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Abstract
In this paper, a Halpern–Tseng-type algorithm for approximating zeros of the sum of
two monotone operators whose zeros are J-fixed points of relatively J-nonexpansive
mappings is introduced and studied. A strong convergence theorem is established in
Banach spaces that are uniformly smooth and 2-uniformly convex. Furthermore,
applications of the theorem to convex minimization and image-restoration problems
are presented. In addition, the proposed algorithm is used in solving some classical
image-recovery problems and a numerical example in a Banach space is presented to
support the main theorem. Finally, the performance of the proposed algorithm is
compared with that of some existing algorithms in the literature.
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1 Introduction
Let E be a real Banach space with dual space, E∗. Let A : E → E∗ and B : E → 2E∗ be
single-valued and multivalued monotone operators, respectively. The following monotone
inclusion problem:

find u ∈ E such that 0 ∈ (A + B)u, (1)

has been of interest to several authors due to its numerous applications in solving problems
arising from image restoration, signal recovery, and machine learning. One of the early
methods used for approximating solutions of the inclusion problem (1) is the forward–
backward algorithm (FBA); which was introduced by Passty [37] and studied extensively
by many authors (see, e.g., [1, 2, 6, 15, 16, 20, 21, 28, 49]).

Recently, there is growing interest in the study of the monotone inclusion problem (1)
whose solutions are fixed points of some nonexpansive-type mappings. In general, the
problem is stated as follows:

find u ∈ E such that 0 ∈ (A + B)u and Tu = u, (2)
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where T : E → E is a nonexpansive-type mapping.
In 2010, Takahashi et al. [44] introduced and studied an iterative algorithm that ap-

proximates solutions of problem (2) in the setting of real Hilbert spaces. They proved the
following strong convergence theorem:

Theorem 1.1 Let C be a closed and convex subset of a real Hilbert space H . Let A be an α-
inverse strongly monotone mapping of C into H and let B be a maximal monotone operator
on H , such that the domain of B is included in C. Let Jλ = (I + λB)–1 be the resolvent of B for
λ > 0 and let T be a nonexpansive mapping of C into itself, such that F(T) ∩ (A + B)–10 �= ∅.
Let x1 = x ∈ C and let {xn} ⊂ C be a sequence generated by

xn+1 = βnxn + (1 – βn)T
(
αnx + (1 – αn)Jλn (xn – λnAxn)

)
, (3)

for all n ∈N, where {λn} ⊂ (0, 2α), {αn}, {βn} ⊂ (0, 1) satisfy

0 < a ≤ λn ≤ b < 2α, 0 < c ≤ βn ≤ d < 1,

lim
n→∞(λn – λn+1) = 0, lim

n→∞αn = 0
∞∑

n=1

αn = ∞.

Then, {xn} converges strongly to a point of F(T) ∩ (A + B)–10.

In recent years, many authors have exploited the inertial technique in order to accelerate
the convergence of sequences generated by existing algorithms in the literature. The iner-
tial extrapolation technique was first introduced by Polyak [39] as an acceleration process
in solving smooth, convex minimization problems. An algorithm of inertial type is an it-
erative procedure in which subsequent terms are obtained using the preceding two terms.
Many authors have shown numerically that adding the inertial extrapolation term in many
existing algorithms improves its performance (see, e.g., [3, 12, 17, 18, 25, 30, 36, 38, 42, 43]).

In 2021, Adamu et al. [4] introduced and studied the following inertial algorithm that
approximates solutions of problem (2) in real Hilbert spaces. They proved the following
strong convergence theorem:

Theorem 1.2 Let H be a real Hilbert space. Let A : H → H be α-inverse strongly monotone,
B : H → 2H be a set-valued maximal monotone operator, and T : H → H be a nonexpan-
sive mapping. Assume F(T)∩ (A+B)–10 �= ∅. Let x0, x1, u ∈ H and let {xn} ⊂ H be a sequence
generated by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wn = xn + αn(xn – xn–1),

zn = γnwn + (1 – γn)(I + λnB)–1(I – λnA)wn,

yn = snwn + (1 – sn)(I + λnB)–1(I – λnA)zn,

xn+1 = τnu + σnwn + μnTyn,

(4)

where the control parameters satisfy some appropriate conditions. Then, {xn} converges
strongly to a point in F(T) ∩ (A + B)–10.
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Remark 1 We recall that in Algorithms (3) and (4) the operator A is required to be α-
inverse strongly monotone, i.e., A satisfies the following inequality:

〈x – y, Ax – Ay〉 ≥ α‖Ax – Ay‖2.

This requirement rules out some important applications (see, e.g., Sect. 4 of [45]).

To dispense with the α-inverse strong monotonicity assumption on A, using the idea of
the extragradient method of Korpelevic [27] for monotone variational inequalities, Tseng
[45] introduced the following algorithm in real Hilbert spaces:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C;

yn = (I + λnB)–1(I – λnA)xn;

xn+1 = PC(yn – λn(Ayn – Axn)),

(5)

where C ⊂ H is nonempty, closed, and convex such that C ∩ (A + B)–10 �= ∅, A is maximal
monotone and Lipschitz continuous with constant L > 0 and B is maximal monotone.
He proved weak convergence of the sequence generated by his algorithm to a solution of
problem (1).

Remark 2 We note here that the class of monotone operators that are Lipschitz continu-
ous contain, properly, the class of monotone operators that are α-inverse strongly mono-
tone, since every α-inverse strongly monotone operator is 1

α
-Lipschitz continuous.

Recently, in 2021, Padcharoen et al. [35] proposed an inertial version of Tseng’s Algo-
rithm (5) in the setting of real Hilbert spaces. They proved the following theorem:

Theorem 1.3 Let H be a real Hilbert space. Let A : H → H be an L-Lipschitz continuous
and monotone mapping and B : H → 2H be a maximal monotone map. Assume that the
solution set (A + B)–1 is nonempty. Given x0, x1 ∈ H , let {xn} be a sequence defined by:

⎧
⎪⎪⎨

⎪⎪⎩

wn = xn + αn(xn – xn–1),

yn = (I + λnB)–1(I – λnA)wn,

xn+1 = yn – λn(Ayn – Awn),

(6)

where the control parameters satisfy some appropriate conditions. Then, the sequence {xn}
generated by (6) converges weakly to a solution of problem (1).

In 2019, Shehu [41] extended the inclusion problem (1) involving monotone operators
to Banach spaces. He introduced and studied a modified version of Tseng’s algorithm and
proved the following theorem:

Theorem 1.4 Let E be a uniformly smooth and 2-uniformly convex real Banach space.
Let A : E → E∗ be a monotone and L-Lipschitz continuous mapping and B : E → 2E∗ be a
maximal monotone mapping. Suppose the solution set (A + B)–10 is nonempty and the nor-
malized duality mapping J on E is weakly sequentially continuous. Let {xn} be a sequence
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in E generated by:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ E,

yn = (J + λnB)–1(Jxn – λnAxn),

xn+1 = J–1(Jyn – λn(Ayn – Axn)),

(7)

where the control parameters satisfy some appropriate conditions. Then, the sequence {xn}
generated by (7) converges weakly to a point x ∈ (A + B)–10.

To obtain a strong convergence theorem and dispense with the weak sequential conti-
nuity assumption on the normalized duality mapping J in Theorem 1.4, in the same paper
[41], Shehu introduced and studied a Halpern modification of Algorithm (7). He proved
the following theorem:

Theorem 1.5 Let E be a uniformly smooth and 2-uniformly convex real Banach space.
Let A : E → E∗ be a monotone and L-Lipschitz continuous mapping and B : E → 2E∗ be a
maximal monotone mapping. Suppose the solution set (A + B)–10 is nonempty. Let {xn} be
a sequence in E generated by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ E,

yn = (J + λnB)–1(Jxn – λnAxn),

wn = J–1(Jyn – λn(Ayn – Axn)),

xn+1 = J–1(αnJx1 + (1 – αn)Jwn),

(8)

where the control parameters satisfy some appropriate conditions. Then, the sequence {xn}
generated by (8) converges strongly to a point x ∈ (A + B)–10.

Recently, Cholamjiak et al. [23] introduced and studied a Halpern–Tseng-type algorithm
for approximating solutions of the inclusion problem (2) in the setting of Banach spaces.
They proved the following theorem:

Theorem 1.6 Let E be a uniformly smooth and 2-uniformly convex real Banach space.
Let A : E → E∗ be a monotone and L-Lipschitz continuous mapping and B : E → 2E∗ be
a maximal monotone mapping and T : E → E be relatively nonexpansive. Suppose the
solution set � = (A + B)–10 ∩ F(T) �= ∅. Let {xn} be a sequence in E generated by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u, x1 ∈ E,

yn = (J + λnB)–1(Jxn – λnAxn),

zn = J–1(Jyn – λn(Ayn – Axn)),

xn+1 = J–1(αnJu + (1 – αn)(βnJzn + (1 – βn)JTzn)),

(9)

where {λn} ⊂ (0,
√

c√
κL ), for some c,κ > 0; {αn}, {βn} ⊂ (0, 1) with limn→∞ αn = 0 and

∑∞
n=1 αn = ∞; 0 < a ≤ βn ≤ b < 1. Then, the sequence {xn} generated by (9) converges

strongly to a solution of problem (2).
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In 2016, Chidume and Idu [22] reintroduced a fixed-point notion for operators mapping
a uniformly convex and uniformly smooth real Banach space, E to its dual space, E∗. Given
a map T : E → E∗ let J be the normalized duality mapping on E. Chidume and Idu [22]
called a point u ∈ E a J-fixed point of T if Tu = Ju and denoted the set of by FJ (T) := {x ∈
E : Tx = Jx}. An intriguing property of a J-fixed point is its connection with optimization
problems, see, e.g., [22] for the connection. Currently, there is a growing interest in the
study of J-fixed points (see, e.g., [11, 13, 33, 34], for some interesting results concerning
J-fixed points in the literature).

Remark 3 We note here that this notion has also been defined by Zegeye [50] who called
it a semifixed point. Also, Liu [29] called it a duality fixed point.

In line with the current interest on the inclusion problems (1) and (2) involving mono-
tone operators on Banach spaces, J-fixed points and the inertial acceleration technique,
it is our purpose in this paper to propose an inertial Halpern–Tseng-type algorithm for
approximating solutions of the inclusion problem (1) that are J-fixed points of a relatively
J-nonexpansive mapping. Furthermore, we prove the strong convergence of the sequence
generated by our algorithm in the setting of real Banach spaces that are uniformly smooth
and 2-uniformly convex. In addition, we present applications of our theorem to convex
minimization and use our algorithm to solve some classical problems arising from image
restoration. Finally, we present a numerical example on a real Banach space to support our
main theorem.

2 Preliminaries
In this section, we define some notions and state some results that will be needed in our
subsequent analysis.

Let E be a real normed space and let J : E → 2E∗ be the normalized duality map (see,
e.g., [8] for the explicit definition of J and its properties on certain Banach spaces). The
following functional φ : E × E →R defined on a smooth real Banach space by

φ(x, y) := ‖x‖2 – 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E, (10)

will be needed in our estimations in the following. The functional φ was first introduced
by Alber [8] and has been extensively studied by many authors (see, for example, [8, 14,
26, 32] and the references contained in them). Observe that on a real Hilbert space H , the
definition of φ above reduces to φ(x, y) = ‖x – y‖2, ∀x, y ∈ H . Furthermore, given x, y, z ∈ E
and τ ∈ [0, 1], using the definition of φ, one can easily deduce the following (see, e.g.,
[22, 32]):

D1: (‖x‖ – ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2,
D2: φ(x, J–1(τ Jy + (1 – τ )Jz) ≤ τφ(x, y) + (1 – τ )φ(x, z),
D3: φ(x, y) = φ(x, z) + φ(z, y) + 2〈z – x, Jy – Jz〉,

where J and J–1 are the duality maps on E and E∗, respectively.
We shall use interchangeably φ and V : E × E∗ →R defined by

V
(
x, y∗) := ‖x‖2 – 2

〈
x, y∗〉 + ‖y‖2, ∀x ∈ E, y∗ ∈ E∗,

since V (x, y∗) = φ(x, J–1y∗).
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The following ideas will be used in the subsequent discussion.

Definition 2.1 Let T : E → E∗ be a map. A point x∗ ∈ E is called an asymptotic J-fixed
point of T if there exists a sequence {xn} ⊂ E such that xn ⇀ x∗ and ‖Jxn – Txn‖ → 0, as
n → ∞. Let F̂J (T) be the set of asymptotic J-fixed points of T .

Definition 2.2 A map T : E → E∗ is said to be relatively J-nonexpansive if
(i) F̂J (T) = FJ (T) �= ∅,

(ii) φ(u, J–1Tx) ≤ φ(u, x), ∀x ∈ E, u ∈ FJ (T).

Remark 4 See Chidume et al. [19] for a nontrivial example of a relatively J-nonexpansive
mapping. One can easily verify from the definition above, that if an operator T is relatively
J-nonexpansive then the operator J–1T is relatively nonexpansive in the usual sense and
vice versa. Furthermore, x∗ ∈ FJ (T) ⇔ x∗ ∈ F(J–1T).

Definition 2.3 Let E be a smooth, strictly convex, and reflexive real Banach space and
let C be a nonempty, closed, and convex subset of E. Following Alber [8], the generalized
projection map, �C : E → C is defined by

�C(u) = inf
v∈C

φ(v, u), ∀u ∈ E.

Clearly, in a real Hilbert space, the generalized projection �C coincides with the metric
projection PC from E onto C.

Definition 2.4 Let E be a reflexive, strictly convex, and smooth real Banach space and let
B : E → 2E∗ be a maximal monotone operator. Then, for any λ > 0 and u ∈ E, there exists a
unique element uλ ∈ E such that Ju ∈ (Juλ + λBuλ). The element uλ is called the resolvent
of B and it is denoted by JB

λ u. Alternatively, JB
λ = (J + λB)–1J , for all λ > 0. It is easy to verify

that B–10 = F(JB
λ ), ∀λ > 0, where F(JB

λ ) denotes the set of fixed points of JB
λ .

Now, we recall some fundamental and useful results that will be needed in the proof of
our main theorem and its corollaries.

Lemma 2.5 ([7]) Let C be a nonempty, closed, and convex subset of a smooth, strictly con-
vex, and reflexive real Banach space E. For any x ∈ E and y ∈ C, x̃ = �Cx if and only if
〈x̃ – y, Jx – Jx̃〉 ≥ 0, for all y ∈ C.

Lemma 2.6 ([8]) Let E be a reflexive, strictly convex, and smooth Banach space with E∗ as
its dual. Then,

V
(
u, u∗) + 2

〈
J–1u∗ – u, v∗〉 ≤ V

(
u, u∗ + v∗), (11)

for all u ∈ E and u∗, v∗ ∈ E∗.

Lemma 2.7 ([10]) Let E be a reflexive Banach space. Let A : E → E∗ be a monotone, hemi-
continuous, and bounded mapping. Let B : E → 2E∗ be a maximal monotone mapping.
Then, A + B is a maximal monotone mapping.
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Lemma 2.8 Let 1
p + 1

q = 1, p, q > 1. The space E is q-uniformly smooth if and only if its dual
space E∗ is p-uniformly convex.

Lemma 2.9 ([48]) Let E be a 2-uniformly smooth, real Banach space. Then, there exists a
constant ρ > 0 such that ∀x, y ∈ E

‖x + y‖2 ≤ ‖x‖2 + 2〈y, Jx〉 + ρ‖y‖2.

In a real Hilbert space, ρ = 1.

Lemma 2.10 ([46]) Let E be a 2-uniformly convex and smooth real Banach space. Then,
there exists a positive constant μ such that

μ‖x – y‖2 ≤ φ(x, y), ∀x, y ∈ E. (12)

Lemma 2.11 ([26]) Let E be a uniformly convex and smooth real Banach space, and let
{un} and {vn} be two sequences of E. If either {un} or {vn} is bounded and φ(un, vn) → 0 then
‖un – vn‖ → 0.

Lemma 2.12 ([32]) Let E be a uniformly smooth Banach space and r > 0. Then, there exists
a continuous, strictly increasing, and convex function g : [0, 2r] → [0, 1) such that g(0) = 0
and

φ
(
u, J–1[βJx + (1 – β)Jy

]) ≤ βφ(u, x) + (1 – β)φ(u, y) – β(1 – β)g
(‖Jx – Jy‖),

for all β ∈ [0, 1], u ∈ E and x, y ∈ Br := {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.13 ([47]) Let {an} be a sequence of nonnegative numbers satisfying the condition

an+1 ≤ (1 – αn)an + αnβn + cn, n ≥ 0,

where {αn}, {βn}, and {cn} are sequences of real numbers such that

(i) {αn} ⊂ [0, 1] s.t.
∞∑

n=0

αn = ∞; (ii) lim sup
n→∞

βn ≤ 0;

(iii) cn ≥ 0,
∞∑

n=0

cn < ∞.

Then, limn→∞ an = 0.

Lemma 2.14 ([31]) Let �n be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence {�nj}j≥0 of {�n} that satisfies �nj < �nj+1 for all
j ≥ 0. Also, consider the sequence of integers {τ (n)}n≥n0 defined by

τ (n) = max{k ≤ n|�k < �k+1}.
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Then, {τ (n)}n≥n0 is a nondecreasing sequence verifying limn→∞ τ (n) = ∞ and, for all n ≥ n0,
it holds that �τ (n) ≤ �τ (n)+1 and we have

�n ≤ �τ (n)+1.

Lemma 2.15 ([9]) Let {�n}, {δn}, and {αn} be sequences in [0,∞) such that

�n+1 ≤ �n + αn(�n – �n–1) + δn,

for all n ≥ 1,
∑∞

n=1 δn < +∞ and there exists a real number α with 0 ≤ αn ≤ α < 1, for all
n ∈N. Then, the following hold:

(i)
∑

n≥1[�n – �n–1]+ < +∞, where [t]+ = max{t, 0};
(ii) there exists �∗ ∈ [0,∞) such that limn→∞ �n = �∗.

Lemma 2.16 ([5]) Let E be a 2-uniformly convex and uniformly smooth real Banach space
and let x0, x1, w ∈ E. Let {vn} ⊂ E be a sequence defined by vn := J–1(Jxn + μn(Jxn – Jxn–1)).
Then,

φ(w, vn) ≤ φ(w, xn) + ρμ2
n‖Jxn – Jxn–1‖2 + μnφ(xn, xn–1)

+ μn
(
φ(w, xn) – φ(w, xn–1)

)
,

where {μn} ⊂ (0, 1) and ρ is the constant appearing in Lemma 2.9. For completeness, we
shall give the proof here.

Proof Using property D3, we have

φ(w, vn) = φ(w, xn) + φ(xn, vn) + 2〈xn – w, Jvn – Jxn〉
= φ(w, xn) + φ(xn, vn) + 2μn〈xn – w, Jxn – Jxn–1〉 (13)

= φ(w, xn) + φ(xn, vn) + μnφ(xn, xn–1) + μnφ(w, xn) – μnφ(w, xn–1). (14)

Also, by Lemma 2.9, one can estimate vn as follows:

φ(w, vn) = φ
(
w, J–1(Jxn + μn(Jxn – Jxn–1)

))

= ‖w‖2 +
∥
∥Jxn + μn(Jxn – Jxn–1)

∥
∥2 – 2

〈
w, Jxn + μn(Jxn – Jxn–1)

〉

= ‖w‖2 +
∥
∥Jxn + μn(Jxn – Jxn–1)

∥
∥2 – 2〈w, Jxn〉 – 2μn〈w, Jxn – Jxn–1〉

≤ φ(w, xn) + ρμ2
n‖Jxn – Jxn–1‖2 + 2μn〈xn – w, Jxn – Jxn–1〉. (15)

Putting together equation (13) and inequality (15), we obtain

φ(xn, vn) ≤ ρμ2
n‖Jxn – Jxn–1‖2.

From (14), this implies that

φ(w, vn) ≤ φ(w, xn) + ρμ2
n‖Jxn – Jxn–1‖2 + μnφ(xn, xn–1)

+ μn
(
φ(w, xn) – φ(w, xn–1)

)
. (16)

�
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3 Main result
The Setting for Algorithm 3.1.

1. The space E is a 2-uniformly convex and uniformly smooth real Banach space with
dual space, E∗.

2. The operator A : E → E∗ is monotone and L-Lipschitz continuous, and B : E → 2E∗

is maximal monotone and T : E → E∗ is relatively J-nonexpansive.
3. The solution set � = (A + B)–10 ∩ FJ (T) is nonempty.
4. The control parameters {βn} ⊂ (0, 1), {γn} ⊂ (0, 1) such that limn→∞ γn = 0 and

∑∞
n=1 γn = ∞, {εn} ⊂ (0, 1) such that

∑∞
n=1 εn < ∞, and {λn} ⊂ (λ,

√
μ√
ρL ), where

λ ∈ (0,
√

μ√
ρL ), ρ and μ are the constants appearing in Lemmas 2.9 and 2.10,

respectively.

Algorithm 3.1 Inertial Halpern–Tseng-type algorithm:
Step 0. (Initialization) Choose arbitrary points u, x0, x1 ∈ E, θ ∈ (0, 1) and set n = 1,
Step 1. Choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

⎧
⎨

⎩
min{θ , εn

‖Jxn–Jxn–1‖2 , εn
φ(xn ,xn–1) }, xn �= xn–1,

θ , otherwise.

Step 2. Compute

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = J–1(Jxn + θn(Jxn – Jxn–1)),

yn = JB
λn J–1(Jwn – λnAwn),

zn = J–1(Jyn – λn(Ayn – Awn)),

un = J–1(βnJzn + (1 – βn)Tzn),

xn+1 = J–1(γnJu + (1 – γn)Jun).

Step 3. Set n = n + 1 and go to Step 1.

Lemma 3.2 Let {xn} be a sequence generated by Algorithm 3.1. Then, {xn} is bounded.

Proof Let x ∈ �. Using Lemma 2.9 and D3, we have

φ(x, zn) ≤ φ
(
x, J–1(Jyn – λn(Ayn – Awn)

))

= ‖x‖2 – 2
〈
x, Jyn – λn(Ayn – Awn)

〉
+

∥
∥Jyn – λn(Ayn – Awn)

∥
∥2

≤ ‖x‖2 – 2〈x, Jyn〉 + 2λn〈x, Ayn – Awn〉 + ‖Jyn‖2

– 2λn〈yn, Ayn – Awn〉 + ρ
∥∥λn(Ayn – Awn)

∥∥2

= φ(x, yn) – 2λn〈yn – x, Ayn – Awn〉 + ρ
∥∥λn(Ayn – Awn)

∥∥2

= φ(x, wn) + φ(wn, yn) + 2〈wn – x, Jyn – Jwn〉
– 2λn〈yn – x, Ayn – Awn〉 + ρ

∥∥λn(Ayn – Awn)
∥∥2

= φ(x, wn) + φ(wn, yn) – 2〈yn – wn, Jyn – Jwn〉 + 2〈yn – x, Jyn – Jwn〉
– 2λn〈yn – x, Ayn – Awn〉 + ρ

∥∥λn(Ayn – Awn)
∥∥2
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≤ φ(x, wn) – φ(yn, wn) + ρλ2
nL2‖yn – wn‖2

– 2
〈
yn – x, Jwn – Jyn – λn(Awn – Ayn)

〉
. (17)

Claim.

〈
yn – x, Jwn – Jyn – λn(Awn – Ayn)

〉 ≥ 0. (18)

Proof of claim. Observe that yn = JB
λn J–1(Jwn – λnAwn) implies (Jwn – λnAwn) ∈ (Jyn +

λnByn). Since B is maximal monotone, there exists bn ∈ Byn such that Jwn – λnAwn = Jyn +
λnbn. Thus,

bn =
1
λn

(Jwn – Jyn – λnAwn). (19)

Furthermore, since 0 ∈ (A + B)x and (Ayn + bn) ∈ (A + B)yn, by the monotonicity of (A + B),
we have

〈yn – x, Ayn + bn〉 ≥ 0.

Substituting equation (19) into this inequality, we obtain

〈
yn – x, Jwn – Jyn – λn(Awn – Ayn)

〉 ≥ 0,

which justifies our claim.
Now, substituting inequality (18) into inequality (17) and using Lemma 2.10, we deduce

that

φ(x, zn) ≤ φ(x, wn) –
(

1 –
ρλ2

nL2

μ

)
φ(yn, wn). (20)

Since λn ∈ (0,
√

μ√
ρL ), 1 – ρλ2

nL2

μ
> 0. Thus,

φ(x, zn) ≤ φ(x, wn). (21)

Also, using D2 and the fact that T is relatively J-nonexpansive, we have

φ(x, un) ≤ βnφ(x, zn) + (1 – βn)φ
(
x, J–1Tzn

)

≤ βnφ(x, zn) + (1 – βn)φ(x, zn) = φ(x, zn). (22)

Next, using D2, inequalities (22) and (21), Lemma 2.16, and the fact that {θn} ⊂ (0, 1),
we obtain

φ(x, xn+1) = φ
(
x, J–1(γnJu + (1 – γn)Jun

))

≤ γnφ(x, u) + (1 – γn)φ(x, un)

≤ γnφ(x, u) + (1 – γn)φ(x, zn)
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≤ γnφ(x, u) + (1 – γn)φ(x, wn)

≤ γnφ(x, u) + (1 – γn)
(
φ(x, xn) + θn

(
φ(x, xn) – φ(x, xn–1)

)

+ ρθ2
n‖Jxn – Jxn–1‖2 + θnφ(xn, xn–1)

)

≤ max
{
φ(x, u),φ(x, xn) + θn

(
φ(x, xn) – φ(x, xn–1)

)

+ ρθn‖Jxn – Jxn–1‖2 + θnφ(xn, xn–1)
}

. (23)

If the maximum is φ(x, u), for all n ≥ 1, we are done. Else, there exists an n0 ≥ 1 such that
for all n ≥ n0, we have that

φ(x, xn+1) ≤ φ(x, xn) + θn
(
φ(x, xn) – φ(x, xn–1)

)
+ ρθn‖Jxn – Jxn–1‖2

+ θnφ(xn, xn–1).

From Step 1 and the setting for Algorithm 3.1 (4), we obtain

ρθn‖Jxn – Jxn–1‖2 ≤ ρεn, θnφ(xn, xn–1) ≤ εn and
∞∑

n=1

εn < ∞.

Hence, by Lemma 2.15, {φ(x, xn)} is convergent and thus, bounded. Furthermore, by D1,
{xn} is bounded. This implies that {wn}, {yn}, {zn}, and {un} are bounded. �

Now, we are ready to state our main convergence theorem.

Theorem 3.3 Let {xn} be a sequence generated by Algorithm 3.1. Then, {xn} converges
strongly to x ∈ �.

Proof Let x ∈ �. First, we estimate φ(x, un) using Lemma 2.12, the fact that T is relatively
J-nonexpansive, and inequalities (20) and (21). Now,

φ(x, un) ≤ βnφ(x, zn) + (1 – βn)φ
(
x, J–1Tzn

)
– βn(1 – βn)g

(‖Jzn – Tzn‖
)

≤ βnφ(x, zn) + (1 – βn)φ(x, zn) – βn(1 – βn)g
(‖Jzn – Tzn‖

)

≤ βnφ(x, zn) + (1 – βn)
[
φ(x, wn) –

(
1 –

ρλ2
nL2

μ

)
φ(yn, wn)

]

– βn(1 – βn)g
(‖Jzn – Tzn‖

)

≤ φ(x, wn) – (1 – βn)
(

1 –
ρλ2

nL2

μ

)
φ(yn, wn)

– βn(1 – βn)g
(‖Jzn – JTzn‖

)
. (24)

Next, we estimate φ(x, xn+1) using Lemma 2.12 and inequality (24). Hence,

φ(x, xn+1) ≤ γnφ(x, u) + (1 – γn)φ(x, un)

≤ γnφ(x, u) + (1 – γn)
[
φ(x, wn) – (1 – βn)

(
1 –

ρλ2
nL2

μ

)
φ(yn, wn)
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– βn(1 – βn)g
(‖Jzn – JTzn‖

)]

= γnφ(x, u) + (1 – γn)φ(x, wn) – (1 – γn)(1 – βn)
(

1 –
ρλ2

nL2

μ

)
φ(yn, wn)

– (1 – γn)βn(1 – βn)g
(‖Jzn – JTzn‖

)
. (25)

Set ηn = (1 – γn)(1 – βn)(1 – ρλ2
nL2

μ
) and ζn = (1 – γn)βn(1 – βn). By rearranging the terms in

inequality (25) and using Lemma 2.15, we obtain

ηnφ(yn, wn) + ζng
(‖Jzn – Tzn‖

)

≤ γn
(
φ(x, u) – φ(x, wn)

)
+ φ(x, wn) – φ(x, xn+1)

≤ γn
(
φ(x, u) – φ(x, wn)

)
+ φ(x, xn) + ρθn‖Jxn – Jxn–1‖2

+ θnφ(xn, xn–1) + θn
(
φ(x, xn) – φ(x, xn–1)

)
– φ(x, xn+1)

= γn
(
φ(x, u) – φ(x, wn)

)
+ φ(x, xn) – φ(x, xn+1) + θnφ(xn, xn–1)

+ ρθn‖Jxn – Jxn–1‖2 + θn
(
φ(x, xn) – φ(x, xn–1)

)
. (26)

To complete the proof, we consider the following two cases:
Case 1. Assume there exits an n0 ∈ N such that for all n ≥ n0,

φ(x, xn+1) ≤ φ(x, xn), ∀n ≥ n0.

Then, {φ(x, xn)} is convergent.
From inequality (26), and using the fact that limn→∞ γn = 0, the boundedness {wn}, the

existence of limn→∞ φ(x, xn), and the fact that limn→∞ ρθn‖Jxn – Jxn–1‖2 = 0 = limn→∞ θn ×
φ(xn, xn–1), we obtain the following:

lim
n→∞φ(yn, wn) = 0 and lim

n→∞ g
(‖Jzn – Tzn‖

)
= 0.

This implies by Lemma 2.11 and the properties of g that

lim
n→∞‖yn – wn‖ = 0 and lim

n→∞‖Jzn – Tzn‖ = 0. (27)

Furthermore, since

‖Jxn – Jwn‖ = θn‖Jxn – Jxn–1‖, lim
n→∞‖Jxn – Jwn‖ = 0.

Moreover, by the uniform continuity of J–1 on bounded sets, limn→∞ ‖xn – wn‖ = 0.
This and equation (27) imply that limn→∞ ‖xn – yn‖ = 0. By the uniform continuity of J
on bounded sets, this implies limn→∞ ‖Jxn – Jyn‖ = 0. Also, the Lipschitz continuity of A
and equation (27) imply that limn→∞ ‖Awn – Ayn‖ = 0. Therefore,

lim
n→∞‖Jzn – Jyn‖ = lim

n→∞λn‖Awn – Ayn‖ = 0. (28)
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By the uniform continuity of J–1, equation (28) implies that limn→∞ ‖zn – yn‖ = 0. Thus,

lim
n→∞‖xn – zn‖ = 0. (29)

Now, observe that

‖Jxn+1 – Jxn‖ ≤ ‖Jxn+1 – Jun‖ + ‖Jun – Jzn‖ + ‖Jzn – Jxn‖
≤ γn‖Ju – Jun‖ + (1 – βn)‖Tzn – Jzn‖ + ‖Jzn – Jxn‖
≤ γn‖Ju – Jun‖ + (1 – βn)‖Tzn – Jzn‖ + ‖Jzn – Jyn‖

+ ‖Jyn – Jxn‖.

This implies that

lim
n→∞‖Jxn+1 – Jxn‖ = 0. (30)

Now, we prove that �w(xn) ⊂ �, where �w(xn) denotes the set of weak subsequential
limits of {xn}. Since {xn} is bounded, �w(xn) �= ∅. Let x∗ ∈ �w(xn). Then, there exists a
subsequence {xnk } of {xn} such that xnk ⇀ x∗. From equation (29), we have znk ⇀ x∗. This
and (27) imply that x∗ ∈ F̂J (T). Since T is relatively J-nonexpansive, x∗ ∈ FJ (T).

Next, we show that x∗ ∈ (A + B)–10. Let (v, w) ∈ G(A + B) := {(x, y) ∈ E × E∗ : y ∈ (Ax +
Bx)}. Then, (w – Av) ∈ Bv. By the definition of yn in Algorithm 3.1, we have that (Jwnk –
λnk Awnk ) ∈ (Jynk + λnk Bynk ). Thus, 1

λnk
(Jwnk – Jynk – λnk Awnk ) ∈ Bynk . By the monotonicity

of B, we have
〈
v – ynk , w – Av –

1
λnk

(Jwnk – Jynk – λnk Awnk )
〉
≥ 0.

Using the fact that A is monotone, we estimate this as follows

〈v – ynk , w〉 ≥
〈
v – ynk , Av +

1
λnk

(Jwnk – Jynk – λnk Awnk )
〉

= 〈v – ynk , Av – Awnk 〉 +
1

λnk

〈v – ynk , Jwnk – Jynk 〉

= 〈v – ynk , Av – Aynk 〉 + 〈v – ynk , Aynk – Awnk 〉

+
1

λnk

〈v – ynk , Jwnk – Jynk 〉

≥ 〈v – ynk , Aynk – Awnk 〉 +
1

λnk

〈v – ynk , Jwnk – Jynk 〉.

Since limn→∞ ‖Awn – Ayn‖ = limn→∞ ‖Jyn – Jwn‖ = 0, { 1
λn

} is bounded and ynk ⇀ x∗, it
follows that

〈
v – x∗, w

〉 ≥ 0.

By Lemma 2.7, A + B is maximal monotone. This implies that 0 ∈ (A + B)x∗, i.e., x∗ ∈
(A + B)–10. Hence, x∗ ∈ � = FJ (T) ∩ (A + B)–10.
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Now, we show that {xn} converges strongly to the point x = ��u. Observe that if x = x∗,
we are done. Suppose x �= x∗. Using the boundedness of {xn}, Lemma 2.5, and the fact that
� is closed and convex (see, e.g., [23]), there exits a subsequence {xnk } ⊂ {xn} such that

lim sup
n→∞

〈xn – x, Ju – Jx〉 = lim
k→∞

〈xnk – x, Ju – Jx〉 =
〈
x∗ – x, Ju – Jx

〉 ≤ 0.

Using (30) and the uniform boundedness of J–1, we deduce that

lim sup
n→∞

〈xn+1 – x, Ju – Jx〉 ≤ 0.

Next, using Lemma 2.6, D2, inequalities (22), (21), and Lemma 2.15, we have

φ(x, xn+1) = φ
(
x, J–1(γnJu + (1 – γn)Jun

))

= V
(
x,γnJu + (1 – γn)Jun

)

≤ V
(
x,γnJu + (1 – γn)Jun – γn(Ju – Jx)

)

+ 2γn〈xn+1 – x, Ju – Jx〉
= V

(
x,γnJx + (1 – γn)Jun

)
+ 2γn〈xn+1 – x, Ju – Jx〉

= φ
(
x, J–1(γnJx + (1 – γn)Jun

))
+ 2γn〈xn+1 – x, Ju – Jx〉

≤ γnφ(x, x) + (1 – γn)φ(x, un) + 2γn〈xn+1 – x, Ju – Jx〉
≤ (1 – γn)

(
φ(x, xn) + ρθ2

n‖Jxn – Jxn–1‖2 + θnφ(xn, xn–1)

+ θn
(
φ(x, xn) – φ(x, xn–1)

))
+ 2γn〈xn+1 – x, Ju – Jx〉 (31)

≤ (1 – γn)φ(x, xn) + 2γn〈xn+1 – x, Ju – Jx〉
+ ρθn‖Jxn – Jxn–1‖2 + θnφ(xn, xn–1). (32)

By Lemma 2.13, inequality (32) implies that limn→∞ φ(x, xn) = 0. Using Lemma 2.11, we
obtain that limn→∞ xn = x.

Case 2. If Case 1 does not hold, then, there exists a subsequence {xmj} ⊂ {xn} such that

φ(x, xmj+1) > φ(x, xmj ), ∀j ∈N.

By Lemma 2.14, there exists a nondecreasing sequence {mk} ⊂ N, such that limk→∞ mk =
∞ and the following inequalities hold

φ(x, xmk ) ≤ φ(x, xmk+1) and φ(x, xk) ≤ φ(x, xmk ), ∀k ∈N.

From inequality (26) we have

ηmk φ(ymk , xmk ) + ζmk g
(‖Jzmk – Tzmk ‖

)

≤ γmk

(
φ(x, u) – φ(x, wmk )

)
+ φ(x, xmk )

– φ(x, xmk+1) + θmk φ(xmk , xmk +1) + ρθmk ‖Jxmk – Jxmk –1‖2
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+ θmk

(
φ(x, xmk ) – φ(x, xmk–1)

)

≤ γmk

(
φ(x, u) – φ(x, wmk )

)
+ θmk φ(xmk , xmk +1)

+ ρθmk ‖Jxmk – Jxmk –1‖2.

Following a similar argument as in Case 1, one can establish the following

lim
k→∞

‖ymk – xmk ‖ = 0 and lim
k→∞

‖Jzmk – Tzmk ‖ = 0,

lim
k→∞

‖xmk +1 – xmk ‖ = 0 and lim sup
k→∞

〈xmk +1 – x, Ju – Jx〉 ≤ 0.

From (31) we have

φ(x, xmk+1) ≤ (1 – γmk )
(
φ(x, xmk ) + ρθ2

mk
‖Jxmk – Jxmk –1‖2

+ θmk φ(xmk , xmk –1) + θmk

(
φ(x, xmk ) – φ(x, xmk –1)

))

+ 2γmk 〈xmk +1 – x, Ju – Jx〉
≤ (1 – γmk )φ(x, xmk ) + 2γmk 〈xmk +1 – x, Ju – Jx〉

+ ρθmk ‖Jxmk – Jxmk –1‖2 + θmk φ(xmk , xmk –1)

+
(
φ(x, xmk ) – φ(x, xmk –1)

)
. (33)

By Lemma 2.13, inequality (33) implies that limn→∞ φ(x, xmk ) = 0. Thus,

lim sup
k→∞

φ(x, xk) ≤ lim
k→∞

φ(x, xmk ) = 0.

Therefore, lim supk→∞ φ(x, xk) = 0 and so, by Lemma 2.11, limk→∞ xk = x. This completes
the proof. �

4 Applications and numerical illustrations
In this section, we give applications of Theorem 3.3 to a structured, nonsmooth, and con-
vex minimization problem, image denoising, and deblurring problems and a numerical
illustration on the classical Banach space l 3

2
. Finally, we will compare the performance of

Algorithm 3.1 with Algorithms (3) and (9).

4.1 Application to a convex minimization problem
In this subsection, we shall give an application of our theorem to the structured nons-
mooth convex minimization problem that is to

find x∗ ∈ E with f
(
x∗) + g

(
x∗) = min

x∈E

{
f (x) + g(x)

}
, (34)

where f is a real-valued function on E that is smooth and convex and g is an extended
real-valued function that is convex and lower-semicontinuous (E is a real Banach space).
Problem (34) can be recast as:

find x∗ ∈ E with 0 ∈ (∇f
(
x∗) + ∂g

(
x∗)), (35)
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where ∇f is the gradient of f and ∂g is the subdifferential of g . Suppose ∇f is monotone
and Lipschitz continuous. Then, setting A = ∇f and B = ∂g , in Algorithm 3.1 and assuming
that the solution set � := FJ (T) ∩ (∇f + ∂g)–10 �= ∅, it follows from Theorem 3.3 that {xn}
converges strongly to a point x ∈ �.

4.2 Application to image-restoration problems
The general image-recovery problem can be modeled as the following undetermined lin-
ear equation system:

y = Dx + �, (36)

where x ∈ R
N is an original image, y ∈ R

M is the observed image with noise �, and D :
R

N → R
M (M < N ) is a bounded linear operator. It is well known that solving (36) can be

viewed as solving the LASSO problem:

min
x∈Rn

1
2
‖Dx – y‖2

2 + λ‖x‖1, (37)

where λ > 0. Following [24], we define Ax := ∇( 1
2‖Dx – y‖2

2) = DT (Dx – y) and Bx :=
∂(λ‖x‖1). It is known that A is ‖D‖2-Lipschitz continuous and monotone. Moreover, B
is maximal monotone (see [40]).

Remark 5 For the purpose of existence, one can take

D =

(
3 1

–1 5

)

and y =

(
2
3

)

,

to see that indeed, there exists a matrix D such that

Ax := ∇
(

1
2
‖Dx – y‖2

2

)
= DT (Dx – y) is Lipschitz continuous and monotone.

In Algorithm (3) of Takahashi et al., [44], we set αn = 1
1000n , βn = n

2n+1 , and λn = 0.001, and
Sx = nx

n+1 , in Algorithm (9) of Cholamjiak [23], we set λn = 0.03, βn = 0.999, γn = 1
(n+1)2 , θ =

0.999, εn = 1
(n+5)2 , θn = 0.95, and Tx := nx

n+1 and in our proposed Algorithm 3.1, we set λn =
0.03, βn = 0.999, αn = 1

(n+1)2 , θ = 0.999, εn = 1
(n+5)2 , θn = 0.95, and Tx := nx

n+1 . The test images
were degraded using the following MATLAB blur functions “fspecial(’motion’,9,15)” and
“fspecial(’gaussian’, 5,5)” and then we added random noise. Finally, we used a tolerance of
10–4 and the maximum number of iterations (n) of 300, for all the algorithms. The results
are presented in Figs. 1 and 2, and Table 1.

Looking at the restored images in Fig. 2, it is difficult to tell which algorithm performs
better in the restoration process. To distinguish this, there is a powerful tool that is used
to measure the quality of restored images. The tool is called SNR, meaning signal-to-noise
ratio. The higher the SNR value for a restored image, the better the restoration process via



Adamu et al. Fixed Point Theory Algorithms Sci Eng          (2023) 2023:3 Page 17 of 23

Figure 1 Degradation of the test images and their restorations via Algorithms (3) and (9)

the algorithm. The SNR is defined as follows:

SNR = 10 log
‖x‖2

2
‖x – xn‖2

2
,
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Figure 2 Test images and their restorations via Algorithms (9) and 3.1

Table 1 SNR values of the restored images in Figs. 1 and 2

Figure Blur Iter. SNR of (3) Iter. SNR of (9) Iter. SNR of
Algorithm 3.1

Kitkuan Motion 192 63.801416 162 61.123542 107 65.629686
Gaussian 127 59.672691 125 56.124635 81 61.465479

Lena Motion 202 62.323217 160 60.284472 108 63.786493
Gaussian 135 57.504927 113 56.570624 83 59.168384

Barbara Motion 219 60.073402 171 57.910650 116 61.336816
Gaussian 160 53.912694 134 53.087088 89 54.800387

Brain Motion 300 47.262300 277 46.395405 131 47.612237
Gaussian 300 43.230982 237 42.640876 105 43.353247

where x and xn are the original image and estimated image at iteration n, respectively.
The SNR values for the restored images via Algorithms (3), (9), and 3.1 are presented in
Table 1.

Discussion of the numerical results. For the restored images in Figs. 1 and 2, with regards
to the number of iterations and the quality of the restored images (SNR values) our pro-
posed Algorithm 3.1 outperforms Algorithm (3) of Takahashi et al. [44] and Algorithm
(9) of Cholamjiak et al. [23]. In particular, for the brain image, Algorithms (3) failed to
restore the image before the maximum number of iterations was exhausted, however, it
took our proposed Algorithm 3.1 just 131 iterations to restore the brain image degraded
by motion blur and 105 iterations to restore the brain image degraded by Gaussian blur.
From the above experiment, our proposed method appears to be competitive and promis-
ing.
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4.3 An example in l 3
2

In this subsection we present a numerical implementation of our proposed Algorithm 3.1
on the Banach space

lp =

{

{xn} ⊂R :
∞∑

n=1

|xn|p < ∞
}

with norm ‖x‖ =

( ∞∑

n=1

|xn|p
) 1

p

.

It is well known that for 1 < p ≤ 2, lp spaces are uniformly smooth and 2-uniformly convex.
Now, let p = 3

2 . Since we cannot sum to infinity on a computer, for the purpose of numerical
illustration, we considered the subspace of l 3

2
consisting of finite, nonzero terms

Sk
3
2

:=
{{xn} ⊂R : {xn} = {x1, x2, . . . , xk , 0, 0, 0, . . .}}, for some k ≥ 1.

Example 1 Consider the space S3
3
2

with dual space S3
3. Let A, B, T : S3

3
2

→ S3
3 be defined

by

Ax := 3x + (1, 0.5, 0.25, 0, 0, . . .), Bx := 2x, Tx := x.

It is not difficult to verify the map A is 3-Lipschitz, B is maximal monotone, and T is non-
expansive, at the same time it is relatively nonexpansive and relatively J-nonexpansive.
Furthermore, the point x∗ = (0.2, 0.1, 0.125, 0, 0, . . .) is the only point in the solution set
� = (A + B)–10 ∩ FJ (T). In the numerical experiment, we compared the performance
of Algorithms (3), (9), and 3.1. For a fair comparison, since these algorithms have sim-
ilar control parameters we used the same values for each parameter appearing in all
the algorithms. For the step-size λn, we used 0.02 for all the algorithms. For αn de-
fined Algorithms (3) and (9) that was required to satisfy same conditions with γn de-
fined in our Algorithm 3.1, we used 1

(50,000×n)+1 for all the three algorithms. Next, for
βn appearing in all the algorithms with the same condition, in Algorithms (9) and 3.1,
we used 0.999; however, for Algorithm (3), the choice of βn = 0.5 gave a better approx-
imation so we used it for the algorithm and finally, to obtain the inertial parameter in
our Algorithm 3.1 we chose θ = 0.999, εn = 1

(n+5)2 . We set the Halpern-vector (x or u)
to be zero in all the algorithms. The iteration process was started with the initial points
x0 = (2, 1, 3, 0, 0, 0, . . .) and we observed the behavior of the algorithms as we varied x1 to be:
First x1 = (1, 1, 3, 0, 0, 0, . . .) and Second x1 = (2, 0, 1, 0, 0, 0 · · · ). The iteration process was
terminated when ‖xn – x∗‖ > 10–6 or n > 1999. The results of the experiment are presented
in Table 2 and Fig. 3.

Discussion of the numerical results. From the numerical illustrations presented in Exam-
ple 1, we observe that the iterates generated by Algorithm (3) of Takahashi et al. [44] fail
to satisfy the stopping criterion before the prescribed maximum number of iterations was
exhausted. While Algorithm (9) of Cholamjiak et al. [23] took 1275 iterations to satisfy
the tolerance for the First initial point x1 and 1244 for the Second x1, it took our proposed
Algorithm 3.1 just 422 for the First initial point x1 and 423 for the Second x1. Thus, in this
example our proposed algorithm outperforms the algorithms of Takahashi et al. [44] and
Cholamjiak et al. [23].
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Table 2 Numerical results for the varied initial point x1

n ‖xn+1 – x∗‖ for the First and Second x1

Algorithm (3) Algorithm (9) Algorithm 3.1

First x1 Second x1 First x1 Second x1 First x1 Second x1

2 3.1401 2.2657 3.1245 2.2544 3.0667 2.2589
10 3.0021 2.1661 2.8568 2.0612 5.4641 12.1081
40 2.5844 1.8647 2.1195 1.5293 1.6811 3.7584
90 2.0135 1.4528 1.2887 0.9298 0.4827 0.9486
150 1.4923 1.0767 0.7094 0.5118 0.0977 0.2025
220 1.0521 0.7591 0.3535 0.2551 0.0093 0.0184
300 0.7057 0.5091 0.1594 0.1151 0.0005 0.0011
400 0.4283 0.3091 0.0589 0.0425 3.04E–05 6.97E–05
422 0.3837 0.2769 0.0473 0.0341 8.34E–06 1.19E–05
423 0.3818 0.2755 0.0469 0.0338 successful 7.29E–06
434 0.3799 0.2741 0.0464 0.0335 successful successful
500 0.2600 0.1876 0.0218 0.0157 successful successful
1000 0.0214 0.0154 0.0001 0.0001 successful successful
1244 0.0063 0.0045 1.34E–05 9.94E–06 successful successful
1275 0.0054 0.0039 9.92E–06 successful successful successful
1700 0.0006 0.0004 successful successful successful successful
1999 0.0001 0.0001 successful successful successful successful

Figure 3 First 423 iterations of Algorithms (3), (9), and 3.1 illustrated graphically

4.4 Conclusion
This paper presents a modified inertial extension of the theorem of Cholamjiak [23]
whose solutions are J-fixed points of relatively J-nonexpansive mappings. Applications of
the theorem to convex minimization and image restoration are presented. Furthermore,
some interesting numerical implementations of our proposed algorithm in solving image-
recovery problems and an example on l 3

2
are presented. Finally, the performance of our

proposed method is compared with that of Takahashi et al. [44] and Cholamjiak et al. [23]
and from the numerical illustrations our proposed Algorithm 3.1 appears to be competi-
tive and promising.
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