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Abstract
In this paper, the existence and uniqueness of the solutions of Caputo fractional delay
differential equations under nonlocal and integral boundary value conditions are
studied. By using the Banach contraction principle and the Burton and Kirk
fixed-point theorem, some new conclusions about the existence and uniqueness of
solutions are obtained. An example is given to illustrate the main results.
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1 Introduction
Recently, the importance of fractional differential equations in engineering and technol-
ogy has become more and more significant, and it has been a considerable tool in the
fields of physics, biology, economics, etc. [1–8]. The existence of solutions to boundary
value problems of fractional differential equations has also attracted the attention of many
studies.

The boundary value problem of differential equations has always been the focus of re-
search, especially the differential equations containing Riemann–Liouville fractional cal-
culus, Caputo fractional calculus, the Riesz–Caputo derivative, the p-Laplacian operator,
and so on [9–12]. However, in these differential equations, delay is a nonnegligible influ-
encing factor, which can reasonably consider the influence of the past on the current situa-
tion, making the research more realistic. As an important branch of differential equations,
differential equations with delay have a wide range of applications in many fields such as
control, biology, communication, and ecology [13–16].

In [17], Derbazi and Hammouohe used the fixed-point theorem to study the existence
of solutions with nonlocal boundary values and integral boundary values:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
0+ u(t) = f (t, u(t), cDβ

0+ u(t)), t ∈ J := [0, 1],

u(0) = g(u),

u′(0) = aIσ1
0+ u(η1), 0 < η1 < 1,

cDβ1
0+ u(1) = bIσ2

0+ u(η2), 0 < η2 < 1,
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where cDγ

0+ is the Caputo fractional derivative of order γ ∈ {α,β ,β1}, 2 < α ≤ 3, 0 < β ,
β1 ≤ 1. f : [0, 1]×R

2 →R and g : C([0, 1],R) are continuous functions. Iσi
0+ is the Riemann–

Liouville fractional integral of order σi > 0 (i = 1, 2).
In [18], by using the fixed-point theory and nonlinear analysis, Amjad et al. obtained the

existence of solutions for the nonlocal boundary value problems of fractional differential
equations,

⎧
⎨

⎩

Dζ v(t) = f (t, v(t)), t ∈ J := [0, 1],

v(0) = D1v(0) = D2v(0) = 0, v(1) = h(v),

where 3 < ζ ≤ 4, ∀s, t ∈ AC4[0, 1], f : J ×R →R is a continuous function.
Motivated by the above papers, in this work, we consider the following fractional bound-

ary value problems of differential equations with delay:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
0+ u(t) = f (t, ut , cDβ

0+ u(t)), t ∈ J := [0, 1],

u(0) = 0, u′(0) = aIσ
0+ u(η),

bu(1) + cu′(1) = g(u),

u(t) = φ(t), –τ ≤ t ≤ 0,

(1.1)

where cDα
0+ and cDβ

0+ are the Caputo fractional derivatives, and Iσ
0+ is the Riemann–

Liouville fractional integral, 2 < α ≤ 3, 0 < β < 1, 0 < τ < 1, 0 ≤ η ≤ 1, σ > 0. f : [0, 1] ×
C[–τ , 0] × R → R is continuous. g : C[0, 1] → R is continuous, and g(0) = 0. a, b, c ∈ R,
φ ∈ C[–τ , 0], φ(0) = 0.

If u : [–τ , 1] →R, then ∀t ∈ [0, 1], we define ut by ut(θ ) = u(t + θ ), θ ∈ [–τ , 0].
The organization of this paper is as follows. In Sect. 2, we show some necessary def-

initions and lemmas about fractional calculus theory. In Sect. 3, we find the equivalent
equation of the solution of boundary value problem (1.1) and prove the existence and
uniqueness of the solution. In Sect. 4, we will validate our main results by giving an exam-
ple.

2 Preliminaries
In this section, we introduce some basic definitions and results that are used throughout
this paper.

Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 of a function
u ∈ L1([0, 1]) is defined by

Iα
0+ u(t) =

1
�(α)

∫ t

0
(t – s)α–1u(s) ds.

Moreover, for α = 0, we set Iα
0+ u := u.

Definition 2.2 The Caputo fractional derivative of order α of a function u ∈ ACn([0, 1])
is represented by

cDα
0+ u(t) =

⎧
⎨

⎩

1
�(n–α)

∫ t
0 (t – s)n–α–1u(n)(s) ds, if α /∈ N,

u(n)(t), if α ∈ N,
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where u(n)(t) = dnu(t)
dtn , α > 0 (α /∈N), n = [α] + 1 and [α] denotes the integer part of the real

number α.

Lemma 2.3 ([17]) Let α,β > 0, n = [α] + 1, then the following formula holds:

cDβ

0+ tβ =

⎧
⎨

⎩

�(β+1)
�(β–α+1) tβ–α , (β ∈N and β ≥ n or β /∈ N and β > n – 1),

0, β ∈ {0, 1, . . . , n – 1}.

Lemma 2.4 ([17]) Let α > β > 0, and u ∈ L1([0, 1]). Then, the following formulas hold:
(1) Iα

0+ Iβ

0+ u(t) = Iα+β

0+ u(t);
(2) cDα

0+ Iα
0+ u(t) = u(t);

(3) cDβ

0+ Iα
0+ u(t) = Iα–β

0+ u(t).

Lemma 2.5 ([17]) Let α > 0. Then, the following formula holds:

Iα
0+

(cDα
0+ u(t)

)
= u(t) +

n–1∑

j=0

cjtj,

for some cj ∈R, j = 0, . . . , n – 1, where n = [α] + 1.

Lemma 2.6 ([17]) Let α > 0, u ∈ L([0, 1],R). Then, we have:

∣
∣Iα+1

0+ u(t)
∣
∣ ≤ ∥

∥Iα
0+ u

∥
∥

L1 , ∀t ∈ [0, 1].

Lemma 2.7 ([17]) The fractional integral Iα
0+ ,α > 0 is bounded in L1([0, 1],R) with

∥
∥Iα

0+ u
∥
∥

L1 ≤ ‖u‖L1

�(α + 1)
.

3 Main results
In this part, we need some lemmas and then discuss the existence and uniqueness of a
solution of BVP (1.1) by using some fixed-point theorems.

Now, we list some conditions for convenience:
(H1) � = (b + 2c)( aησ+1

�(σ+2) – 1) – 2(b + c) aησ+2

�(σ+3) 	= 0, b 	= 0, b 	= –2c.
(H2) There exists l ∈ L1(J ,R+), such that

∣
∣f (t, u1, v1) – f (t, u2, v2)

∣
∣ ≤ l(t)

(‖u1 – u2‖∞ + |v1 – v2|
)
,

for t ∈ J , u1, u2 ∈ Cτ = C[–τ , 0], v1, v2 ∈R.
(H3) There exists a positive constant ω, such that

∣
∣g(u) – g(v)

∣
∣ ≤ ω‖u – v‖J , ∀u, v ∈ C(J ,R).

(H4) There exists a nonnegative function q ∈ L1(J ,R+), such that

∣
∣f (t, u, v)

∣
∣ ≤ q(t)

(
1 + ‖u‖∞ + |v|), ∀(t, u, v) ∈ J × Cτ ×R.
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Let

m1 =
a(b + 2c)

�
, m2 = –

2baησ+2

��(σ + 3)
, m3 =

m2c
b

, m4 = –
m2

b
,

m5 = –
a(b + c)

�
, m6 =

2b(b + c)aησ+2

�(b + 2c)�(σ + 3)
+

b
b + 2c

,

m7 = –
2c(b + c)aησ+2

�(b + 2c)�(σ + 3)
–

c
b + 2c

, m8 =
2(b + c)aησ+2

(b + 2c)��(σ + 3)
+

1
b + 2c

.

Lemma 3.1 Suppose h ∈ C(J ,R), 2 < α ≤ 3, then the unique solution of the system

cDα
0+ u(t) = h(t), (3.1)

with boundary conditions

⎧
⎨

⎩

u(0) = 0, u′(0) = aIσ
0+ u(η),

bu(1) + cu′(1) = g(u),
(3.2)

is given by

u(t) = Iα
0+ h(t) +

(
m5t2 – m1t

)
Iα+σ

0+ h(η) +
(
m6t2 – m2t

)
Iα

0+ h(1) +
(
m7t2 – m3t

)
Iα–1

0+ h(1)

+
(
m8t2 – m4t

)
g(u).

Proof Applying Iα
0+ to both sides of cDα

0+ u(t) = h(t), we have

u(t) = Iα
0+ h(t) – c0 – c1t – c2t2, c0, c1, c2 ∈R.

By u(0) = 0, we know that c0 = 0. Then, u(t) = Iα
0+ h(t) – c1t – c2t2.

Also, because u′(0) = aIσ
0+ u(η), we obtain

(
aησ+1

�(σ + 2)
– 1

)

c1 + 2
aησ+2

�(σ + 3)
c2 = aIσ+α

0+ h(η).

Then, by bu(1) + cu′(1) = g(u), we obtain

bIα
0+ h(1) – bc1 – bc2 + c

(
Iα–1

0+ h(1) – c1 – 2c2
)

= g(u).

Hence,

c1 =
a(b + 2c)

�
Iα+σ

0+ h(η) +
2
�

(
aησ+2

�(σ + 3)

)

g(u) –
2b
�

(
aησ+2

�(σ + 3)

)

Iα
0+ h(1)

–
2c
�

(
aησ+2

�(σ + 3)

)

Iα–1
0+ h(1),
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c2 = –
a(b + c)

�
Iα+σ

0+ h(η) –
[

2(b + c)
�(b + 2c)

(
aησ+2

�(σ + 3)

)

+
1

b + 2c

]

g(u)

+
[

2b(b + c)
�(b + 2c)

(
aησ+2

�(σ + 3)

)

+
b

b + 2c

]

Iα
0+ h(1)

+
[

2c(b + c)
�(b + 2c)

(
aησ+2

�(σ + 3)

)

+
c

b + 2c

]

Iα–1
0+ h(1).

Substituting c1 and c2 into the above expression of u(t), we obtain

u(t) = Iα
0+ h(t) +

(
m5t2 – m1t

)
Iα+σ

0+ h(η) +
(
m6t2 – m2t

)
Iα

0+ h(1) +
(
m7t3 – m3t

)
Iα–1

0+ h(1)

+
(
m8t2 – m4t

)
g(u). �

It can be seen from Lemma 3.1 that u is the solution of BVP (1.1) if and only if it satisfies

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iα
0+ f (s, us, cDβ

0+ u(s))(t)

+ (m5t2 – m1t)Iα+σ
0+ f (s, us, cDβ

0+ u(s))(η)

+ (m6t2 – m2t)Iα
0+ f (s, us, cDβ

0+ u(s))(1)

+ (m7t2 – m3t)Iα–1
0+ f (s, us, cDβ

0+ u(s))(1)

+ (m8t2 – m4t)g(u), t ∈ J ,

φ(t), t ∈ [–τ , 0].

(3.3)

For convenience, we note that

Iα
0+ f

(
s, us, cDβ

0+ u(s)
)
(t) =

1
�(α)

∫ t

0
(t – s)α–1f

(
s, us, cDβ

0+ u(s)
)

ds, t ∈ J .

We define the space

X =
{

x | x ∈ C[–τ , 1], cDβ

0+ u ∈ C[0, 1], 0 < β < 1
}

equipped with the norm:

‖u‖X = ‖u‖∞ +
∥
∥cDβ

0+ u
∥
∥

J = sup
t∈[–τ ,1]

∣
∣u(t)

∣
∣ + sup

t∈J

∣
∣cDβ

0+ u(t)
∣
∣.

Then, X is a Banach space [17].
Define the integral operator T : X → X by

(Tu)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iα
0+ f (s, us, cDβ

0+ u(s))(t)

+ (m5t2 – m1t)Iα+σ
0+ f (s, us, cDβ

0+ u(s))(η)

+ (m6t2 – m2t)Iα
0+ f (s, us, cDβ

0+ u(s))(1)

+ (m7t2 – m3t)Iα–1
0+ f (s, us, cDβ

0+ u(s))(1)

+ (m8t2 – m4t)g(u), t ∈ J ,

φ(t), t ∈ [–τ , 0].

(3.4)
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Define the operator T1, T2:

(T1u)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iα
0+ f (s, us, cDβ

0+ u(s))(t)

+ (m5t2 – m1t)Iα+σ
0+ f (s, us, cDβ

0+ u(s))(η)

+ (m6t2 – m2t)Iα
0+ f (s, us, cDβ

0+ u(s))(1)

+ (m7t2 – m3t)Iα–1
0+ f (s, us, cDβ

0+ u(s))(1), t ∈ J ,

φ(t), t ∈ [–τ , 0],

(3.5)

(T2u)(t) =

⎧
⎨

⎩

(m8t2 – m4t)g(u), t ∈ J ,

0, t ∈ [–τ , 0].
(3.6)

It is obvious that

Tu = T1u + T2u. (3.7)

Lemma 3.2 Let f ∈ C([0, 1] ×R×R,R). Then, u ∈ X is a solution of BVP (1.1) if and only
if Tu = u.

Proof Let u be a solution of BVP (1.1). That is, u satisfies the equation and the boundary
value conditions in (1.1). By Lemma 3.1, we have

u(t) = Iα
0+ f

(
s, us, cDβ

0+ u(s)
)
(t) +

(
m5t2 – m1t

)
Iα+σ

0+ f
(
s, us, cDβ

0+ u(s)
)
(η)

+
(
m6t2 – m2t

)
Iα

0+ f
(
s, us, cDβ

0+ u(s)
)
(1)

+
(
m7t2 – m3t

)
Iα–1

0+ f
(
s, us, cDβ

0+ u(s)
)
(1)

+
(
m8t2 – m4t

)
g(u) = Tu(t).

Conversely, u satisfies

u(t) = Tu(t)

= Iα
0+ f

(
s, us, cDβ

0+ u(s)
)
(t) +

(
m5t2 – m1t

)
Iα+σ

0+ f
(
s, us, cDβ

0+ u(s)
)
(η)

+
(
m6t2 – m2t

)
Iα

0+ f
(
s, us, cDβ

0+ u(s)
)
(1)

+
(
m7t2 – m3t

)
Iα–1

0+ f
(
s, us, cDβ

0+ u(s)
)
(1)

+
(
m8t2 – m4t

)
g(u)

and denotes h(t) = f (t, ut , cDβ

0+ u(t)). Then, the above equation can be rewritten as

u(t) = Iα
0+ h(s)(t) +

(
m5t2 – m1t

)
Iα+σ

0+ h(s)(η) +
(
m6t2 – m2t

)
Iα

0+ h(s)(1)

+
(
m7t2 – m3t

)
Iα–1

0+ h(s)(1) +
(
m8t2 – m4t

)
g(u).
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Therefore, by Lemma 3.1, we know that u(t) satisfies (3.1) and (3.2). That is, u(t) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
0+ u(t) = h(t) = f (t, ut , cDβ

0+ u(t)), t ∈ J := [0, 1],

u(0) = 0, u′(0) = aIσ
0+ u(η),

bu(1) + cu′(1) = g(u),

u(t) = φ(t), –τ ≤ t ≤ 0.

Thereby, u is a solution of BVP (1.1).
In conclusion, u is a solution of BVP (1.1) if and only if Tu = u. �

Now, we set some notations:

Q1 =
1 + |m6| + |m2|

�(α)
+

|m5| + |m1|
�(α + σ )

+
|m7| + |m3|
�(α – 1)

,

Q2 =
1

�(α – β)
+

2|m5| + (2 – β)|m1|
�(3 – β)�(α + σ )

+
2|m6| + (2 – β)|m2|

�(3 – β)�(α)
+

2|m7| + (2 – β)|m3|
�(3 – β)�(α – 1)

,

P1 = |m8| + |m4|, P2 =
2|m8| + (2 – β)|m4|

�(3 – β)
.

We are now ready to present our main results. We give a uniqueness result based on the
Banach contraction principle.

Theorem 3.3 Assume that (H1)–(H3) hold. If

(Q1 + Q2)‖l‖L1 + (P1 + P2)ω < 1,

then BVP (1.1) has a unique solution on [–τ , 1].

Proof We let the definition of the operator T be (1.1), and u, v ∈ X. For all t ∈ J , we have

∣
∣(Tu)(t) – (Tv)(t)

∣
∣ = Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f (s, vs, cDβ

0+ v(s)
∣
∣(t)

+
∣
∣m5t2 – m1t

∣
∣Iα+σ

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, vs, cDβ

0+ v(s)
)∣
∣(η)

+
∣
∣m6t2 – m2t

∣
∣Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, vs, cDβ

0+ v(s)
)∣
∣(1)

+
∣
∣m7t2 – m3t

∣
∣Iα–1

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, vs, cDβ

0+ v(s)
)∣
∣(1)

+
∣
∣m8t2 – m4t

∣
∣
∣
∣g(u) – g(v)

∣
∣.

It can be seen from (H2) that

∣
∣(Tu)(t) – (Tv)(t)

∣
∣ ≤ (‖u – v‖∞ +

∥
∥cDβ

0+ u – cDβ

0+ v
∥
∥

J

)[
Iα

0+ l(s)(t)

+
(|m5| + |m1|

)
Iα+σ

0+ l(s)(η) +
(|m6| + |m2|

)
Iα

0+ l(s)(1)

+
(|m7| + |m3|

)
Iα–1

0+ l(s)(1)
]

+
(|m8| + |m4|

)∣
∣g(u) – g(v)

∣
∣.
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By Lemma 2.6, Lemma 2.7, and (H3), we have

∣
∣Tu(t) – Tv(t)

∣
∣ ≤ ‖u – v‖X

(
1

�(α)
+

|m5| + |m1|
�(α + σ )

+
|m6| + |m2|

�(α)
+

|m7| + |m3|
�(α – 1)

)

‖l‖L1

+
(|m8| + |m4|

)
ω‖u – v‖J .

Therefore,

sup
t∈J

∣
∣Tu(t) – Tv(t)

∣
∣ = ‖Tu – Tv‖J ≤ (

Q1‖l‖L1 + P1ω
)‖u – v‖X . (3.8)

In addition, ∀t ∈ J ,

cDβ

0+ (Tu)(t) = Iα–β

0+ f
(
s, us, cDβ

0+ u(s)
)
(t)

+
2m5t2–β – (2 – β)m1t1–β

�(3 – β)
Iα+σ

0+ f
(
s, us, cDβ

0+ u(s)
)
(η)

+
2m6t2–β – (2 – β)m2t1–β

�(3 – β)
Iα

0+ f
(
s, us, cDβ

0+ u(s)
)
(1)

+
2m7t2–β – (2 – β)m3t1–β

�(3 – β)
Iα–1

0+ f
(
s, us, cDβ

0+ u(s)
)
(1)

+
2m8t2–β – (2 – β)m4t1–β

�(3 – β)
g(u).

By the above proof, it is easy to see that

∥
∥cDβ

0+ Tu – cDβ

0+ Tv
∥
∥

J ≤ (
Q2‖l‖L1 + P2ω

)‖u – v‖X . (3.9)

For every t ∈ [–τ , 0], we have

∣
∣(Tu)(t) – (Tv)(t)

∣
∣ = 0.

Then, combining (3.8) and (3.9), we know that

‖Tu – Tv‖X ≤ [
(Q1 + Q2)‖l‖L1 + (P1 + P2)ω

]‖u – v‖X .

Owing to (Q1 + Q2)‖l‖L1 + (P1 + P2)ω < 1, T is contractive.
Hence, by the Banach contraction principle, BVP (1.1) has a unique solution. This com-

pletes the proof. �

Next, we give some existence results by the fixed-point theorem of Burton and Kirk [19].

Lemma 3.4 (Burton and Kirk fixed-point theorem [19]) Let X be a Banach space, and
A, B : X → X be two operators, such that A is a contraction and B is completely continuous.
Then, either

(a) the operator equation u = A(u) + B(u) has a solution, or
(b) the set � = {u ∈ X : λA( u

λ
) + λB(u) = u} is unbounded for λ ∈ (0, 1).
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Theorem 3.5 Suppose that (H1), (H3), and (H4) hold. Moreover,

(Q1 + Q2)‖q‖L1 + (P1 + P2)ω < 1, (3.10)

then BVP (1.1) has at least a solution on [–τ , 1].

Proof The definition of T : X → X is the same as (3.7).
Step 1: The mapping T1 : X → X is continuous. Let u, ū ∈ X. When u → ū, namely

‖u – ū‖ → 0, we have

sup
t∈J

Iα
0+

∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(t) → 0,

sup
t∈J

Iα+σ
0+

∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(t) → 0,

sup
t∈J

Iα
0+

∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(t) → 0,

sup
t∈J

Iα–1
0+

∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(t) → 0.

Also, because

∣
∣T1u(t) – T1ū(t)

∣
∣ ≤ Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(t)

+
(
m5t2 – m1t

)
Iα+σ

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(η)

+
(
m6t2 – m2t

)
Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(1)

+
(
m7t2 – m3t

)
Iα–1

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(1),

then,

‖T1u – T1ū‖ = sup
t∈J

∣
∣T1u(t) – T1ū(t)

∣
∣

≤ sup
t∈J

Iα
0+

∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(t)

+ sup
t∈J

(
m5t2 – m1t

)
Iα+σ

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(η)

+ sup
t∈J

(
m6t2 – m2t

)
Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(1)

+ sup
t∈J

(
m7t2 – m3t

)
Iα–1

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)

– f
(
s, ūs, cDβ

0+ ū(s)
)∣
∣(1).

From the above inequality, when u → ū, ‖T1u – T1ū‖ → 0, that is, T1 is continuous on X.
Step 2: Let Br = {u ∈ X : ‖u‖X ≤ r, r > 0}. We will prove T1(Br) is bounded and equicon-

tinuous. ∀u ∈ Br , ∀t ∈ J , we have

∣
∣(T1u)(t)

∣
∣ ≤ Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(t) +

(|m5| + |m1|
)
Iα+σ

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(η)

+
(|m6| + |m2|

)
Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(1)

+
(|m7| + |m3|

)
Iα–1

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(1).
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By (H4), we know that

∣
∣(T1u)(t)

∣
∣ ≤ (

1 + ‖u‖∞ + |v|)[Iα
0+ q(s)(t) +

(|m5| + |m1|
)
Iα+σ

0+ q(s)(η)

+
(|m6| + |m2|

)
Iα

0+ q(s)(1) +
(|m7| + |m3|

)
Iα–1

0+ q(s)(1)
]
.

According to Lemma 2.6 and Lemma 2.7, we obtain

∣
∣(T1u)(t)

∣
∣ ≤ Q1‖q‖L1

(
1 + ‖u‖∞ + |v|)

≤ Q1‖q‖L1
(
1 + ‖u‖∞ + ‖v‖J

)

≤ Q1‖q‖L1
(
1 + ‖u‖X

)
.

Thus,

‖T1u‖∞ ≤ Q1‖q‖L1
(
1 + ‖u‖X

)
+ ‖φ‖∞.

Similarly, we can obtain

∥
∥cDβ

0+ T1u
∥
∥

J ≤ Q2‖q‖L1
(
1 + ‖u‖X

)
.

Therefore,

‖T1u‖X ≤ (Q1 + Q2)‖q‖L1
(
1 + ‖u‖X

)
+ ‖φ‖∞

≤ (Q1 + Q2)‖q‖L1 (1 + r) + r.

Hence, T1(Br) is bounded.
Now, we will prove that T1(Br) is equicontinuous.
Assume the following notation

Mr = sup
{∣
∣f (t, u, v)

∣
∣ : t ∈ J ,‖u‖∞ ≤ r, |v| ≤ r

}
.

Let t1, t2 ∈ [–τ , 1] with t1 < t2, u ∈ Br :
(i) If 0 ≤ t1 < t2 ≤ 1, then

∣
∣(T1u)(t2) – (T1u)(t1)

∣
∣

≤ 1
�(α)

∫ t2

0
(t2 – s)α–1∣∣f

(
s, us, cDβ

0+ u(s)
)∣
∣ds

–
1

�(α)

∫ t1

0
(t1 – s)α–1∣∣f

(
s, us, cDβ

0+ u(s)
)∣
∣ds

+
(|m5|

(
t2
2 – t2

1
)

+ |m1|(t2 – t1)
)
Iα+σ

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(η)

+
(|m6|

(
t2
2 – t2

1
)

+ |m2|(t2 – t1)
)
Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(1)

+
(|m7|

(
t2
2 – t2

1
)

+ |m3|(t2 – t1)
)
Iα–1

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(1)

≤ 1
�(α)

∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]∣∣f

(
s, us, cDβ

0+ u(s)
)∣
∣ds
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+
1

�(α)

∫ t2

t1

(t2 – s)α–1∣∣f
(
s, us, cDβ

0+ u(s)
)∣
∣ds

+
(
t2
2 – t2

1
)
[
(
2|m5| + |m1|

)
Iα+σ

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(η)

+
(
2|m6| + |m2|

)
Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(1)

+
(
2|m7| + |m3|

)
Iα–1

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(1)]

≤ Mr(t2 – t1)
[

1
�(α)

+
2|m5| + |m1|
�(α + σ + 1)

ηα+σ +
2|m6| + |m2|

�(α + 1)
+

2|m7| + |m3|
�(α)

]

.

Similarly, we obtain:

∣
∣cDβ

0+ (T1u)(t2) – cDβ

0+ (T1u)(t1)
∣
∣

≤ Mr

[
tα–β
2 – tα–β

1
�(α – β + 1)

+
2|m5||t2–β

2 – t2–β
1 | + (2 – β)|m1||t1–β

2 – t1–β
1 |

�(3 – β)�(α + σ + 1)

+
2|m6||t2–β

2 – t2–β
1 | + (2 – β)|m2||t1–β

2 – t1–β
1 |

�(3 – β)�(α + 1)

+
2|m7||t2–β

2 – t2–β
1 | + (2 – β)|m3||t1–β

2 – t1–β
1 |

�(3 – β)�(α)

]

.

(ii) If –τ ≤ t1 < 0 < t2 ≤ 1, then

∣
∣(T1u)(t2) – (T1u)(t1)

∣
∣ ≤ ∣

∣(T1u)(t2) – (T1u)(0)
∣
∣ +

∣
∣(T1u)(0) – (T1u)(t1)

∣
∣

≤ 1
�(α)

∫ t2

0
(t2 – s)α–1∣∣f

(
s, us, cDβ

0+ u(s)
)∣
∣ds

+
(|m5|t2

2 + |m1|t2
)
Iα+σ

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(η)

+
(|m6|t2

2 + |m2|t2
)
Iα

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(1)

+
(|m7|t2

2 + |m3|t2
)
Iα–1

0+
∣
∣f

(
s, us, cDβ

0+ u(s)
)∣
∣(1) +

∣
∣φ(t1)

∣
∣

≤ Mrt2

[
1

�(α)
+

|m5| + |m1|
�(α + σ + 1)

ηα+σ +
|m6| + |m2|
�(α + 1)

+
|m7| + |m3|

�(α)

]

+
∣
∣φ(t1)

∣
∣.

(iii) If –τ ≤ t1 < t2 ≤ 0, it can be seen from the definition of φ that:

∣
∣(T1u)(t2) – (T1u)(t1)

∣
∣ =

∣
∣φ(t2) – φ(t1)

∣
∣.

It can be seen from (i)–(iii) that T1(Br) is equicontinuous.
Step 3: We will prove that T2 is contractive. ∀u, v ∈ X, by (H3), we have

∣
∣T2u(t) – T2v(t)

∣
∣ ≤ ∣

∣
(
m8t2 – m4t

)(
g(u) – g(v)

)∣
∣

≤ P1ω‖u – v‖J

≤ P1ω‖u – v‖X , ∀t ∈ J ,
∣
∣cDβ

0+ T2u(t) – cDβ

0+ T2v(t)
∣
∣ ≤ P2ω‖u – v‖X , ∀t ∈ J .
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Hence,

‖T2u – T2v‖X ≤ (P1 + P2)ω‖u – v‖X ≤ ‖u – v‖X .

Hence, T2 is contractive.
Step 4: Let � = {u ∈ X : λT2( u

λ
) + λT1(u) = u,λ ∈ (0, 1)}. ∀u ∈ �, there exists λ ∈ (0, 1),

such that

u(t) = λ

[

Iα
0+ f

(
s, us, cDβ

0+ u(s)
)
(t) +

(
m5t2 – m1t

)
Iα+σ

0+ f
(
s, us, cDβ

0+ u(s)
)
(η)

+
(
m6t2 – m2t

)
Iα

0+ f
(
s, us, cDβ

0+ u(s)
)
(1) +

(
m7t2 – m3t

)
Iα–1

0+ f
(
s, us, cDβ

0+ u(s)
)
(1)

+
(
m8t2 – m4t

)
g
(

u
λ

)]

, ∀t ∈ J .

According to (H3) and (H4), we obtain

∣
∣u(t)

∣
∣ ≤ (

1 + ‖u‖X
)[

Iα
0+ q(s)(t) +

(|m5| + |m1|
)
Iα+σ

0+ q(s)(η) +
(|m6| + |m2|

)
Iα

0+ q(s)(1)

+
(|m7| + |m3|

)
Iα–1

0+ q(s)(1)
]

+
(|m8| + |m4|

)
ω‖u‖X , ∀t ∈ J .

Thus, we have

‖u‖∞ ≤ Q1‖q‖L1
(
1 + ‖u‖X

)
+ P1ω‖u‖X + ‖φ‖∞,

∥
∥cDβ

0+ u
∥
∥

J ≤ Q2‖q‖L1
(
1 + ‖u‖X

)
+ P2ω‖u‖X ,

then,

‖u‖X ≤ (Q1 + Q2)‖q‖L1
(
1 + ‖u‖X

)
+ (P1 + P2)ω‖u‖X + ‖φ‖∞. (3.11)

From (3.10) and (3.11), we obtain

‖u‖X ≤ (Q1 + Q2)‖q‖L1 + ‖φ‖∞
1 – [(Q1 + Q2)‖q‖L1 + (P1 + P2)ω]

.

Therefore, � is bounded. Hence, T has at least a fixed point, which is the solution of BVP
(1.1). �

4 An example
Let α = 5

2 , β = 1
2 , τ = 1

2 , η = 1
5 , σ = 1

4 , a = 1, b = 2, c = 1, φ(t) = 1
2 t2, then we have

m1 = –1.1140, m2 = –0.0117, m3 = –0.0059, m4 = 0.0059,

m5 = 0.8355, m6 = 0.4912, m7 = –0.2456, m8 = 0.2456,

� = –3.5908, Q1 = 2.6265, Q2 = 3.7833, P1 = 0.2515,

P2 = 0.3761, Q1 + Q2 = 6.4098, P1 + P2 = 0.6276.
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Let

f (t, x, y) =
et + t2

138(1 + y2)

(

x
(

–
1
2

)

+ y + 1
)

, g(u) =
1

163

∫ 1

0
u(t) dt.

We consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cD
5
2
0+ u(t) = f (t, ut , cD

1
2
0+ u(t)), t ∈ J := [0, 1],

u(0) = 0, u′(0) = aI
1
4

0+ u( 1
5 ),

2u(1) + u′(1) = 1
163

∫ 1
0 u(t) dt,

u(t) = 1
2 t2, – 1

2 ≤ t ≤ 0,

(4.1)

then for ∀t ∈ J , ∀u ∈ C[– 1
2 , 0], ∀v ∈R, we obtain

∣
∣f (t, u, v)

∣
∣ =

∣
∣
∣
∣

et + t2

138(1 + y2)

(

u
(

–
1
2

)

+ v + 1
)∣

∣
∣
∣

≤ et + 1
138

(
1 + ‖u‖∞ + |v|).

For ∀t ∈ J , ∀u, v ∈ C[0, 1], we have

∣
∣g(u) – g(v)

∣
∣ =

∣
∣
∣
∣

1
163

∫ 1

0
u(t) dt –

1
163

∫ 1

0
v(t) dt

∣
∣
∣
∣

≤ 1
163

∫ 1

0
‖u – v‖J dt

≤ 1
163

‖u – v‖J .

Thus, q(t) = et+1
138 , ‖q‖L1 = e

138 , ω = 1
163 , (Q1 + Q2)‖q‖L1 + (P1 + P2)ω = 0.1301 < 1. Therefore,

according to Theorem 3.3, BVP (4.1) has at least one solution.
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