 , 1
5 ) = 0.3; d(0, 1

3 ) = d( 1
3 , 1

2 ) = d( 1
5 , 1

4 ) = d( 1
3 , 1

4 ) = 0.1;
d(0, 1

4 ) = d( 1
4 , 1

2 ) = d( 1
3 , 1

5 ) = 0.6; d(0, 1
5 ) = d( 1

2 , 1
4 ) = d( 1

5 , 1
3 ) = 0.4;

d( 1
2 , 0) = d( 1

4 , 0) = d( 1
2 , 1

5 ) = 1.05; d( 1
3 , 0) = d( 1

5 , 0) = d( 1
5 , 1

2 ) = d( 1
4 , 1

3 ) = 0.5;
d(0, 0) = d( 1

2 , 1
2 ) = d( 1

3 , 1
3 ) = d( 1

4 , 1
4 ) = d( 1

5 , 1
5 ) = 0;

and d(x, y) = |x – y| if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A.
Then, (X, d) is a complete rectangular quasi b-metric space with coefficient s = 3

2 > 1.
We define T : X → X, ψ : R+ → R+ and α : X × X → R+ by

Tx =

⎧
⎨

⎩

1
3 , if x ∈ A,
1+x

2 , if x ∈ B;
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ψ(t) = 1
2 t for all t ∈ R+ and α : X × X → R+ as

α(x, y) =

⎧
⎨

⎩

1, if x, y ∈ B,

0, otherwise.

1. First we show that T is an α-admissible mapping.
To show this assume that x, y ∈ X such that α(x, y) ≥ 1. It yields that x, y ∈ B. Owing to

the definition of T , we have Tx, Ty ∈ B and hence α(Tx, Ty) ≥ 1. Thus, T is α-admissible.
2. Moreover, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, α(Tx0, x0) ≥ 1 and α(x0, T2x0) ≥

1, α(T2x0, x0) ≥ 1. In fact for x0 = 2, we have α(2, T2) = α(2, 3
2 ) = 1, α(T2, 2) = α( 3

2 , 2) = 1
and α(2, T22) = α(2, 5

4 ) = 1, α(T22, 2) = α( 5
4 , 2) = 1.

3. Now, we show that if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1, α(xn+1, xn) ≥ 1
for all n ∈ N , then {xn} ⊂ B.

If xn −→ u as n −→ ∞, we have d(xn, u) = |xn – u| −→ 0 as n −→ ∞ and d(u, xn) = |u –
xn| −→ 0 as n −→ ∞. Hence u ∈ B and hence α(xn, u) = 1 = α(u, xn).

4. Now, we show that T is a generalized (α,ψ)-contraction mapping.
Case (i) Let x, y ∈ X such that α(x, y) ≥ 1, so x, y ∈ A, We have Tx = 1

3 and Ty = 1
3 . Then

α(x, y)d(Tx, Ty) = 0.| 1
3 – 1

3 | = 0 ≤ ψ(M(x, y)).
Case (ii) Let x, y ∈ B, we have Tx = 1+x

2 and Ty = 1+y
2 . Then

α(x, y)d(Tx, Ty) = |Tx – Ty| =
∣
∣
∣
∣
1 + x

2
–

1 + y
2

∣
∣
∣
∣ =

1
2
|x – y| = ψ

(
d(x, y)

) ≤ ψ
(
M(x, y)

)
.

Case (iii) Let x ∈ A, y ∈ B or x ∈ B, y ∈ A, we have Tx = 1
3 and Ty = 1+y

2 or Tx = 1+x
2 and

Ty = 1
3 . Then

α(x, y)d(Tx, Ty) = 0, |Tx – Ty| = 0 ≤ ψ
(
M(x, y)

)
.

Note that for s = 3
2 and ψ(t) = 1

2 t, we have
∑∞

n=1 snψn(t) = t
∑∞

n=1( 3
4 )n < ∞ and 3

2ψ(t) < t
for all t > 0.

Hence all the conditions of Theorem 2 are satisfied. Here { 1
3 , 1} is the set of fixed point

of T , that is, we have two fixed points.

Now we give an example in support of Theorem 3.

Example 6 Let X = {0, 1, 2, 3} and d : X × X → R+ defined by
d(0, 1) = d(2, 0) = d(1, 0) = 1, d(0, 2) = d(3, 0) = 26,
d(1, 3) = d(2, 1) = d(3, 2) = 6, d(0, 3) = d(3, 1) = 7,
d(1, 2) = d(2, 3) = 8,
d(0, 0) = d(1, 1) = d(2, 2) = d(3, 3) = 0.

Then, (X, d) is a complete rectangular quasi b-metric space with s = 2 > 1. Note that d is
neither rectangular b-metric nor a rectangular quasi metric on X because

d(0, 1) = 1 �= d(1, 0) = 7 and
d(0, 2) = 26 � d(0, 1) + d(1, 3) + d(3, 2) = 1 + 6 + 6 = 13.
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Define the map T : X −→ X by T0 = T1 = T2 = 0 and T3 = 1. Let ψ(t) = t
4 for t ∈ R+ and

α(x, y) =

⎧
⎨

⎩

1, if x, y ∈ {0, 1, 2},
0, otherwise.

For s = 2, we have
∑∞

n=1 snψn(t) = t
∑∞

n=1( 1
2 )n < ∞ and 2ψ(t) < t for all t > 0.

We show that T is an α-admissible mapping.
Notice also that T is α-admissible. To show this assume that x, y ∈ X such that α(x, y) ≥ 1.

It yields that x, y ∈ {0, 1, 2}. Owing to the definition of T . We have Tx, Ty ∈ {0, 1, 2} and
hence α(Tx, Ty) ≥ 1. Thus, T is an α-admissible.

We shall show that α(x, y)d(Tx, Ty) ≤ 1
4 M(x, y), for all x, y ∈ X. For this we consider the

following cases.
Case (i) For x, y ∈ {0, 1, 2}, We have

α(x, y)d(Tx, Ty) = 1, d(0, 0) = 0 ≤ 1
4

M(x, y).

Case (ii) For x ∈ {0, 1, 2} and y = 3, we have

α(x, y)d(Tx, Ty) = 0 ≤ 1
4

max
{

M(x, y)
}

.

Case (iii) For y ∈ {0, 1, 2} and x = 3, we have

α(x, y)d(Tx, Ty) = 0 ≤ 1
4

max
{

M(x, y)
}

.

Case (iv) For x = y = 3, We have

α(x, y)d(Tx, Ty) = 0, d(1, 1) = 0 ≤ 1
4

M(3, 3).

From Case (i)-Case (iv) all the required hypothesis of Theorem 3 are satisfied. Here x = 0
is the unique fixed point of T .

In the following, we give some corollary to our main results.

Corollary 1 Let (X, d) be a complete rectangular quasi b-metric space and T : X −→ X be
an (α,ψ)-contraction mapping, that is,

α(x, y)d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X.

Then T has a unique fixed point.

Proof The result follows by taking M(x, y) = d(x, y) for all x, y ∈ X in the proof of Theorem 1
(or Theorem 2). �

Remark 2 By taking s = 1 in Corollary 1, we get the work by Karapinar and Lakzian [1].
Thus, this work generalizes the work by Karapinar and Lakzian [1].
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Corollary 2 Let (X, d) be a complete rectangular quasi b-metric space and T : X −→ X be
a continuous mapping if there exist functions ψ ∈ � such that

d(Tx, Ty) ≤ ψ
(
d(x, y)

)
for all x, y ∈ X.

Then T has a unique fixed point.

Proof The result follows by taking α(x, y) = 1 and M(x, y) = d(x, y) for all x, y ∈ X in the
proof of Theorem 1. �

Remark 3 By taking s = 1 in Corollary 2, we get the work by Khuangsatung et al. [3]. Thus,
this work generalizes the work by Khuangsatung et al. [3].

Corollary 3 Let (X, d) be a complete rectangular quasi b-metric space and T : X −→ X be
a continuous mapping. Suppose that there exists k ∈ [0, 1) such that

d(Tx, Ty) ≤ k
(
d(x, y)

)
for all x, y ∈ X.

Proof The result follows by taking ψ(t) = kt, where k ∈ [0, 1) and t ≥ 0 in Corollary 2. �

4 Application to integral equation
In this section, we give an existence theorem for a solution of the following integral equa-
tion.

x(t) =
∫ 1

0
K

(
t, r, x(r)

)
dr, (22)

where K : [0, 1] × [0, 1] × R −→ R are continuous functions.
Throughout this section, let X = C([0, 1], R) be the set of real continuous functions de-

fined on [0, 1]. Take the rectangular quasi b-metric d : X × X −→ [0,∞) defined by

d(x, y) =

⎧
⎨

⎩

‖(x – y)2‖∞ + ‖x‖∞, if x �= y,

0, if x = y,

where ‖u‖∞ = maxr∈[0,1] |u(s)| for all u ∈ X. It is known that (X, d) is a complete rectangular
quasi b- metric space (with s = 3

2 ). Now, we prove the following result.

Theorem 4 Suppose the following hypotheses hold:
(i) there exist k ∈ (0, 1) and g : X × X −→ [0,∞) such that for all x, y ∈ X with

x(t) ≤ y(t) for all t ∈ [0, 1] and for every r ∈ [0, 1], we have

0 ≤ ∣
∣K

(
t, r, x(r)

)
– K

(
t, r, y(r)

)∣
∣ ≤ g(t, r)|x – y|,

and

sup
t∈[0,1]

∫ 1

0
g(t, r) dr = k.
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(ii) K is non-decreasing with respect to its third variable;
(iii) there exists x0 ∈ X such that for all t ∈ [0, 1], we have

x0(t) ≤
∫ 1

0
K

(
t, r, x0(r)

)
dr

and

x0(t) ≤
∫ 1

0
K

(

t, r,
∫ 1

0
K

(
t, r, x0(r)

)
dr

)

dr.

Then the integral Eq. (22) has a solution in X.

Proof For all x ∈ X and t ∈ [0, 1], define the mapping T : X → X by Tx(t) =
∫ 1

0 K(t, r, x(r)) dr
and α : X × X −→ [0,∞) by

α(x, y) =

⎧
⎨

⎩

1, if x ≤ y,

0, otherwise.

Take ψ(t) = kt, so ψ(t) < t
s for all t > 0 (since s = 3

2 ). We define x, y ∈ X, x ≤ y if and only if
x(t) ≤ y(t) for all t ∈ [0, 1], where ≤ denotes the usual order of real numbers. Let x, y ∈ X
such that α(x, y) ≥ 1, so x ≤ y, hence x(t) ≤ y(t) for all t ∈ [0, 1]. Thus, by condition (i)

∣
∣Tx(t) – Ty(t)

∣
∣ ≤

∫ 0

1

∣
∣K

(
t, r, x(r)

)
– K

(
t, r, y(r)

)∣
∣dr

≤
∫ 0

1
g(t, r)

∣
∣x(r) – y(r)

∣
∣dr

=
∫ 0

1
g(t, r)

√(
x(r) – y(r)

)2 dr

≤ k
√

‖x – y‖2∞.

Again

∣
∣Tx(t)

∣
∣ ≤

∫ 0

1

∣
∣K

(
t, r, x(r)

)∣
∣dr

≤
∫ 0

1
g(t, r)

∣
∣x(r)

∣
∣dr

≤ k‖x‖∞.

We deduce that for all x, y ∈ X such that x ≤ y

d(Tx – Ty) = ‖Tx – Ty‖2
∞ + ‖x‖∞

≤ k2‖x – y‖2
∞ + k‖x‖∞

≤ kd(x, y) = ψ
(
d(x, y)

)

≤ ψ
(
M(x, y)

)
.
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Since K is non-decreasing with respect to its third variable, so for all x, y ∈ X with x ≤ y,
we get Tx(t) ≤ T(y)(t) for all t ∈ [0, 1], that is, if α(x, y) ≥ 1, we obtained α(Tx, Ty) ≥ 1.
Moreover, the condition (iii) yields that there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
α(Tx0, x0) ≥ 1, α(x0, T2x0) ≥ 1 and α(T2x0, Tx0) ≥ 1. Therefore, all conditions of Theo-
rem 2 are verified with s = 3

2 and hence the operator T has a fixed point, which is a solution
to the integral Eq. (22) in X. �
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