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Abstract
The purpose of this study is to demonstrate results on fixed point theory in
quasi-partial b-metric space recognizing a new type of mapping, which is a blend of
F-contraction and Kannan contraction, and to establish the fixed point results in
F-expanding type mappings. Additionally, the obtained results are the application of
the contractive mappings to functional equations. Furthermore, Mathematica
software is used to demonstrate the 3D shapes of the examples discussed here.
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1 Introduction
In the early years of the twentieth century, Banach [1] commenced the concept of fixed
point theorem for metric space acknowledged as the Banach contraction principle. After
this classical approach, generalizations of the contraction principle came into existence
with several fixed point results and their applications in different spaces as a remarkable
contribution by several authors [2, 3]. It is well known that every contraction is continu-
ous. In 1968, Kannan [4] established a new generalization in which he proved that there
exists a contraction mapping with a unique fixed point which is not necessarily contin-
uous. In 1989, Bhaktin [5] introduced the notion of b-metric space, which was followed
up by Czerwik [6] in 1993. In 1994, Matthews [7] established a new space called partial
metric space and proved the fixed point theorem. In 2012, Wardowski [8] demonstrated
fixed point results for F-contraction mapping in a complete metric space. This approach
was extended by several authors [9–12]. In the year 2013, Karapinar et al. [13] initiated
the concept of quasi-partial metric space. Later, Gupta and Gautam [14, 15] introduced
quasi-partial b-metric space and proved some fixed point results for such spaces. Due
to its significance, many researchers [16–27] have broadened its scope by obtaining var-
ious extensions of fixed point theory. In a similar manner, Goŕnicki [28] demonstrated
F-expanding type mappings followed up by Goswami et al. [29] to establish a new type of
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F-expanding type mapping. Very recently, Lucas et al. [30] defined the Kannan mapping
in a metric space and proved the fixed point results.

In this paper, we have settled the fixed point results in a quasi-partial b-metric space by
adopting a new type of mapping into consideration, which is a combination of F and Kan-
nan contractive type mapping. The existence of a fixed point in F-expanding type mapping
is also proved. Applications of the results are obtained to find the solution of a functional
equation.

2 Preliminaries
First, let us recall some basic definitions concerning our main results. Throughout this
paper R and R

+ denote the set of real numbers and the set of nonnegative real numbers,
respectively.

Definition 2.1 ([14]) A quasi-partial b-metric on a non-empty set X is a function qpb : X×
X → [0, +∞) such that for some real number ρ ≥ 1 and all α,β ,γ ∈ X :

(QPb1) qpb(α,α) = qpb(α,β) = qpb(β ,β) implies α = β ,
(QPb2) qpb(α,α) ≤ qpb(α,β),
(QPb3) qpb(α,α) ≤ qpb(β ,α),
(QPb4) qpb(α,β) + qpb(γ ,γ ) ≤ ρ{qpb(α,γ ) + qpb(γ ,β)}.

(X, qpb) is called a quasi-partial b-metric space where X is a non-empty set and qpb defines
a quasi-partial b-metric on X. The number ρ is called the coefficient of (X, qpb).

Let us see a new example of quasi-partial b-metric space.

Example 2.1 Let X = R. Define the metric

qpb(α,β) =
∣
∣α2 – β2∣∣ +

∣
∣α2∣∣ + |α – β|2

for all α,β ∈ X.
It can be shown that (X, qpb) is a quasi-partial b-metric space.
If qpb(α,α) = qpb(α,β) = qpb(β ,α) i.e. |α2| = |α2 – β2| + |α2| + |α – β|2 = |β2|, then α = β ,

which shows (QPb1) is true.
Now, qpb(α,α) = |α2| ≤ |α2 – β2| + |α2| + |α – β|2 i.e. qpb(α,α) ≤ qpb(α,β), which proves

(QPb2).
Since

∣
∣α2∣∣ –

∣
∣β2∣∣ ≤ ∥

∥α2| – |β2∥∥

≤ ∣
∣α2 – β2∣∣

≤ ∣
∣β2 – α2∣∣ + |β – α|2,

which proves (QPb3).
Now we will prove (QPb4) with ρ = 2, that is,

qpb(α,β) ≤ 2
[

qpb(α,γ ) + qpb(γ ,β)
]

– qpb(γ ,γ ).
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Figure 1 The 3-D representation for qpb(α,β) = |α2 – β2| + |α2| + |α – β|2

In addition, since |α – β|2 ≤ (|α – γ | + |γ – β|)2 ≤ 2(|α – γ |2 + |γ – β|2), we have

qpb(α,β) + qpb(γ ,γ ) =
∣
∣α2 – β2∣∣ +

∣
∣α2∣∣ + |α – β|2

≤ 2
[∣
∣α2 – γ 2∣∣ +

∣
∣γ 2 – β2∣∣ +

∣
∣α2∣∣ +

∣
∣γ 2∣∣ + |α – γ |2 + |γ – β|2].

Rearranging proves (QPb4).
Hence, (X, qpb) is a quasi-partial b-metric space with ρ = 2 whose 3-D presentation is

given in Fig. 1.

Lemma 2.1 Let (X, qpb) be a quasi-partial b-metric space and {αn} be a convergent se-
quence in X with limn→+∞ αn = α. Then, for all β ∈ X and ρ ≥ 1, we have

ρ–1qpb(α,β) ≤ lim
n→+∞ inf qpb(αn,β) ≤ sup qpb(αn,β) ≤ ρqpb(α,β).

Proof If we apply the triangle inequality (QPB4) twice, we get for every n ∈ N

ρ–1qpb(α,β) – qpb(αn,α) ≤ qpb(αn,β) ≤ ρqpb(αn,α).

If we take lim inf on the left-hand side inequality and lim sup on the right-hand side in-
equality, we obtain the desired property. �

Wardowski [8] introduced a new concept of contraction that generalizes Banach con-
traction principle as follows.

Definition 2.2 ([8]) Let (X, d) be a metric space, and there exists a mapping F : (0, +∞) →
R which satisfies the following conditions:

(F1) F is strictly increasing.
(F2) For any sequence {xn}n∈N , limn→+∞ xn = 0 if and only if limn→+∞ F(xn) = –∞.
(F3) limx→0+ xkF(x) = 0 for some k ∈ (0, 1).

Then a mapping P : X → X is said to be Wardowski F-contraction if d(Pα , Pβ ) > 0 implies

δ + F
(

d(Pα , Pβ )
) ≤ F

(

d(α,β)
)

for all α,β ∈ X.
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In 2015, Casentino et al. [31] extended the concept of F-contraction in metric space to
F-contraction in b-metric space by introducing the following condition:

(F4) For any sequence {xn}n∈N ,

δ + F(sxn) ≤ F(xn–1)

for all s ∈R and n ∈ N and for some δ > 0,

δ + F
(

snxn
) ≤ F

(

sn–1xn–1
)

for all n ∈ N .
Here, we have extended the concept of F-contraction in b-metric space to F-contraction

in quasi-partial b-metric space.

Definition 2.3 For a quasi-partial b-metric space (X, qpb), a mapping P : X → X is said to
be an F-contractive type mapping if there exists δ > 0 such that if qpb(α, Pα)qpb(β , Pβ ) �= 0,
then

δ + F
(

ρqpb(Pα , Pβ )
) ≤ 1

3
[

F
(

qpb(α,β)
)

+ F
(

qpb(α, Pα)
)

+ F
(

qpb(β , Pβ )
)]

– F
(

qpb(γ , Pγ )
)

,

and if qpb(α, Pα)qpb(β , Pβ ) = 0, then

δ + F
(

ρqpb(Pα , Pβ )
) ≤ 1

3
[

F
(

qpb(α,β)
)

+ F
(

qpb(α, Pβ )
)

+ F
(

qpb(β , Pα)
)]

– F
(

qpb(γ , Pγ )
)

for all α,β ,γ ∈ X and ρ ≥ 1.

We now justify Definition 2.3 by illustrating it with the following example.

Example 2.2 Let X = [0, +∞). Define a quasi-partial b-metric space

qpb(α,β) =

⎧

⎨

⎩

|α – β| + α, α �= β ,

0, α = β ,

and there exists an F-contractive function F(α) = logα for which conditions (F1) and (F2)
reduce to the following:

qpb(α, Pα)qpb(β , Pβ ) �= 0 implies

ρ3qpb(Pα , Pβ )3qpb(γ , Pγ ) ≤ e–3δqpb(α,β)qpb(α, Pα)qpb(β , Pβ )

and qpb(α, Pα)qpb(β , Pβ ) = 0 implies

ρ3qpb(Pα , Pβ )3qpb(γ , Pγ ) ≤ e–3δqpb(α,β)qpb(α, Pβ )qpb(β , Pα)
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for all α,β ,γ ∈ X and ρ ≥ 1. Also, we define a mapping P : X → X by

P(α) =

⎧

⎨

⎩

1, 0 ≤ α ≤ 2,
1
α

, α > 2,

which is discontinuous at α = 2.
Case I For α,β ∈ [0, 2] with α �= β , (F2) holds and qpb(Pα , Pβ ) = 0.
Case II For α �= β ,α,β > 2,

qpb(Pα , Pβ )3 =
(∣

∣
∣
∣

1
α

–
1
β

∣
∣
∣
∣

+
1
α

)3

< 1,

and

qpb(α,β)qpb(α, Pα)qpb(β , Pβ ) =
(|α – β| + α

)
(∣

∣
∣
∣
α –

1
α

∣
∣
∣
∣

+ α

)(∣
∣
∣
∣
β –

1
β

∣
∣
∣
∣

+ β

)

> 8.

Case III For 1 �= α ∈ [0, 2] and β > 2,

qpb(Pα , Pβ )3 =
(∣

∣
∣
∣
1 –

1
β

∣
∣
∣
∣

+ 1
)3

≤
(∣

∣
∣
∣
1 –

1
2

∣
∣
∣
∣

+ 1
)3

=
27
8

,

and

qpb(α,β)qpb(α, Pα)qpb(β , Pβ ) =
(|α – β| + α

)(|α – 1| + α
)
(∣

∣
∣
∣
β –

1
β

∣
∣
∣
∣

+ β

)

≥ 2 × 1 × 2 = 4.

Thus, if qpb(α, Pα)qpb(β , Pβ) �= 0, the condition holds for e–3δ = 1
8 or δ = 3 ln 2

3 = ln 2.
Case IV If α > 2,

qpb(Pα , P1)3 =
(∣

∣
∣
∣

1
α

– 1
∣
∣
∣
∣

+
1
α

)3

≤ 27
8

,

and

qpb(α, 1)qpb(α, P1)qpb(1, Pα) =
(|α – 1| + α

)2
(∣

∣
∣
∣
1 –

1
α

∣
∣
∣
∣

+ 1
)

> 32 × 1 = 9.

Thus, the condition holds for e–3δ = 1
2 or δ = ln 2

3 .
On taking different intervals for α,β , we have four cases with different inequalities on

solving, which gives different values but satisfies the conditions to be an F-contractive
mapping.

Hence, P is an F-contractive type mapping that is not continuous.

3 Main results
Here, we have given a fixed point result for an F-contractive type mapping in quasi-partial
b-metric space for which the space need not be continuous.
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Definition 3.1 In a quasi-partial b-metric space (X, qpb), a self-map P : X → X is said to
be a Picard operator if it has a unique point γ ∈ X and the Picard iteration {α}+∞

n=0 defined
by αn+1 = Pαn , n = 0, 1, 2, . . . , converges to γ for any α0 ∈ X.

Theorem 3.1 Let (X, qpb) be a quasi-partial b-metric space and P : X → X be an F-
contractive type mapping. Then P is a Picard operator.

Proof Let α0 ∈ X be an arbitrary point and consider a sequence {αn}, where αn = Pαn, n ∈
N . Since P is an F-contractive type mapping, we have

δ + F(ρun) ≤ 1
3
[

F
(

qpb(αn–1,αn)
)

+ F
(

qpb(αn–1,αn)
)

+ F
(

qpb(αn,αn+1)
)]

– F
(

qpb(αn–1,αn+1)
)

. (3.1)

Denoting qpb(αn,αn) by un in equation (3.1) for all αn > 0 and n ∈ N , we get

F(ρun) ≤ F(un–1) –
3
2
δ –

3
2

F(un).

By condition (F4),

F
(

ρnun
) ≤ F

(

ρn–1un–1
)

–
3
2
δ –

3
2

F
(

ρnun
)

,

and by induction,

F
(

ρnun
) ≤ F

(

ρn–1un–1
)

–
3
2
δ –

3
2

F
(

ρnun
) ≤ F(u0) –

3
2

n –
3
2

F(u). (3.2)

Letting n → +∞, we get

lim
n→+∞ F

(

ρnun
)

= –∞

so that

lim
n→+∞ρnun = 0.

From condition (F2), there exists k ∈ (0, 1) such that

lim
n→+∞

(

ρnun
)kF

(

ρnun
)

= 0.

Multiplying equation (3.2) by (ρnun)k gives

0 ≤ (

ρnun
)kF

(

ρnun
)

+
3
2
(

ρnun
)k(n + F(u)

) ≤ F(u0)
(

ρnun
)k .

Taking limit as n → +∞, we have

lim
n→+∞ n

(

ρnun
)k = 0.
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Also, we shall show that {αn} is a Cauchy sequence as there exists τ ∈ X such that

lim
n→+∞αn = τ .

Applying Lemma 2.1, we get

lim
n→+∞ qpb(τ ,αn) = lim

n→+∞ sup qpb(τ ,αn) ≤ ρ
(

qpb(τ , τ )
)

= 0.

Also, using equation (3.1), we have

δ + F
(

ρqpb(Pτ , Pαn )
) ≤ 1

3
[

F
(

qpb(τ ,αn)
)

+ F
(

qpb(τ , Pτ )
)

+ F
(

qpb(αn,αn+1)
)]

– F(qpb(αn–1,αn+1).

As n → +∞, we conclude that

δ + lim
n→+∞ F(ρqpb(Pτ , Pαn ) ≤ –∞.

That is,

lim
n→+∞ qpb(Pτ ,αn+1) = lim

n→+∞ qpb(Pτ , Pαn ) = 0.

Therefore, {αn} converges to both τ and Pτ . This implies

Pτ = τ .

To show uniqueness, let if possible τ ′ be another fixed point of P(τ �= τ ′). Then

δ + F
(

ρqpb(Pτ , Pτ
′)
) ≤ 1

3
[

F
(

qpb(τ , τ ′)
)

+ F
(

qpb(τ , Pτ
′)
)

+ F
(

qpb(Pτ , τ ′)
)]

– F
(

qpb(Pτ , Pτ
′)
)

or

F
(

ρqpb(τ , τ ′)
) ≤ F

(

qpb(τ , τ ′)
)

,

which is a contradiction for equation (3.1), and hence P has a unique fixed point that
is τ . �

The following example illustrates the above result.

Example 3.1 Let X = [0, 3] ∪ [6, +∞) with

qpb(α,β) =

⎧

⎨

⎩

min{α – β , 6}, α �= β ,

0, α = β .
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Figure 2 The plane in blue colour denotes the left-hand side of the inequality and the plane in orange colour
denotes the right-hand side of the inequality. Hence right-hand side of the inequality is dominant for α,β ≥ 6

Also, we define a mapping P : X → X by

P(α) =

⎧

⎪⎪⎨

⎪⎪⎩

3
2 , 0 ≤ α ≤ 3,

0, α = 3,
3
2 – 3

α
, α ≥ 6.

Here, P is discontinuous at α = 3.
Case I For α,β ≥ 6 and α �= β , we have

qpb(Pα , Pβ ) = min

{
3
β

–
3
α

, 6
}3

=
(

3
β

–
3
α

)3

< 1

and

qpb(α,β)qpb(α, Pα)qpb(β , Pβ ) = min

{

α +
3
2

–
3
α

, 6
}

min

{

β +
3
2

–
3
β

, 6
}

= 36.

The right-hand side of the inequality is dominant, as shown in Fig. 2.
Case II If α ∈ [0, 3) and β ≥ 6,

qpb(Pα , Pβ ) = qpb

(
3
2

,
3
2

–
3
α

)3

= min

{

3 –
3
β

, 6
}3

=
(

3 –
3
β

)3

< 3

and

qpb(α,β)qpb(α, Pα)qpb(β , Pβ ) = min{α – β , 6}min

{

α +
3
2

, 6
}

min

{

β +
3
2

–
3
β

, 6
}

= 1 ×
(

α +
3
2

)

× 6 ≥ 6.

Clearly, the right-hand side of the inequality is dominant, as shown in Fig. 3.
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Figure 3 The plane in blue colour denotes the left-hand side of the inequality and the plane in orange colour
denotes the right-hand side of the inequality. Hence the right-hand side of the inequality is dominant for
α ∈ [0, 3),β ≥ 6

Figure 4 The plane in blue colour denotes the left-hand side of the inequality and the plane in orange colour
denotes the right-hand side of the inequality. Hence the left-hand side of the inequality is dominant for
α ∈ (0, 3)

Case III For α ∈ (0, 3),

qpb(Pα , P3)3 = qpb

(
3
2

, 0
)3

= min

{
3
2

, 6
}3

=
27
8

and

qpb(α, 3)qpb(α, Pα)qpb(3, P3) = min{α – 3, 6}min

{

α –
3
2

, 6
}

min{3, 6} ≥ 3
2

.

Clearly, the left-hand side of the inequality is dominant, as shown in Fig. 4.
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Figure 5 The plane in blue colour denotes the left-hand side of the inequality and the plane in orange colour
denotes the right-hand side of the inequality. Hence the left-hand side of the inequality is dominant for α ≥ 6

Case IV For α ≥ 6,

qpb(Pα , P3)3 = qpb

(
3
2

–
3
α

, 0
)3

= min

{
3
2

–
3
α

, 6
}3

≤ 27
8

,

and

qpb(α, 3)qpb(α, Pα)qpb(3, P3) = min{α – 3, 6}min

{

α +
3
2

–
3
α

, 6
}

min{3, 6} ≥ 6.

Hence, the left-hand side of the inequality is dominant, as shown in Fig. 5.
Also,

qpb(P3, P 3
2

)3 = min

{

0 –
3
2

, 2
}3

=
27
8

,

and

qpb

(

3,
3
2

)

qpb(3, P 3
2

)qpb

(

P3,
3
2

)

≥ 27
8

.

For α ≥ 6,

qpb(Pα , P 3
2

)3 = min

{

3 +
3
α

, 2
}3

= 3,

and

qpb

(

α,
3
2

)

qpb(α, P 3
2

)qpb

(

Pα ,
3
2

)

=
5
6

× 5
6

×
(

3 –
3
α

)

≥ 25
18

.

On taking the different intervals for α,β , we can observe the existence of a fixed point
for the mapping P, whose 3-D representation is also given in Figs. 2, 3, 4, 5. When both
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sides of the inequality have the same value, it gives us the fixed point, which is shown in
Case III where the graphs for both sides intersect each other at α = 3

2 .
Thus, P is an F-contractive mapping, and it has a unique fixed point α = 3

2 .

If we take a self-mapping Pn instead of P in Theorem 3.1, we get a corollary.

Corollary 3.1 Let (X, qpb) be a quasi-partial b-metric space and P : X → X be a self-
mapping such that for some δ > 0, qpb(α, Pα)qpb(β , Pβ ) �= 0 implies

δ + F
(

ρqpb
(

Pn
α , Pn

β

)) ≤ 1
3
[

F
(

qpb(α,β)
)

+ F
(

qpb
(

α, Pn
α

))

+ F
(

qpb
(

β , Pn
β

))]

– F
(

qpb
(

γ , Pn
γ

))

and qpb(α, Pα)qpb(β , Pβ ) = 0 implies

δ + F
(

ρqpb
(

Pn
α , Pn

β

)) ≤ 1
3
[

F
(

qpb(α,β)
)

+ F
(

qpb
(

α, Pn
β

))

+ F
(

qpb
(

β , Pn
α

))]

– F
(

qpb
(

γ , Pn
γ

))

,

where n is a positive integer. Then P has a fixed point.

Proof Applying Theorem 3.1 to the self-mapping S = Pn, we can say that S has a unique
fixed point say τ such that

Pn
τ = Sτ = τ .

Since Pn+1
τ = Pτ , we have

SPτ = Pn(Pτ ) = Pn+1
τ = Pτ .

This implies that Pτ is a fixed point of S, and by the uniqueness of fixed point we get

Pτ = τ . �

3.1 Kannan F-contractive type mapping
The concept of F-contraction was extended by many researchers [32–35]. Following this
direction, Kannan F-contractive type mapping is taken into consideration to prove the
fixed point results.

Definition 3.2 Let (X, qpb) be a quasi-partial b-metric space. A mapping T : X →
X is said to be Kannan F-contractive type mapping if there exists δ > 0 such that
qpb(α, Tα)qpb(β , Tβ ) �= 0 implies

δ + F
(

ρqpb(Tα , Tβ )
) ≤ 1

2
[

F
(

qpb(α, Tα)
)

+ F
(

qpb(β , Tβ )
)]

– F
(

qpb(γ , Tγ )
)

and qpb(α, Tα)qpb(β , Tβ ) = 0 implies

δ + F
(

ρqpb(Tα , Tβ )
) ≤ 1

2
[

F
(

qpb(α, Tβ )
)

+ F
(

qpb(β , Tα)
)]

– F
(

qpb(γ , Tγ )
)

for all α,β ,γ ∈ X and ρ ≥ 1.
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Example 3.2 The functions defined in Example 3.1 are also Kannan F-contractive type
mappings.

Theorem 3.2 Let T : X → X be a Kannan F-contractive type mapping in (X, qpb). Then T
is a Picard operator.

Proof This can also be proved as in Theorem 3.1. �

In 2017, Garai et al. [36] introduced boundedly compact metric spaces as follows.

Definition 3.3 A metric space (X, d) is said to be boundedly compact if every bounded
sequence in X has a convergent subsequence.

Definition 3.3 may be extended to quasi-partial b-metric spaces as well.

Theorem 3.3 Let (X, qpb) be a boundedly compact quasi-partial b-metric space and
T : X → X be a Kannan F-contractive type mapping. Then T is a Picard operator.

Proof Let α0 be arbitrary in X and {αn} be a sequence such that αn = Tn
α0 for every n ∈ N .

Denoting qpb(αn,αn+1) by xn, we have

δ + F(ρxn) = F
(

ρqpb
(

Tn
α0 , Tn+1

α0

))

– F
(

ρqpb
(

Tn–1
α0 , Tn+1

α0

))

= F
(

ρqpb
(

T
(

Tn–1
α0

)

, T
(

Tn
α0

)))

– F
(

ρqpb
(

T
(

Tn–2
α0

)

, T
(

Tn
α0

)))

≤ 1
2
[

F
(

qpb
(

Tn–1
α0 , Tn

α0

))

+ F
(

qpb
(

Tn
α0 , Tn+1

α0

))]

– F
(

qpb
(

Tn–2
α0 , Tn

α0

))

=
1
2
[

F(xn–1) + F(xn)
]

– F(xn–2)

≤ 1
2

F(ρxn–1) +
1
2

F(ρxn) – F(xn–2).

This implies

δ′ + F(ρxn) ≤ F(xn–1).

The remaining proof can be done following the same steps as in Theorem 3.1. �

Definition 3.4 For a quasi-partial b-metric space (X, qpb), a mapping T : X → X is called
asymptotically regular if

lim
n→+∞ qpb

(

Tn
α , Tn+1

α

)

= 0

for all α ∈ X.

Theorem 3.4 Let (X, qpb) be a quasi-partial b-metric space and T : X → X be an asymp-
totically regular mapping such that, for some δ > 0, qpb(α, Tα)qpb(β , Tβ ) �= 0 implies

δ + F
(

ρqpb(Tα , Tβ )
) ≤ F

(

qpb(α, Tα)
)

+ F
(

qpb(β , Tβ )
)

– F
(

qpb(γ , Tγ )
)

(3.3)
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and qpb(α, Tα)qpb(β , Tβ ) = 0 implies

δ + F
(

ρqpb(Tα , Tβ )
) ≤ F

(

qpb(α, Tβ )
)

+ F
(

qpb(β , Tα)
)

– F
(

qpb(γ , Tγ )
)

(3.4)

for all α,β ,γ ∈ X. Then T has a fixed point τ ∈ X.

Proof Let α0 be an arbitrary point in X and {αn} be a sequence such that αn = Tn
α0 for every

n ∈ N . Since T is asymptotically regular, we have

lim
n→+∞ xn = 0,

where xn = qpb(αn,αn+1). Since Tαn �= αn for all n < m ∈ N , we have

δ + F
(

ρqpb(αn+1,αm+1)
) ≤ F

(

qpb
(

Tn
α0 , Tn+1

α0

))

+ F
(

qpb
(

Tm
α0 , Tm+1

α0

))

– F
(

qpb
(

Tn
α0 , Tm

α0

))

= F(xn) + F(xm) – F
(

qpb
(

Tn
α0 , Tm

α0

))

.

Letting n → +∞, we get

lim
n→+∞ F

(

ρqpb(αn+1,αm+1)
)

= ±∞

or

lim
n→+∞ρqpb(αn+1,αm+1) = 0.

Since X is complete, there exists τ ∈ X such that

lim
n→+∞αn = τ .

By Lemma 2.1, we get

lim
n→+∞ qpb(αn, τ ) = 0.

From equation (3.3) and equation (3.4),

δ + F
(

ρqpb(Tτ , Tαn )
) ≤ F

(

qpb(τ , Tτ )
)

+ F
(

qpb(xn, Txn )
)

– F
(

qpb(Tτ , Tαn )
)

.

As n → +∞, we get

δ + lim
n→+∞ F

(

ρqpb(Tτ , Tαn )
) ≤ –∞,

or

lim
n→+∞ qpb(Tτ ,αn+1) = 0.

Since {αn} converges to both τ and Tτ , we have

Tτ = τ .

Hence, τ is the fixed point of T . �
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3.2 F-expanding type mapping
In 2017, Goŕnicki [18] defined F-expanding mappings and proved the fixed point theorem.
Following this direction, we have defined a new type of mapping, which is F-expanding
type mapping, and proved the fixed point result in a quasi-partial b-metric space.

Definition 3.5 Let us consider a mapping Q : X → X, it is said to be an F-expanding type
mapping if there exists � > 0 such that qpb(α, Qα)qpb(β , Qβ ) �= 0 implies

� + F
(

ρqpb(α,β)
) ≤ 1

3
[

F
(

qpb(Qα , Qβ )
)

+ F
(

qpb(α, Qα)
)

+ F
(

qpb(Qβ , Qβ )
)]

– F
(

qpb(Qγ , Qγ )
)

(3.5)

and qpb(α, Qα)qpb(β , Qβ ) = 0 implies

� + F
(

ρqpb(α,β)
) ≤ 1

3
[

F
(

qpb(Qα , Qβ )
)

+ F
(

qpb(α, Qβ)
)

+ F
(

qpb(Qβ , Qα)
)]

– F
(

qpb(Qγ , Qγ )
)

(3.6)

for all α,β ,γ ∈ X.

Lemma 3.1 Let (X, qpb) be a quasi-partial b-metric space and Q : X → X be surjective.
Then there exists a mapping Q∗ : X → X such that Q ◦ Q∗ is the identity map on X.

Proof For any point α ∈ X, let βα ∈ X be any point such that Pβα = α. Let P∗α = βα for all
α ∈ X. Then (P ◦ P∗)(α) = P(P∗α) = Pβα = α for all α ∈ X. �

Theorem 3.5 Let (X, qpb) be a quasi-partial b-metric space and Q : X → X be a surjective
and F-expanding type mapping. Then Q has a unique fixed point γ ∈ X.

Proof By Lemma 3.1, there exists Q∗ : X → X such that Q◦Q∗ is an identity map on X. Let
α and β be arbitrary points on X such that α �= β and φ = Q∗

α and ψ = Q∗
β . Clearly, φ = ψ .

Using equation (3.5), qpb(φ, Qφ)qpb(ψ , Qψ ) �= 0 implies

δ + F
(

ρqpb(φ,ψ)
) ≤ 1

3
[

F
(

qpb(Qφ , Qψ )
)

+ F
(

qpb(φ, Qφ)
)

+ F
(

qpb(ψ , Qψ )
)]

– F
(

qpb(γ , Qγ )
)

and qpb(φ, Qφ)qpb(ψ , Qψ ) = 0 implies

δ + F
(

ρqpb(φ,ψ)
) ≤ 1

3
[

F
(

qpb(Qφ , Qψ )
)

+ F
(

qpb(φ, Qψ )
)

+ F
(

qpb(ψ , Qφ)
)]

– F
(

qpb(γ , Qγ )
)

.

Since Qφ = Q(Q∗(α)) = α and Qψ = Q(Q∗(β)) = β , we get

δ + F
(

ρqpb
(

Q∗
α , Q∗

β

)) ≤ 1
3
[

F
(

qpb(α,β)
)

+ F
(

qpb
(

α, Q∗
α

))

+ F
(

qpb
(

β , Q∗
β

))]

– F
(

qpb
(

γ , Q∗
γ

))
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for qpb(α, Qα)qpb(β , Qβ ) �= 0 and

δ + F
(

ρqpb
(

Q∗
α , Q∗

β

)) ≤ 1
3
[

F
(

qpb(α,β)
)

+ F
(

qpb
(

α, Q∗
β

))

+ F
(

qpb
(

β , Q∗
α

))]

– F
(

qpb
(

γ , Q∗
γ

))

,

for qpb(α, Qα)qpb(β , Qβ ) = 0, showing that Q∗ is an F-contractive type mapping. By Theo-
rem 3.1, Q∗ has a unique fixed point τ ∈ X for every αo ∈ X, the sequence {Qn

αo} converges
to τ . Since τ is also a fixed point of Q and Q∗

τ = τ , we can also say that

Qτ = Q
(

Q∗
τ

)

= τ .

Finally, if μ = Qμ is another fixed point, then from equation (3.6)

δ + F
(

ρqpb(τ ,μ)
) ≤ 1

3
[

F
(

qpb(Qτ , Qμ)
)

+ F
(

qpb(τ , Qμ)
)

+ F
(

qpb(μ, Qτ )
)]

– F
(

qpb(τ ,μ)
)

,

which is not possible and hence the fixed point of Q is unique.
In a similar manner, we can define Kannan F-expanding type mapping i.e. qpb(α, Qα) ×

qpb(β , Qβ ) �= 0 implies

� + F
(

ρqpb(α,β)
) ≤ 1

2
[

F
(

qpb(α, Qβ )
)

+ F
(

qpb(β , Qα)
)]

– F
(

qpb(γ , Qγ )
)

,

and qpb(α, Qα)qpb(β , Qβ ) = 0 implies

� + F
(

ρqpb(α,β)
) ≤ 1

2
[

F
(

qpb(α, Qα)
)

+ F
(

qpb(β , Qβ)
)]

– F
(

qpb(γ , Qγ )
)

,

and prove the fixed point result in Kannan F-expanding mapping. �

4 Application to functional equations
The widest field in which the technique of fixed point theory is used is mathematical op-
timization. It is well known that dynamic programming provides useful tools for math-
ematical optimization and computer programming. In this section, we have proved the
existence and uniqueness of a solution for a class of functional equations similar to equa-
tion (4.1) in a quasi-partial b-metric space.

Assume that U and V are Banach spaces, W ⊂ U is a state space and D ⊂ V is a decision
space. Also, R is the field of real numbers where X = B(W ) denotes the set of all closed and
bounded real-valued functions on W , let us consider the following functional equation:

θ (α) = Supβ∈D
{

f (α,β) + g
(

α,β , θ
(

τ (α,β)
))}

, α ∈ W . (4.1)

Let f : W × D → R and g : W × D × R → R be bounded functions. τ : W × D → W
represents the transformation of process, θ (α) represents the optimal return function with
initial state α, and for an arbitrary h ∈ B(W ), we have ‖h‖ = Sup |h(α)|. Also, (B(W ),‖ · ‖)
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is a Banach space wherein convergence is uniform considering a quasi-partial b-metric
space qpb : X × X →R

+ defined by

qpb(α,β) = |β – α| + |β|.

Theorem 4.1 Let Q, P : B(W ) → B(W ) be the self-mappings of qpb, and there exists σ ∈
[0, 1) such that for every (α,β) ∈ W × D, h1, h2 ∈ B(W ) and τ ∈ W , it satisfies

1. |g(α,β , h1τ (α,β)) – g(α,β , h2τ (α,β))| ≤ ρe–τ M(h1, h2) holds, where
M(h1, h2) = max(qpb(h1, h2), qpb(α, P(α)), qpb(β , P(β)),

1
3
{

qpb
(

α, P(β)
)

+ qpb
(

β , P(α)
)

– qpb
(

γ , P(γ )
)}

;

2. f and g are bounded continuous functions,
then the functional equation

Ph(α) = Supβ∈D
{

f (α,β) + g
(

α,β , Ph
(

τ (α,β)
))}

, α,β ∈ W (4.2)

has a unique solution.

Proof Let σ be any arbitrary positive real number and h1, h2 ∈ B(W ). For α ∈ W and
β1,β2 ∈ D, we have

Q
(

h1(α)
)

< f (α,β1) + g
(

α,β1, h1(τ1)
)

+ σ (4.3)

and

Q
(

h2(α)
)

< f (α,β2) + g
(

α,β2, h2(τ2)
)

+ σ , (4.4)

where τ1 = τ (α,β1), τ2 = τ (α,β2).
From the definition of mapping Q, we have

Q
(

h1(α)
) ≥ f (α,β2) + g

(

α,β2, h1(τ2)
)

, (4.5)

and

Q
(

h2(α)
)

< f (α,β1) + g
(

α,β1, h2(τ1)
)

. (4.6)

From equations (4.3) and (4.6),

Q
(

h1(α)
)

– Q
(

h2(α)
)

< g
(

α,β1, h1(τ1)
)

– g
(

α,β2, h2(τ2)
)

+ σ ,

≤ ∣
∣g

(

α,β1, h1(τ1)
)

– g
(

α,β2, h2(τ1)
)∣
∣ + σ ,

≤ ρe–τ M(h1, h2) + σ .

This implies

Q
(

h1(α)
)

– Q
(

h2(α)
) ≤ ρe–τ M(h1, h2) + σ . (4.7)
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Similarly, from equations (4.4) and (4.5),

Q
(

h2(α)
)

– Q
(

h1(α)
) ≤ ρe–τ M(h1, h2) + σ . (4.8)

From equations (4.7) and (4.8),

∣
∣Q

(

h1(α)
)

– Q
(

h2(α)
)∣
∣ < ρeτ M(h1, h2) + σ ,

⇒ qpb
(

Q(h1), Q(h2)
) ≤ ρeτ M(h1, h2) + σ ,

⇒ qpb
(

Q(h1), Q(h2)
) ≤ ρeτ M(h1, h2).

Taking logarithm on both sides,

log
(

qpb
(

Q(h1), Q(h2)
)) ≤ log

(

ρeτ M(h1, h2)
)

.

On solving, we get

τ + log
(

qpb
(

Q(h1), Q(h2)
)) ≤ log

(

ρM(h1, h2)
)

.

We have observed that the function F : R+ → R defined by F(α) = log(α) for all α ∈ W
deduces that Q is an F-contraction. Since Q is continuous, we have a fixed point h∗ ∈ B(W ),
which is a bounded solution of functional equation (4.2). �

5 Conclusion
The significant study of this paper established the existence of a common fixed point for
a new type of mapping which is a combination of F-contraction as well as Kannan con-
traction on quasi-partial b-metric space. The fixed point theory has found frequent ap-
plications in mathematical optimization and computer programming along with dynamic
programming. In this setting, we have discussed the application of fixed point theory in
functional equations to find the bounded solution of the equation.
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