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Abstract
The purpose of this paper is to study the convergence theorems in CAT(κ ) spaces
with k > 0 for total asymptotically nonexpansive mappings which are essentially wider
than nonexpansive mappings, asymptotically nonexpansive mapping, and
asymptotically nonexpansive mappings in the intermediate sense. Our results
generalize, unify, and improve several comparable results in the existing literature.
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1 Introduction and preliminaries
Let C be a nonempty subset of a metric space (X, d).

Recall that a mapping T : C → X is said to be:
(i) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C;
(ii) asymptotically nonexpansive [1] if there exists a sequence {kn} ⊂ [1,∞) with

limn→∞ kn = 1 such that d(Tnx, Tny) ≤ knd(x, y) for all x, y ∈ C and n ∈ N , where N

denotes the set of positive integers. The class of asymptotically nonexpansive mappings
includes a class of nonexpansive mappings as a proper subclass.

(iii) In 1993, Bruck, Kuczumow, and Reich [2] introduced the concept of asymptoti-
cally nonexpansive mapping in the intermediate sense. A mapping T : C → C is said to be
asymptotically nonexpansive in the intermediate sense if T is uniformly continuous and
the following inequality holds:

lim sup
n→∞

sup
x,y∈C

{
d
(
Tnx, Tny

)
– d(x, y)

} ≤ 0. (1.1)

It is easy to know that the class of asymptotically nonexpansive mappings in the interme-
diate sense is more general than the class of asymptotically nonexpansive mappings.
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Definition 1.1 ([3]) A mapping T : C → C is said to be ({μn}, {νn}, ζ )-total asymptotically
nonexpansive if there exist nonnegative sequences {μn}, {νn} with μn → 0, νn → 0 and a
strictly increasing continuous function ζ : [0,∞) → [0,∞) with ζ (0) = 0 such that

d
(
Tnx, Tny

) ≤ d(x, y) + νnζ
(
d(x, y)

)
+ μn, ∀n ≥ 1, x, y ∈ C. (1.2)

The concept of total asymptotically nonexpansive mappings is more general than that
of asymptotically nonexpansive mappings in the intermediate sense. In fact, if T : C →
C is an asymptotically nonexpansive mapping in the intermediate sense, denote by μn =
max{supx,y∈C(d(Tnx, Tny) – d(x, y)), 0}. Then μn ≥ 0, limn→∞ μn = 0, and

d
(
Tnx, Tny

) ≤ d(x, y) + μn, ∀x, y,∈ C, n ≥ 1. (1.3)

Taking {νn = 0}, ζ = t, t ≥ 0, then (1.3) can be written as

d
(
Tnx, Tny

) ≤ d(x, y) + νnζ
(
d(x, y)

)
+ μn, ∀n ≥ 1, x, y ∈ C,

i.e., T is a total asymptotically nonexpansive mapping.

Definition 1.2 A mapping T : C → C is said to be uniformly L-Lipschitzian if there exists
a constant L > 0 such that

d
(
Tnx, Tny

) ≤ Ld(x, y) ∀x, y,∈ C and ∀n ≥ 1.

In recent years, CAT(0) spaces (the precise definition of a CAT(0) space is given below)
have attracted the attention of many authors because they have played a very important
role in different aspects of geometry [4]. Kirk [5, 6] showed that a nonexpansive mapping
defined on a bounded closed convex subset of a complete CAT(0) space has a fixed point.

In 2012, Chang et al. [7] studied the demiclosedness principle and �-convergence the-
orems for total asymptotically nonexpansive mappings in the setting of CAT(0) spaces.
Since then the convergence of several iteration procedures for this type of mappings has
been rapidly developed, and many of articles have appeared (see, e.g., [8–17]). In 2013, un-
der some suitable assumptions, Karapinar et al. [9] obtained the demiclosedness principle,
fixed point theorems, and convergence theorems for the following iteration:

Let C be a nonempty closed convex subset of a CAT(0) space X and T : C → C be a total
asymptotically nonexpansive mapping. Given x1 ∈ C, let {xn} ⊂ C be defined by

xn+1 = (1 – αn)xn ⊕ αnTn((1 – βn)x⊕βnTn(xn)
)
, n ∈ N ,

where {αn} and {βn} are sequences in [0; 1].
It is well known that any CAT(κ) space is a CAT(κ1) space for κ1 ≥ κ . Thus, all results

for CAT(0) spaces immediately apply to any CAT(κ) space with κ ≤ 0.
Very recently, Panyanak [10] obtained the demiclosedness principle, fixed point the-

orems, and convergence theorems for total asymptotically nonexpansive mappings on
CAT(κ) space with κ > 0, which generalize the results of Chang et al. [7], Tang et al. [8],
Karapinar et al. [9].
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Motivated by the work going on in this direction, in this paper we aim to study the
strong convergence of a sequence generated by an infinite family of total asymptotically
nonexpansive mappings in CAT(κ) spaces with κ > 0. Our results are new, they extend and
improve the corresponding results of Chang et al. [7], Tang et al. [8], Karapinar et al. [9],
Panyanak [10], Hea et al. [18], and many others.

2 Preliminaries
In this section, we first recall some definitions, notations, and conclusions that will be
needed in our paper.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a mapping c from
a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t); c(t′)) = |t – t′| for all
t, t′ ∈ [0; l]. In particular, c is an isometry and d(x, y) = l. The image c([0, l]) of c is called a
geodesic segment joining x and y. When it is unique, this geodesic segment is denoted by
[x, y]. This means that z ∈ [x, y] if and only if there exists α ∈ [0; 1] such that

d(x, z) = (1 – α)d(x, y), and d(y, z) = αd(x; y).

In this case, we write z = αx ⊕ (1 – α)y.
A metric space (X, d) is said to be a geodesic space (D-geodesic space) if every two points

of X (every two points of distance smaller than D) are joined by a geodesic, and X is said to
be uniquely geodesic (D-uniquely geodesic) if there is exactly one geodesic joining x and
y for each x, y ∈ X (for x, y ∈ X with d(x, y) < D). A subset C of X is said to be convex if C
includes every geodesic segment joining any two of its points.

Now we introduce the concept of model spaces Mn
κ . For more details on these spaces,

the reader is referred to [4, 14]. Let n ∈ N . We denote by En the metric space Rn endowed
with the usual Euclidean distance. We denote by (·|·) the Euclidean scalar product in Rn,
that is,

(x|y) = x1y1 + · · · + xnyn where x = (x1, . . . xn), y = (y1, . . . yn).

Let S n denote the n-dimensional sphere defined by

S n =
{

x = (x1, . . . , xn+1) ∈ Rn+1 : (x|x) = 1
}

with metric

dS n (x, y) = arccos(x|y), x, y ∈ S n.

Let En;1 denote the vector space Rn+1 endowed with the symmetric bilinear form that
associates to vectors u = (u1, . . . , un+1) and v = (v1, . . . , vn+1), and the real number 〈u|v〉 is
defined by

〈u|v〉 = u – un+1vn+1 +
n∑

i=1

uivi.

Let H n denote the hyperbolic n-space defined by

H n =
{

u = (u1, . . . , un+1) ∈ En;1 : 〈u|u〉 = –1, un+1 > 0
}
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with metric dH n such that

cosh dH n (x, y) = –〈x|y〉, x, y ∈ H n.

Definition 2.1 Given κ ∈ R , we denote by Mn
κ the following metric spaces:

(i) if κ = 0, then Mn
0 is the Euclidean space En;

(ii) if κ > 0, then Mn
κ is obtained from the spherical space S n by multiplying the distance

function by the constant 1√
κ

;
(iii) if κ < 0, then Mn

κ is obtained from the hyperbolic space H n by multiplying the
distance function by the constant 1√

–κ
.

A geodesic triangle �(x, y, z) in a geodesic space (X, d) consists of three points x, y, z in X
(the vertices of �) and three geodesic segments between each pair of vertices (the edges of
�). A comparison triangle for a geodesic triangle �(x; y; z) in (X, d) is a triangle �̄(x̄, ȳ, z̄)
in M2

κ such that

d(x; y) = dM2
κ
(x̄, ȳ), d(y, z) = dM2

κ
(ȳ, z̄), d(z, x) = dM2

κ
(z̄, x̄).

If κ < 0, then such a comparison triangle always exists in M2
κ . If κ > 0, then such a triangle

exists whenever d(x, y) + d(y, z) + d(z, x) < 2Dκ , where Dκ = π√
κ

.
A point p̄ ∈ [x̄, ȳ] is called a comparison point for p ∈ [x, y] if d(x, p) = dM2

κ
(x̄, p̄).

A geodesic triangle �(x, y, z) in X is said to satisfy the CAT(κ) inequality if for any p, q ∈
�(x, y, z) and for their comparison points p̄, q̄ ∈ �(x̄, ȳ, z̄), one has

d(p, q) ≤ dM2
κ
(p̄, q̄).

Definition 2.2 A metric space (X, d) is called a CAT(0) space if X is a geodesic space such
that all of its geodesic triangles satisfy the CAT(κ) inequality.

If κ > 0, then X is called a CAT(κ) space if X is Dκ -geodesic and any geodesic triangle
�(x, y, z) in X with d(x, y) + d(y, z) + d(z, x) < 2Dκ satisfies the CAT(κ) inequality.

Definition 2.3 A geodesic space (X, d) is said to be R-convex with R ∈ (0, 2] (see [16]) if
for any three points x, y, z ∈ X, we have

d2(x, (1 – α)y ⊕ αz
) ≤ (1 – α)d2(x, y) + αd2(x, z) –

R
2

α(1 – α)d2(y, z). (2.1)

Notice that if (X, d) is a geodesic space, then the following statements are equivalent:
(i) (X, d) is a CAT(0) space;
(ii) (X, d) is R-convex with R = 2, i.e., it satisfies the following inequality:

d2(x, (1 – α)y ⊕ αz
) ≤ (1 – α)d2(x, y) + αd2(x, z) – α(1 – α)d2(y; z) (2.2)

for all α ∈ (0, 1] and x, y, z ∈ X.
The following lemma is a consequence of Proposition 3.1 in [19].
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Lemma 2.4 Let κ > 0 and (X, d) be a CAT(κ) space with diam(X) ≤ π
2 –ε√

κ
for some ε ∈ (0, π

2 ).
Then (X, d) is R-convex with R = (π – 2ε) tan(ε).

Lemma 2.5 ([20, page 176]) Let κ > 0 and (X, d) be a complete CAT(κ) space with
diam(X) ≤ π

2 –ε√
κ

for some ε ∈ (0, π
2 ). Then

d
(
(1 – α)x ⊕ αy, z

) ≤ (1 – α)d(x, z) + αd(y, z) (2.3)

for all x, y, z ∈ X and α ∈ [0, 1].

We now collect some elementary facts about CAT(κ) spaces, κ > 0.
Let {xn} be a bounded sequence in a CAT(κ) space (X, d). For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}
.

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}
. (2.4)

The asymptotic center A({xn}) of {xn} is the set

A
({xn}

)
=

{
x ∈ X : r

(
x, {xn}

)
= r

({xn}
)}

. (2.5)

It is known from Proposition 4.1 of [21] that in a CAT(κ) space X with diam(X) < π

2
√

κ
,

A({xn}) consists of exactly one point.
We now give the concept of �-convergence and collect some of its basic properties.

Definition 2.6 ([22, 23]) A sequence {xn} in X is said to �-converge to x ∈ X if x is the
unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case we write
� – limn→∞ xn = x, and x is called the �-limit of {xn}.

Lemma 2.7 Let (X, d) be a complete CAT(κ) space with κ > 0 and diam(X) ≤ π
2 –ε√

κ
for some

ε ∈ (0, π
2 ). Then the following statements hold:

(i) [17, Corollary 4.4] Every sequence in X has a �-convergence subsequence;
(ii) [17, Proposition 4.5] If {xn} ⊂ X and � – lim xn = x, then

x ∈
∞⋂

n=1

conv{xn, xn+1, . . .},

where conv(A) =
⋂{B : B ⊇ AandBisclosedandconvex}.

By the uniqueness of asymptotic centers, we can obtain the following lemma (cf. [24,
Lemma 2.8]).
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Lemma 2.8 Let (X, d) be a complete CAT(κ) space with κ > 0 and diam(X) ≤ π
2 –ε√

κ
for some

ε ∈ (0, π
2 ). If {xn} is a sequence in X with A({xn}) = {x} and if {un} is a subsequence of {xn}

with A({un}) = {u} and the sequence {d(xn, u)} converges, then x = u.

In the sequel, we use F(T) to denote the fixed point set of a mapping T .

Definition 2.9 ([25]) (1) A triple (X, d, W ) is called a hyperbolic space if (X, d) is a metric
space and W : X × X × [0, 1] → X is a mapping such that ∀x, y, z, w ∈ X, α,β ,∈ [0, 1], the
following hold:

(W1) d(z, W (x, y,α) ≤ αd(z, x) + (1 – α)d(z, y);
(W2) d(W (x, y,α), W (x, y,β) = |α – β|d(x, y);
(W3) W (x, y,α) = W (y, x, 1 – α);
(W4) d(W (x, z,α), W (y, w,α) ≤ αd(x, y) + (1 – α)d(z, w).
(2) A hyperbolic space (X, d, W ) is called uniformly convex if for any r > 0 and ε ∈ (0, 2],

there exists δ ∈ (0, 1] such that, for all x, y, z ∈ X,

d(x, z) ≤ r

d(y, z) ≤ r

d(x, y) ≥ ε · r

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⇒ d
(

1
2

x ⊕ 1
2

y, z
)

≤ (1 – δ)r. (2.6)

A mapping η : (0,∞) × (0, 2] → (0, 1] providing such δ := η(r, ε) for given r > 0 and ε ∈
(0, 2] is called a modulus of uniform convexity.

Lemma 2.10 ([25]) Let (X, d, W ) be a uniformly convex hyperbolic space with modulus of
uniform convexity η. For any r > 0, ε ∈ (0, 2], λ ∈ [0, 1], and x, y, z ∈ X,

d(x, z) ≤ r

d(y, z) ≤ r

d(x, y) ≥ ε · r

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⇒ d
(
(1 – λ)x ⊕ λy, z

) ≤ (
1 – 2λ(1 – λ)η(r, ε)

)
r. (2.7)

Proposition 2.11 Let (X, d) be a complete uniformly convex CAT(κ) space κ > 0 with mod-
ulus of uniform convexity η and diam(X) ≤ π

2 –ε√
κ

for some ε ∈ (0, π
2 ). Let x ∈ X be a given

point and {tn} be a sequence in [b, c] with b, c ∈ (0, 1) and 0 < b(1 – c) ≤ 1
2 . Let {xn} and {yn}

be any sequences in X such that

lim sup
n→∞

d(xn, x) ≤ r, lim sup
n→∞

d(yn, x) ≤ r and

lim
n→∞ d

(
(1 – tn)xn ⊕ tnyn

)
, x) = r for some r ≥ 0.

Then

lim
n→∞ d(xn, yn) = 0. (2.8)

Proof By the assumption that (X, d) is a complete CAT(κ) space κ > 0 and diam(X) ≤ π
2 –ε√

κ

for some ε ∈ (0, π
2 ), it follows from Lemma 2.5 that for all x, y, z ∈ X and α ∈ [0, 1]

d
(
(1 – α)x ⊕ αy, z

) ≤ (1 – α)d(x, z) + αd(y, z).
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Letting W (x, y,α) := (1 – α)x ⊕ αy. It is easy to prove that W (x, y,α) satisfies conditions
(W 1)–(W 4). Hence (X, d, W ) is a hyperbolic space. Again, since (X, d) is uniformly convex
with modulus of uniform convexity η, this implies that (X, d, W ) is a uniformly convex
hyperbolic space with modulus of uniform convexity η.

Now we consider two cases.
1. If r = 0, then the conclusion of Proposition 2.11 is obvious.
2. The case of r > 0. If it is not the case that d(xn, yn) → 0 as n → ∞, then there are

subsequences (denoted by {xn} and {yn} again) such that

inf
n

d(xn, yn) > 0. (2.9)

Choose ε ∈ (0, 1] such that

d(xn, yn) ≥ ε(r + 1) > 0, ∀n ∈ N . (2.10)

Since 0 < b(1 – c) < 1
2 and 0 < η(r, ε) ≤ 1, 0 < 2b(1 – c)η(r, ε) ≤ 1. This implies 0 ≤ 1 – 2b(1 –

c)η(r, ε) < 1. Choose R ∈ (r, r + 1) such that

(1 – 2b(1 – c)η(r, ε)R < r. (2.11)

Since

lim sup
n

d(xn, x) ≤ r, lim sup
n

d(yn, x) ≤ r, r < R, (2.12)

there are further subsequences again denoted by {xn} and {yn} such that

d(xn, x) ≤ R, d(yn, x) ≤ R, d(xn, yn) ≥ εR, ∀n ∈ N . (2.13)

Then, by Lemma 2.10 and (2.11),

d
(
(1 – tn)xn, tnyn, x

) ≤ (
1 – 2tn(1 – tn)η(R, ε)

)
R

≤ (
1 – 2b(1 – c)η(r, ε)

)
R < r

(2.14)

for all n ∈ N . Taking n → ∞, we obtain

lim
n→∞ d

(
(1 – tn)xn ⊕ tnyn, x

)
< r, (2.15)

which contradicts the hypothesis.
The conclusion of Proposition 2.11 is proved. �

Lemma 2.12 Let {an}, {λn}, and {cn} be the sequences of nonnegative numbers such that

an+1 ≤ (1 + λn)an + cn, ∀n ≥ 1.

If
∑∞

n=1 λn < ∞ and
∑∞

n=1 cn < ∞, then limn→∞ an exists. In addition, if there exists a sub-
sequence {ani} ⊂ {an} such that ani → 0, then limn→∞ an = 0.
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3 Strong convergence theorems for total asymptotically nonexpansive
mappings in CAT(κ ) spaces

Lemma 3.1 ([26]) (1) For each positive integer n ≥ 1, the unique solutions i(n) and k(n)
with k(n) ≥ i(n) to the following positive integer equation

n = i(n) +
(k(n) – 1)k(n)

2
(3.1)

are as follows:

⎧
⎨

⎩
i(n) = n – (k(n)–1)k(n)

2 ,

k(n) = [ 1
2 + 2

√
2n – 7

4 ], k(n) ≥ i(n),

and k(n) → ∞ (as n → ∞), where [x] denotes the maximal integer that is not larger than x.
(2) For each i ≥ 1, denote by

⎧
⎨

⎩
i := {n ∈ N : n = i + (k(n)–1)k(n)

2 , k(n) ≥ i}, and

Ki := {k(n) : n ∈ i, n = i + (k(n)–1)k(n)
2 , k(n) ≥ i},

then k(n) + 1 = k(n + 1), ∀n ∈ i.

In this section we prove some strong convergence theorems for the following iterative
scheme:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C,

xn+1 = (1 – αn)xn ⊕ αnTk(n)
i(n) yn,

yn = (1 – βn)xn ⊕ βnTk(n)
i(n) xn,

n ≥ 1, (3.2)

where C is a nonempty closed and convex subset of a complete CAT(κ) space X, κ > 0, for
each i ≥ 1, Ti : C → C is uniformly Li-Lipschitzian and ({ν(i)

n }, {μ(i)
n }, ζ (i))-total asymptoti-

cally nonexpansive mappings defined by (1.2); and for each positive integer n ≥ 1, i(n) and
k(n) are the unique solutions of the positive integer equation (3.1).

Theorem 3.2 Let (X, d) be a complete uniformly convex CAT(κ) space with κ > 0 and
diam(X) ≤ π

2 –ε√
κ

for some ε ∈ (0, π
2 ). Let C be a nonempty closed and convex subset of X

and, for each i ≥ 1, let Ti : C → C be uniformly Li-Lipschitzian and ({ν(i)
n }, {μ(i)

n }, ζ (i))-total
asymptotically nonexpansive mappings defined by (1.2) such that

(i)
∑∞

i=1
∑∞

n=1 ν
(i)
n < ∞,

∑∞
i=1

∑∞
n=1 μ

(i)
n < ∞,

(ii) there exists a constant M∗ > 0 such that ζ (i)(r) ≤ M∗r, ∀r ≥ 0, i = 1, 2, . . . ;
(iii) there exist constants a, b ∈ (0, 1) with 0 < b(1 – a) ≤ 1

2 such that {αn}, {βn} ⊂ [a, b].

If F :=
⋂∞

i=1 F(Ti) �= ∅ and there exist a mapping Tn0 ∈ {Ti}∞i=1 and a nondecreasing func-
tion f : [0,∞) → [0,∞) with f(0)= 0 and f (r) > 0 ∀r > 0 such that

f
(
d(xn,F )

) ≤ d(xn, Tn0 xn), ∀n ≥ 1, (3.3)
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then the sequence {xn} defined by (3.2) converges strongly (i.e., in metric topology) to
some point p∗ ∈ F .

Proof First we observe that for each i ≥ 1, Ti : C → C is a ({ν(i)
n }, {μ(i)

n }, ζ (i))-total asymp-
totically nonexpansive mapping. By condition (ii), for each n ≥ 1 and any x, y ∈ C, we have

d
(
Tn

i x, Tn
i y

) ≤ d(x, y) + ν(i)
n ζ i(d(x, y)

)
+ μ(i)

n ≤ (
1 + ν(i)

n M∗
)
d(x, y) + μ(i)

n . (3.4)

(I) First we prove that the following limits exist:

lim
n→∞ d(xn,F ), and lim

n→∞ d(xn, p) for each p ∈ F . (3.5)

In fact, since p ∈ F and Ti, i ≥ 1 is a total asymptotically nonexpansive mapping, it
follows from (3.4) and Lemma 2.5 that

d(yn, p) = d
(
(1 – βn)xn ⊕ βnTk(n)

i(n) xn, p
)

≤ (1 – βn)d(xn, p) + βnd
(
Tk(n)

i(n) xn, p
)

= (1 – βn)d(xn, p) + βn
{

d(xn, p) + ν
i(n)
k(n)ζ

i(n)(d(xn, p)
)

+ μ
i(n)
k(n)

}

≤ d(xn, p) + ν
i(n)
k(n)ζ

i(n)(d(xn, p)
)

+ μ
i(n)
k(n)

≤ (
1 + ν

i(n)
k(n)M∗

)
d(xn, p) + μ

i(n)
k(n)

(3.6)

and

d(xn+1, p) = d
(
(1 – αn)xn ⊕ αnTk(n)

i(n) yn, p
)

≤ (1 – αn)d(xn, p) + αnd
(
Tk(n)

i(n) yn, p
)

= (1 – αn)d(xn, p) + αn
{

d(yn, p) + ν
i(n)
k(n)ζ

i(n)(d(yn, p)
)

+ μ
i(n)
k(n)

}

≤ (1 – αn)d(xn, p) + αn
{(

1 + ν
i(n)
k(n)M∗

)
d(yn, p) + μ

i(n)
k(n)

}
.

(3.7)

Substituting (3.6) into (3.7) and simplifying it, we have

d(xn+1, p) ≤ (1 + σn)d(xn, p) + ξn, ∀n ≥ 1 and p ∈ F , (3.8)

and so

d(xn+1,F ) ≤ (1 + σn)d(xn,F ) + ξn, ∀n ≥ 1, (3.9)

where σn = bν
i(n)
k(n)M∗(2 + ν

i(n)
k(n)M∗), ξn = b(2 + ν

i(n)
k(n)M∗)μi(n)

k(n). By virtue of condition (i),

∞∑

n=1

σn < ∞ and
∞∑

n=1

ξn < ∞. (3.10)

By Lemma 2.12, the limits limn→∞ d(xn,F ) and limn→∞ d(xn, p) exist for each p ∈ F .
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(II) Next we prove that for each i ≥ 1 there exists some subsequence {xm(∈i)} ⊂ {xn} such
that

lim
m(∈i)→∞

d(xm, Tixm) = 0, (3.11)

where i is the set of positive integers defined by Lemma 3.1(2).
In fact, it follows from (3.5) that for each given p ∈ F , the limit limn→∞ d(xn, p) exists.

Without loss of generality, we can assume that

lim
n→∞ d(xn, p) = r ≥ 0. (3.12)

From (3.6) we have

lim sup
n→∞

d(yn, p) ≤ lim
n→∞

{(
1 + ν

i(n)
k(n)M∗

)
d(xn, p) + μ

i(n)
k(n)

}
= r. (3.13)

Since

d
(
Tk(n)

i(n) yn, p
) ≤ d(yn, p) + ν

i(n)
k(n)ζ

i(n)(d(yn, p)
)

+ ν
i(n)
k(n)

≤ (
1 + ν

i(n)
k(n)M∗

)
d(yn, p) + μ

i(n)
k(n), ∀n ≥ 1,

from (3.13) we have

lim sup
n→∞

d
(
Tk(n)

i(n) yn, p
) ≤ r. (3.14)

In addition, it follows from (3.8) that

d(xn+1, p) = d
(
(1 – αn)xn ⊕ αnTk(n)

i(n) yn, p
)

≤ (1 + σn)d(xn, p) + ξn.

This implies that

lim
n→∞ d

(
(1 – αn)xn ⊕ αnTk(n)

i(n) yn, p
)

= r. (3.15)

From (3.12), (3.14), (3.15), and Proposition 2.11, we have

lim
n→∞ d

(
xn, Tk(n)

i(n) yn
)

= 0. (3.16)

Since

d(xn, p) ≤ d
(
xn, Tk(n)

i(n) yn
)

+ d
(
Tk(n)

i(n) yn, p
)

≤ d
(
xn, Tk(n)

i(n) yn
)

+
{

d(yn, p) + ν
i(n)
k(n)ζ

i(n)(d(yn, p)
)

+ μ
i(n)
k(n)

}

≤ d
(
xn, Tk(n)

i(n) yn
)

+
(
1 + ν

i(n)
k(n)M∗

)
d(yn, p) + μ

i(n)
k(n).

Taking lim inf on both sides of the above inequality, from (3.16) we have

lim inf
n→∞ d(yn, p) ≥ r.
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This together with (3.13) shows that

lim
n→∞ d(yn, p) = r. (3.17)

Using (3.6) we have

r = lim
n→∞ d(yn, p) = lim

n→∞
{

d
(
(1 – βn)xn ⊕ βnTk(n)

i(n) xn, p
)}

≤ lim
n→∞

{(
1 + ν

i(n)
k(n)M∗

)
d(xn, p) + μ

i(n)
k(n)

}
= r.

(3.18)

This implies that

lim
n→∞

{
d
(
(1 – βn)xn ⊕ βnTk(n)

i(n) xn, p
)}

= r. (3.19)

Similarly, we can also prove that

lim sup
n→∞

d
(
Tk(n)

i(n) xn, p
) ≤ lim sup

n→∞
{

d(xn, p) + ν
i(n)
k(n)ζ

i(n)(d(xn, p)
)

+ μ
i(n)
k(n)

} ≤ r.

This together with (3.12), (3.19), and Lemma 2.11 gives that

lim
n→∞ d

(
xn, Tk(n)

i(n) xn
)

= 0. (3.20)

Therefore we have

d(xn, yn) = d
(
xn, (1 – βn)xn ⊕ βnTk(n)

i(n) xn
)

≤ βnd
(
xn, Tk(n)

i(n) xn
) → 0 (as n → ∞).

(3.21)

Furthermore, it follows from (3.16) that

d(xn+1, xn) = d((1 – αn)xn ⊕ αnd
(
Tk(n)

i(n) yn, xn
)

≤ αnd
(
Tk(n)

i(n) yn, xn
) → 0 (as n → ∞).

(3.22)

This together with (3.21) shows that

d(xn+1, yn) ≤ d(xn+1, xn) + d(xn, yn) → 0 (as n → ∞). (3.23)

From Lemma 3.1, (3.16), (3.20), (3.22), and (3.23), we have that for each given positive
integer i ≥ 1, there exist subsequences {xm}m∈i , {ym}m∈i , and {k(m)}m∈i ⊂ Ki := {k(m) :
m ∈ i, m = i + (k(m)–1)k(m)

2 , k(m) ≥ i} such that

d(xm, Tixm) ≤ d
(
xm, Tk(m)

i xm
)

+ d
(
Tk(m)

i xm, Tk(m)
i ym–1

)
+ d

(
Tk(m)

i ym–1, Tixm
)

≤ d
(
xm, Tk(m)

i xm
)

+
{

d(xm, ym–1) + ν
(i)
k(m)ζ

(i)(d(xm, ym–1)
)

+ μ
(i)
k(m)

}

+ Li(d
(
Tk(m)–1

i ym–1, xm
)

≤ d
(
xm, Tk(m)

i xm
)

+
{

d(xm, ym–1) + ν
(i)
k(m)ζ

(i)(d(xm, ym–1)
)

+ μ
(i)
k(m)

}

+ Li(d
(
Tk(m–1)

i ym–1, xm–1
)

+ Li(d(xm–1, xm) → 0(asm → ∞).

(3.24)
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The conclusion (3.11) is proved.
(III) Now we prove that {xn} converges strongly (i.e., in the metric topology) to some point

p∗ ∈ F .
In fact, it follows from (3.11) and (3.24) that for given mapping Tn0 there exists some

subsequence {xm}m∈n0
of {xn} such that

lim
m(∈n0 )→∞

d(xm, Tn0 xm) = 0.

By (3.3) we have

f
(
d(xm,F )

) ≤ d(xm, Tn0 xm) ∀m ≥ 1.

Let m → ∞, and taking lim sup on the above inequality, we have limm→∞ f (d(xm,F )) = 0.
By the property of f , this implies that

lim
m(∈n0 )→∞

d(xm,F ) = 0. (3.25)

Next we prove that {xm}m∈n0
is a Cauchy sequence in C. In fact, it follows from (3.8)

that for any p ∈ F

d(xm+1, p) ≤ (1 + σm)d(xm, p) + ξm, ∀m(∈ n0 ) ≥ 1,

where
∑∞

m=1 σm < ∞ and
∑∞

m=1 ξm < ∞. Hence, for any positive integers j, n ∈ n0 , n > j,
and n = m + j for some positive integer m, we have

d(xn, xj) = d(xj+m, xj) ≤ d(xj+m, p) + d(xj, p)

≤ (1 + σj+m–1)d(xj+m–1, p) + ξj+m–1 + d(xj, p).

Since for each x ≥ 0, 1 + x ≤ ex, we have

d(xn, xj) = d(xj+m, xj)

≤ eσj+m–1 d(xj+m–1, p) + ξj+m–1 + d(xj, p)

≤ eσj+m–1+σj+m–2 d(xj+m–2, p) + eσj+m–1ξj+m–2 + ξj+m–1 + d(xj, p)

≤ · · ·

≤ e
∑j+m–1

i=j σi d(xj, p) + e
∑j+m–1

i=j+1 σiξj + e
∑j+m–2

i=j+2 σiξj+1 + · · ·
+ eσj+m–1ξj+m–2 + ξj+m–1 + d(xj, p)

≤ (1 + M)d(xj, p) + M
j+m–1∑

i=j

ξi

= (1 + M)d(xj, p) + M
n–1∑

i=j

ξi, for each p ∈ F .
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Therefore we have

d(xn, xj) = d(xj+m, xj) ≤ (1 + M)d(xj,F ) + M
n–1∑

i=j

ξi,

where M = e
∑∞

i=1σi < ∞. By (3.25) we have

d(xn, xj) ≤ (1 + M)d(xj,F ) + M
n–1∑

i=j

ξi → 0
(
as n, j(∈ n0 ) → ∞)

.

This shows that the subsequence {xm}m∈n0
is a Cauchy sequence in C. Since C is a closed

subset in a complete CAT(κ) space X, it is complete. Without loss of generality, we can as-
sume that the subsequence {xm} converges strongly (i.e., in metric topology in X) to some
point p∗ ∈ C. It is easy to know that F is a closed subset in C. Since limm→∞ d(xm,F ) = 0,
p∗ ∈ F . By using (3.5), it yields that the whole sequence {xn} converges strongly to p∗ ∈ F .

This completes the proof of Theorem 3.2. �

Remark 3.3 It should be pointed out that if (X, d) is a CAT(0) space, then X is uniformly
convex, its modulus of uniform convexity η(r, ε) = ε2

8 [25, 27] and all of its geodesic tri-
angles satisfy the CAT(κ) inequality. These imply that if (X, d) is a CAT(0) space, then the
conditions that appeared in Theorem 3.2 “(X, d) is uniformly convex and diam(X) ≤ π

2 –ε√
κ

for some ε ∈ (0, π
2 )” are of no use here. Therefore from Theorem 3.2 we can obtain the

following.

Theorem 3.4 Let (X, d) be a complete CAT(0) space. Let C be a nonempty closed and
convex subset of X, and for each i ≥ 1, let Ti : C → C be uniformly Li-Lipschitzian and
({ν(i)

n }, {μ(i)
n }, ζ (i))-total asymptotically nonexpansive mappings defined by (1.2) such that

(i)
∑∞

i=1
∑∞

n=1 ν
(i)
n < ∞,

∑∞
i=1

∑∞
n=1 μ

(i)
n < ∞,

(ii) there exists a constant M∗ > 0 such that ζ (i)(r) ≤ M∗r, ∀r ≥ 0, i = 1, 2, . . . ;
(iii) there exist constants a, b ∈ (0, 1) with 0 < b(1 – a) ≤ 1

2 such that {αn}, {βn} ⊂ [a, b].

If F :=
⋂∞

i=1 F(Ti) �= ∅ and there exist a mapping Tn0 ∈ {Ti}∞i=1 and a nondecreasing func-
tion f : [0,∞) → [0,∞) with f (0) = 0 and f (r) > 0 ∀r > 0 such that

f
(
d(xn,F )

) ≤ d(xn, Tn0 xn), ∀n ≥ 1,

then the sequence {xn} defined by (3.2) converges strongly (i.e., in metric topology) to
some point p∗ ∈ F .
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