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Abstract
In this work, we prove the weak convergence of a one-step self-adaptive algorithm to
a solution of the sum of two monotone operators in 2-uniformly convex and
uniformly smooth real Banach spaces. We give numerical examples in
infinite-dimensional spaces to compare our result with some existing algorithms.
Finally, our results extend and complement several existing results in the literature.
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1 Introduction
Let E be a real Banach space and E∗ be its topological dual. A problem of significant in-
terest in nonlinear analysis is to find

x ∈ (A + B)–1(0) (1.1)

with (A + B)–1(0) �= ∅, where A : E → 2E∗ is a maximal monotone operator and B : E → E∗

is a monotone and Lipschitz map. Interest in problem (1.1) stems from its diverse appli-
cation in different areas of nonlinear analysis such as optimization, variational inequality,
split feasibility problems, and saddle-point problems with applications to signal and image
processing and machine learning; see, for instance, Attouch et al. [6], Bruck [10], Censor
and Elfvin [11], Chen and Rockafellar [12], Combettes and Wajs [15], Davis and Yin [16],
Lions and Mercier [19], Moudafi and Thera [22], Passty [23], Peaceman and Rachford [24]
for more treatments of problem (1.1). Consider, for instance, the split-feasibility problem,
introduced by Censor and Elfvin [11], which is to find

x ∈ C1 such that Tx ∈ C2, (1.2)

where C1 ⊂ H1, C2 ⊂ H2 are nonempty, closed, and convex subsets of the Hilbert spaces
H1 and H2, respectively, and T : H1 → H2 is a bounded linear map. Then, (1.2) can be
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transformed into the monotone inclusion

find x ∈ C1 such that, 0 ∈ NC1 (x) + T∗(I – PC2 )Tx.

By setting

A(x) = NC1 (x) and B(x) = ∇
(

1
2
‖Tx – PC2 Tx‖2

)
= T∗(I – PC2 )Tx,

where NC1 (x) is the normal cone of C1 at x and T∗ is the adjoint operator of T , (1.2) can
be reformulated as (1.1).

There are several methods of approximating solutions of (1.1), see, e.g., [1, 6, 9, 10, 16, 19,
20, 23, 30]. One of the most efficient methods is the forward–backward splitting method
introduced by Passty [23], and Lions and Mercier [19]. The method generates a sequence
{xn} iteratively defined by

xn+1 = JA
λn (xn – λnBxn), n ≥ 0. (1.3)

They proved that if the operator B is μ-cocoercive, that is, there exists μ > 0 such that

〈
x – y, B(x) – B(y)

〉 ≥ μ
∥∥B(x) – B(y)

∥∥2 ∀x, y ∈ E ,

and lim infλn > 0 with lim supλn < 2μ, then the sequence {xn} generated by (1.3) converges
weakly to a solution of (1.1). The cocoercivity requirement imposed on the operator B lim-
its the class of operators for which the forward–backward splitting method is applicable.
In fact, there are some important problems in applications where the forward–backward
splitting method fails to converge due to the lack of coercivity of one of the operators. For
instance, the first-order optimality condition for the saddle-point problems of the form

min
x∈H1

max
y∈H2

f1(x) + �(x, y) + f2(y), (1.4)

where f1 : H1 → R ∪ {+∞} and f2 : H2 → R ∪ {+∞} are proper convex and lower semi-
continuous functions and � : H1 ×H2 →R is a smooth convex–concave function. Then,
(1.4) can be expressed as

find

(
x
y

)
∈H1 ×H2, such that

(
0
0

)
∈

(
∂f1(x)
∂f2(y)

)
+

(
∇x�(x, y)

–∇y�(x, y)

)
.

This can be seen as (1.1) with

A =

(
∂f1(x)
∂f2(y)

)
, and B =

(
∇x�(x, y)

–∇y�(x, y)

)
.

Problem (1.4) arises naturally in different areas of application such as statistics, machine
learning, and optimization to mention but a few. Although the operator B, in this case,
is Lipschitz whenever ∇� is, B is never cocoercive even when � is bilinear. Thus, the
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development of an iterative method in which the cocoercivity of B is dispensed with is
desirable.

In [28], Tseng introduced the forward–backward–forward splitting method (FBFSM) for
approximating solutions of (1.1). The method generates a sequence {xn} iteratively defined
by

⎧⎨
⎩

yn = JA
λn (xn – λnB(xn)),

xn+1 = yn – λnB(yn) + λnB(xn), ∀n ∈N,
(1.5)

with λn ∈ (0, 1
L ), where L is the Lipschitz constant of B. Tseng was able to dispense with

the cocoercivity of the operator B at the expense of its evaluation twice per iteration.
Recently, Malitsky and Tam [21], introduced the forward–reflected–backward splitting
method (FRBSM) generated iteratively by

xn+1 = JA
λn

(
xn – λnB(xn) – λn–1

(
B(xn) – B(xn–1)

))
, ∀n ∈N, (1.6)

with λn ∈ (ε, 1–2ε
2L ) and ε > 0. The forward–reflected–backward splitting method requires

only one evaluation of the operator B per iteration. Thus, improving on the computational
cost when compared to the forward–backward–forward method that requires two eval-
uations of the operator B per iteration. It is worth noting that the step sizes in each of the
algorithms introduced by Tseng; and Tam and Malitski heavily depend on the prior knowl-
edge of the Lipshitz constant of one of the operators that, some times, may be difficult to
compute.

To overcome this difficulty, very recently, Hieu et. al. [17], introduced the modified
forward–reflected–backward splitting method (MFRBSM) generated iteratively by

xn+1 = JA
λn

(
xn – λnB(xn) – λn–1

(
B(xn) – B(xn–1)

))
, ∀n ∈N, (1.7)

with

λn+1 := min

{
λn,

θ‖xn+1 – xn‖
‖Bxn+1 – Bxn‖

}
, θ ∈

(
0,

1
2

)
.

They proved the weak convergence of Algorithm (1.7) to a solution of (1.1). It is worth
noting that the variable step sizes here do not require prior knowlegde of the Lipschitz
constant.

All the results mentioned above are obtained in the setting of Hilbert spaces. There are
few results regarding the forward–backward method and its variants in Banach spaces,
see, e.g., [26, 29]. One of the difficulties, perhaps, is the fact that the operators A and B go
from the Banach space E to its dual E∗. The tools available in Hilbert spaces are not readily
available in general Banach spaces. Moreover, the Lipschitz constant is, in general, often
unknown in practice. In fact, in nonlinear problems it may be difficult to approximate.
In those cases an algorithm with a linesearch is often used (see, e.g., [26]). However, a
linesearch algorithm needs an inner loop with some stopping criterion over iterations
and this task may be time consuming. In this paper, we prove the weak convergence of the
forward–reflected–backward splitting method in 2-uniformly convex uniformly smooth
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real Banach spaces with variable step sizes that do not depend on the Lipschitz constant
and without any linesearch Procedure. Our results extend, unify, and complement many
existing results in the literature.

2 Preliminaries
In this section, we give some basic definitions and lemmas that will be used in the proof
of our main results. Let E be a real normed linear space. Let SE and BE denote the unit
sphere and the closed unit ball of E , respectively. The modulus of smoothness of E , ρE :
[0,∞) → [0,∞) is defined by

ρE (t) := sup

{‖x + y‖ + ‖x – y‖
2

– 1 : x ∈ SE ,‖y‖ = t
}

.

The space E is said to be smooth if

lim
t→0

‖x + ty‖ – ‖x‖
t

(2.1)

exists for all x, y ∈ SE . The space E is also said to be uniformly smooth if the limit in (2.1)
converges uniformly for all x, y ∈ SE ; and E is said to be 2-uniformly smooth, if there exists
a fixed constant c > 0 such that ρE (t) ≤ ct2. It is well known that every 2-uniformly smooth
space is uniformly smooth. A real normed space E is said to be strictly convex if

∥∥∥∥ (x + y)
2

∥∥∥∥ < 1 for all x, y ∈ SE and x �= y.

E is said to be uniformly convex if δE (ε) > 0 for all ε ∈ (0, 2], where δE is the modulus of
convexity of E defined by

δE (ε) := inf

{
1 –

∥∥∥∥x + y
2

∥∥∥∥ : x, y ∈ BE ,‖x – y‖ ≥ ε

}
, (2.2)

for all ε ∈ (0, 2]. The space E is said to be 2-uniformly convex if there exists c > 0 such
that δE (ε) ≥ cε2 for all ε ∈ (0, 2]. It is obvious that every 2-uniformly convex Banach
space is uniformly convex. It is known that all Hilbert spaces are uniformly smooth and
2-uniformly convex. It is also known that all the Lebesgue spaces Lp are uniformly smooth
for 1 < p ≤ ∞, and 2-uniformly convex whenever 1 < p ≤ 2 (see [8]).

Let E be a real normed space. The normalized duality mapping of E into E∗ is defined
by

Jx :=
{

x∗ ∈ E∗ :
〈
x∗, x

〉
=

∥∥x∗∥∥2 = ‖x‖2},

for all x ∈ E . The normalized duality mapping J has the following properties (see, e.g.,
[27]):

• if E is reflexive and strictly convex with the strictly convex dual space E∗, then J is a
single-valued, one-to-one, and onto mapping. In this case, we can define the
single-valued mapping J–1 : E∗ → E and we have J–1 = J∗, where J∗ is the normalized
duality mapping on E∗;
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• if E is uniformly smooth, then J is norm-to-norm uniformly continuous on each
bounded subset of E .

Definition 2.1 Let E be a real normed space. A map A : E → 2E∗ is called monotone if for
each x, y ∈ E ,

〈η – ν, x – y〉 ≥ 0, ∀η ∈ Ax,ν ∈ Ay. (2.3)

If A is single valued, the map A : E → E∗ is called monotone if

〈Ax – Ay, x – y〉 ≥ 0, ∀x, y ∈ E . (2.4)

A multivalued monotone operator A : E → E∗ is said to be maximal monotone if A = B
whenever B : E → 2E∗ is monotone and G(A) ⊂ G(B), where G(A) = {(x, x∗) : x∗ ∈ Ax} is
the graph of A.

Let E be a real reflexive, strictly convex, and smooth Banach space and let A : E → 2E∗

be a maximal monotone operator. Then, for each r > 0 the resolvent of A, JA
r : E → E is

defined by

JA
r (x) = (J + rA)–1Jx,

where J is the normalized duality mapping on E . It is easy to show that A–10 = F(JB
r ) for

all r > 0, where F(JA
r ) denotes the set of fixed points of JA

r . Let E be a smooth real Banach
space with dual E∗. The functional, ψ : E × E →R, defined by

ψ(x, y) := ‖x‖2 – 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E , (2.5)

where J is the normalized duality mapping on E will play a central role in the following. It
was introduced by Alber and has been studied by Alber [2], Alber and Guerre-Delabriere
[3], Kamimura and Takahashi [18], Reich [25], Chidume et al. [13, 14], and a host of other
authors.

Lemma 2.2 ([2, 5]) Let E be a real uniformly convex, smooth Banach space. Then, the
following identities hold:

(i) ψ(x, y) = ψ(x, z) + ψ(z, y) + 2〈x – z, Jz – Jy〉,∀x, y, z ∈ E .
(ii) ψ(x, y) + ψ(y, x) = 2〈x – y, Jx – Jy〉,∀x, y ∈ E .

Lemma 2.3 ([5]) Let E be a real 2-uniformly convex Banach space. Then, there exists μ ≥ 1
such that

1
μ

‖x – y‖2 ≤ ψ(x, y) ∀x, y ∈ X.

Lemma 2.4 ([7]) Let A : E → 2E∗ be a maximal monotone mapping and B : E → E∗ be
a Lipschitz continuous and monotone mapping. Then, the mapping A + B is a maximal
monotone.
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Lemma 2.5 ([4]) Let E be a uniformly convex Banach space. Then, the normalized dual-
ity mapping, J , is uniformly monotone on every bounded set. That is, for every R > 0 and
arbitrary x, y ∈ E with ‖x‖ ≤ R and ‖y‖ ≤ R there exists a real nonnegative and continuous
function ψR : [0,∞) → [0,∞) such that ψR(t) > 0 for t > 0, ψR(0) = 0 and

〈Jx – Jy, x – y〉 ≥ ψR
(‖x – y‖).

Lemma 2.6 ([18]) Let E be a uniformly convex and smooth Banach space, and {xn} and
{yn} be two sequences of E . If limn→∞ ψ(xn, yn) = 0 and either {xn} or {yn} is bounded, then
limn→∞ ‖xn – yn‖ = 0.

3 Main results
In this section, we state and prove a weak convergence result for the Modified Forward–
Reflected–Backward Splitting Method in a 2-uniformly convex uniformly smooth real Ba-
nach space. The method does not require the prior knowlegde or an estimate of the Lip-
schitz constant. In the following, we assume that the solution set (A + B)–1(0) of problem
(1.1) is nonempty.

Theorem 3.1 Let E be a real 2-uniformly convex uniformly smooth Banach space. Let
A : E → 2E∗ be a maximal monotone operator and B : E → E∗ be monotone and Lipschitz.
Let x–1, x0 ∈ E be arbitrary and λ–1,λ0 > 0. Define the sequence {xn} iteratively by

xn+1 = JA
λn ◦ J–1(Jxn – λnBxn – λn–1(Bxn – Bxn–1)

)
, n ≥ 0, (3.1)

with

λn+1 := min

{
λn,

θ‖xn+1 – xn‖
‖Bxn+1 – Bxn‖

}
, θ ∈

(
0,

1
2μ

)
,μ ≥ 1.

Suppose that (A + B)–1 �= ∅ and that the duality mapping is weakly sequentially continu-
ous, then the sequence {xn} generated by (3.1) converges weakly to a solution of (1.1).

Proof We first show that the sequence {xn} is bounded. Let x∗ ∈ (A + B)–1(0), so that

–Bx∗ ∈ Ax∗. (3.2)

From (3.1), we have that

1
λn

(
Jxn – λnBxn – λn–1(Bxn – Bxn–1) – Jxn+1

) ∈ Axn+1. (3.3)

Using (3.2) and (3.3) and the monotonicity of A, we obtain

〈
Jxn+1 – Jxn + λn

(
Bxn – Bx∗) + λn–1(Bxn – Bxn–1), x∗ – xn+1

〉 ≥ 0. (3.4)

By Lemma 2.2(i), we have

2
〈
Jxn+1 – Jxn, x∗ – xn+1

〉
= ψ

(
x∗, xn

)
– ψ

(
x∗, xn+1

)
– ψ(xn+1, xn). (3.5)
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Also,

〈
Bxn – Bx∗, x∗ – xn+1

〉
=

〈
Bxn+1 – Bx∗, x∗ – xn+1

〉
+

〈
Bxn – Bxn+1, x∗ – xn+1

〉
(3.6)

and

〈
Bxn – Bxn–1, x∗ – xn+1

〉
=

〈
Bxn – Bxn–1, x∗ – xn

〉
+ 〈Bxn – Bxn–1, xn – xn+1〉. (3.7)

Substituting (3.5), (3.6), and (3.7) into (3.4) we have:

ψ
(
x∗, xn+1

)
+ 2λn

〈
Bxn+1 – Bxn, x∗ – xn+1

〉
≤ ψ

(
x∗, xn

)
+ 2λn–1

〈
Bxn – Bxn–1, x∗ – xn

〉
+ 2λn–1〈Bxn – Bxn–1, xn – xn+1〉 – ψ(xn+1, xn)

+ 2λn
〈
Bxn+1 – Bx∗, x∗ – xn+1

〉
. (3.8)

Using the monotonicity of B on the last term of equation (3.8) and rearranging the equa-
tion we have

ψ
(
x∗, xn+1

)
+ 2λn

〈
Bxn+1 – Bxn, x∗ – xn+1

〉
+ ψ(xn+1, xn)

≤ ψ
(
x∗, xn

)
+ 2λn–1

〈
Bxn – Bxn–1, x∗ – xn

〉
+ 2λn–1〈Bxn – Bxn–1, xn – xn+1〉. (3.9)

Using the definition of λn and Lemma 2.3, we have

2λn–1〈Bxn – Bxn–1, xn – xn+1〉 ≤ 2λn–1‖Bxn – Bxn–1‖‖xn – xn+1‖

≤ 2θ
λn–1

λn
‖xn – xn–1‖‖xn – xn+1‖

≤ θ
λn–1

λn

(‖xn – xn–1‖2 + ‖xn – xn+1‖2)

≤ μθ
λn–1

λn

(
ψ(xn, xn–1) + ψ(xn+1, xn)

)
. (3.10)

Substituting (3.10) into (3.9), we have

ψ
(
x∗, xn+1

)
+ 2λn

〈
Bxn+1 – Bxn, x∗ – xn+1

〉
+ ψ(xn+1, xn)

≤ μθ
λn–1

λn

(
ψ(xn, xn–1) + ψ(xn+1, xn)

)
+ ψ

(
x∗, xn

)

+ 2λn–1
〈
Bxn – Bxn–1, x∗ – xn

〉
. (3.11)

Rearranging the above inequality we obtain,

ψ
(
x∗, xn+1

)
+ 2λn

〈
Bxn+1 – Bxn, x∗ – xn+1

〉
+

(
1 – μθ

λn–1

λn

)
ψ(xn+1, xn)

≤ μθ
λn–1

λn
ψ(xn, xn–1) + ψ

(
x∗, xn

)
+ 2λn–1

〈
Bxn – Bxn–1, x∗ – xn

〉
. (3.12)
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Now, define

En
(
x∗) = ψ

(
x∗, xn

)
+ μθ

λn–1

λn
ψ(xn, xn–1) + 2λn–1

〈
Bxn – Bxn–1, x∗ – xn

〉
. (3.13)

Using definition of En(x∗) in (3.12), we have

En+1
(
x∗) ≤ En

(
x∗) –

(
1 – μθ

λn–1

λn
– μθ

λn

λn+1

)
ψ(xn+1, xn). (3.14)

Let δ ∈ (0, 1 – 2μθ ) be fixed, since λn → λ > 0, we derive

lim
n→∞

(
1 – μθ

λn–1

λn
– μθ

λn

λn+1

)
= 1 – 2μθ > δ.

Thus, there exists n1 ≥ 1 such that

1 – μθ
λn–1

λn
– μθ

λn

λn+1
≥ δ, ∀n ≥ n1. (3.15)

It follows from (3.14) and (3.15) that

En+1
(
x∗) ≤ En

(
x∗) – δψ(xn+1, xn) ≤ En

(
x∗) ∀n ≥ n1. (3.16)

Therefore, the sequence {En}n≥n1 is nonincreasing.
Now, from the definition of En and λn for each n ≥ n1 we see that

En
(
x∗) = ψ

(
x∗, xn

)
+ 2λn–1

〈
Bxn – Bxn–1, x∗ – xn

〉
+ μθ

λn–1

λn
ψ(xn, xn–1)

≥ ψ
(
x∗, xn

)
– 2λn–1‖Bxn – Bxn–1‖

∥∥x∗ – xn
∥∥ + μθ

λn–1

λn
ψ(xn, xn–1)

≥ ψ
(
x∗, xn

)
– 2θ

λn–1

λn
‖xn – xn–1‖

∥∥x∗ – xn
∥∥ + μθ

λn–1

λn
ψ(xn, xn–1)

≥ ψ
(
x∗, xn

)
– θ

λn–1

λn

(‖xn – xn–1‖2 +
∥∥x∗ – xn

∥∥2) + μθ
λn–1

λn
ψ(xn, xn–1)

≥ ψ
(
x∗, xn

)
– μθ

λn–1

λn

(
ψ(xn, xn–1) + ψ

(
x∗, xn

))
+ μθ

λn–1

λn
ψ(xn, xn–1)

=
(

1 – μθ
λn–1

λn

)
ψ

(
x∗, xn

)

≥
(

1 – μθ
λn–1

λn
– μθ

λn

λn+1

)
ψ

(
x∗, xn

)

≥ δψ
(
x∗, xn

) ≥ 0.

Thus, the limit limn→∞ En exists.
Also, the boundedness of {ψ(x∗, xn)} implies that {xn} is bounded. Moreover, from (3.16),

we have by telescoping, that

En+1
(
x∗) ≤ En1

(
x∗) – δ

∞∑
n=n1

ψ(xn+1, xn). (3.17)
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That is,

δ

∞∑
n=n1

ψ(xn+1, xn) ≤ En1

(
x∗) – lim

n→∞ En+1
(
x∗) < +∞.

Hence, the limit limn→∞ ψ(xn+1, xn) exists. Since B is Lipschitz continuous, {xn} is
bounded, λn → λ > 0, then from (3.17) and Lemma 2.6, we obtain that

lim
n→∞

(
2λ

〈
Bxn – Bxn–1, x∗ – xn

〉
+ μθ

λn–1

λn
ψ(xn, xn–1)

)
= 0.

Using the definition of En, we have

lim
n→∞ En

(
x∗) = lim

n→∞ψ
(
x∗, xn

)
.

That is, the limit of ψ(x∗, xn) exists for each x∗ ∈ (A + B)–1(0).
We now prove that {xn} converges weakly to an element of (A + B)–1(0). Let ρ be a weak

cluster point of {xn}. Then, there exists a subsequence {xnk } of {xn} such that xnk ⇀ ρ . We
show that ρ ∈ (A + B)–1(0).

From the definition of xn in (3.1), we have

1
λn

(Jxn – Jxn+1) + (Bxn+1 – Bxn) –
λn–1

λn
(Bxn – Bxn–1) ∈ (A + B)xn+1. (3.18)

Since, by Lemma 2.4, A + B is maximal monotone, then we have that its graph is demi-
closed. Now, passing the limit in (3.18) we obtain that

0 ∈ (A + B)(ρ).

Next, we show that the whole sequence {xn} converges weakly to ρ .
Suppose there exists ρ ′ such that xnj ⇀ ρ ′ for some subsequence {xnj} of {xn} with ρ ′ �= ρ .

Then, we have

ψ(ρ, xn) = ‖ρ‖2 – 2〈ρ, Jxn〉 + ‖xn‖2,

and

ψ
(
ρ ′, xn

)
=

∥∥ρ ′∥∥2 – 2
〈
ρ ′, Jxn

〉
+ ‖xn‖2.

Thus, we have

2
〈
ρ ′ – ρ, Jxn

〉
= ψ(ρ, xn) – ψ

(
ρ ′, xn

)
+

∥∥ρ ′∥∥2 – ‖ρ‖2.

Hence, the limit limn→∞〈ρ ′ – ρ, Jxn〉 exists. Since J is weakly sequentially continuous, we
have

〈
ρ ′ – ρ, Jρ

〉
= lim

k→∞
〈
ρ ′ – ρ, Jxnk

〉
= lim

j→∞
〈
ρ ′ – ρ, Jxnj

〉
=

〈
ρ ′ – ρ, Jρ ′〉.

Using Lemma 2.5, we have that ρ ′ = ρ . Hence {xn} converges weakly to ρ . �
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We now state Theorem 3.1 in Hilbert spaces.

Corollary 3.2 Let H be a real Hilbert space. Let A : H → 2H be a maximal monotone
operator and B : H → H be monotone and Lipschitz. Choose x–1, x0 ∈ H,λ–1,λ0 > 0. Let
{xn} be the sequence defined by

⎧⎨
⎩

xn+1 = JA
λn (xn – λnBxn – λn–1(Bxn – Bxn–1)), n ≥ 0,

λn+1 := min{λn, θ‖xn+1–xn‖
‖Bxn+1–Bxn‖ }, θ ∈ (0, 1

2 ).

Suppose (A + B)–1(0) �= ∅. Then, the sequence {xn} converges weakly to an element of (A +
B)–1(0).

4 Numerical examples in infinite-dimensional spaces
In this section, we compare Algorithm (3.1) with FBFSM and FRBSM introduced in [28]
and [21], respectively. For easy referencing, we term FBFSM and FRBSM as TSENG and
TAM, respectively. Numerical experiments were carried out on MATLAB R2015a version.
All programs were run on a 64-bit OS PC with an Intel(R) Core(TM) i7-3540M CPU @

1.00 GHz, 1.19 GHz and 3 GB RAM. All figures were plotted using the log log plot com-
mand.

Example 1 Let H = L2([0, 1]), with the norm and inner product defined as

‖x‖2 =
(∫ 1

0

∣∣x(t)
∣∣2 dt

) 1
2

and 〈x, y〉 =
∫ 1

0
x(t)y(t) dt, respectively.

Define the operator B : H →H by

Bx(t) =
∫ 1

0

[
x(s) –

(
2tset+s

e
√

e2 – 1

)
cos x(s)

]
ds +

2tet

e
√

e2 – 1
, x ∈ L2

(
[0, 1]

)
,

then, B is monotone and Lipschitz with Lipschitz constant L = 2. Let A : L2([0, 1]) →
L2([0, 1]) be defined by

Ax(t) = max
{

x(t), 0
}

,

then, A is maximal monotone and for any r > 0, the resolvent, JA
r : L2([0, 1]) → L2([0, 1]),

of A, is given by

JA
r x(t) =

⎧⎨
⎩

x(t), Ax(t) = 0,
1

1+r x(t), Ax(t) = x(t).

Clearly,

0 ∈ (A + B)–1(0).
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Table 1 Computational Results for Example 1

Algorithms Tolerance (TOL) (θ ,λn ,λ) No. of Iter. Time (s)

Algorithm (3.1) TOL = 10–4 θ = 0.4 40 16.9233
Tam λn = 0.125 + (0.01562)n–1 41 12.3243
Tseng λ = 0.1406 400 134.3984

Algorithm (3.1) TOL = 10–4 θ = 0.4 46 16.0526
Tam λn = 0.01 + (0.2)n–1 329 113.968
Tseng λ = 0.2100 400 82.4403

Algorithm (3.1) TOL = 9× 10–3 θ = 0.01 238 115.2452
Tam λn = 0.125 + (0.01562)n–1 21 9.2270
Tseng λ = 0.1406 400 125.1663

Algorithm (3.1) TOL = 9× 10–3 θ = 0.01 244 107.1992
Tam λn = 0.01 + (0.2)n–1 122 52.6718
Tseng λ = 0.2100 400 94.7951

We show that xn ⇀ 0. We recall that the sequence {xn} converges weakly to 0 in L2([0, 1])
if and only if

〈ϕ, xn〉 =
∫ 1

0
ϕ(t)xn(t) dt → 0 as n → ∞

for any ψ ∈ H∗. We conduct the experiment with various functions ψ in L2([0, 1]). The
integrals were approximated using the trapz and int command on MATLAB over the in-
terval [0, 1]. The results of the experiment are displayed in Table 1 and Figs. 1, 2, 3, and
4.

Example 2 Let H = L2([0, 1]), with the norm and inner product defined as

‖x‖2 =
(∫ 1

0

∣∣x(t)
∣∣2 dt

) 1
2

and 〈x, y〉 =
∫ 1

0
x(t)y(t) dt, respectively.

We inherit the map A from (1) above, while the map B is defined by

Bx(t) =
x(t) + |x(t)|

2
.

Clearly, B is monotone and Lipschitz and

0 ∈ (A + B)–1(0).

We show that xn ⇀ 0 just as in Example 1 above. The results of the experiment are dis-
played in Table 2 and Figs. 5, 6, 7, and 8.

Remark 1 From the results displayed in Tables 1 and 2 it is clear that the speed of the con-
vergence of Algorithm (3.1) heavily depends on the value of θ . For instance, Algorithm
(3.1) converges faster as the value of θ moves closer to 0.5. Thus, if the value of θ is ap-
propriately chosen Algorithm (3.1), seems to have cheaper computations compared to its
counterparts. On the other hand, the Algorithm TAM depends on the step size {λn}, while
that of TSENG depends on λ. The algorithm converges faster when the step sizes are cho-
sen very close to the upper bound of the interval of choice. Finally, we note that the number
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Figure 1 Example 1 with θ = 0.4 and λn = 0.1250 + (0.0156)n–1

Figure 2 Example 1 with θ = 0.4 and λn = 0.01 + (0.2)n–1

Figure 3 Example 1 with θ = 0.01 and λn = 0.1250 + (0.0156)n–1
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Figure 4 Example 1 with θ = 0.01 and λn = 0.01 + (0.2)n–1

Table 2 Computational Results for Example 2

Algorithms Tolerance (TOL) (θ ,λn ,λ) No. of Iter. Time (s)

Algorithm (3.1) TOL = 10–5 θ = 0.4 50 0.0693
Tam λn = 0.125 + (0.01562)n–1 52 0.0027
Tseng λ = 0.1406 45 0.0332

Algorithm (3.1) TOL = 10–5 θ = 0.4 58 0.0602
Tam λn = 0.01 + (0.2)n–1 440 0.0222
Tseng λ = 0.2100 34 0.0328

Algorithm (3.1) TOL = 10–5 θ = 0.01 538 0.1166
Tam λn = 0.125 + (0.01562)n–1 52 0.0043
Tseng λ = 0.1406 45 0.0346

Algorithm (3.1) TOL = 10–5 θ = 0.01 540 0.1130
Tam λn = 0.01 + (0.2)n–1 440 0.0226
Tseng λ = 0.2100 34 0.0336

Figure 5 Example 2 with θ = 0.4 and λn = 0.1250 + (0.0156)n–1
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Figure 6 Example 2 with θ = 0.4 and λn = 0.01 + (0.2)n–1

Figure 7 Example 2 with θ = 0.01 and λn = 0.1250 + (0.0156)n–1

Figure 8 Example 2 with θ = 0.01 and λn = 0.01 + (0.2)n–1
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of iterations for TSENG in Table 1 was cut short due to the large number iterations needed
before the tolerance is reached.

5 Conclusion
In this work, we have proved the weak convergence of a one-step self-adaptive algorithm
to a solution of the sum of two monotone operators in 2-uniformly convex and uniformly
smooth Banach spaces. Numerical results were presented to illustrate how Algorithm (3.1)
competes with some existing algorithms. Finally, our results generalize and complement
some existing results in the literature.
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