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Abstract
In this work, we study a self-adaptive extragradient algorithm for approximating a
common solution of a pseudomonotone equilibrium problem and fixed-point
problem for multivalued nonexpansive mapping in Hadamard spaces. Our proposed
algorithm is designed in such a way that its step size does not require knowledge of
the Lipschitz-like constants of the bifunction. Under some appropriate conditions, we
establish the strong convergence of the algorithm without prior knowledge of the
Lipschitz constants. Furthermore, we provide a numerical experiment to demonstrate
the efficiency of our algorithm. This result extends and complements recent results in
the literature.
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1 Introduction
In this article, we consider the problem of approximating a common solution of an equi-
librium problem (EP) and a fixed-point problem for a multivalued mapping in a nonlinear
space. Let C be a nonempty, closed, and convex subset of a metric space X. A multivalued
nonlinear mapping T : X → 2X is said to have a fixed point x ∈ X if x ∈ Tx. We denote the
fixed-point set of T by F(T), i.e., F(T) = {x ∈ X : x ∈ Tx}. Let f : C ×C →R be a bifunction,
the EP is to find a point x∗ ∈ C such that

f
(
x∗, y

) ≥ 0, ∀y ∈ C, (1.1)

where f (x, x) = 0 and f (x, ·) is convex on C. The set of solutions of (1.1) is denoted by
EP(f , C). The EP was first introduced in the linear setting by Ky Fan [13] and was later
developed by Muu and Oettli [35] (see also Blum and Oettli [3]). The problem (1.1) is
known to cover other important mathematical problems such as the minimization prob-
lem, the variational inequality problem, the saddle-point problem, Nash equilibrium in-
volving noncooperative games, the fixed-point problem, etc. (see [3, 35]). It is well known
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that many real-life problems are characterized by phenomena that can be modeled as non-
linear, nonconvex, continuous optimization problems. Approximating the solution of such
problems may actually be complicated in the framework of linear spaces. Dedieu et al. [7]
(see also Li and Wang [32]) noted that these problems can be overcome in the nonlinear
space settings. For this reason, Colao et al. [6] extended problem (1.1) to nonlinear spaces
(in particular, a Riemannian manifold) and later in 2019 Khatibzadeh and Mohebbi [27]
also studied EP in Hadamard spaces. These pioneering works have increased the interest
of researchers in solving EP (1.1) in nonlinear spaces; see [1, 19, 28, 31]. We remark here
that the aforementioned works were in the case when the bifunction f in (1.1) is monotone.
Usually, the iterative methods employed in this instance adopt the popular regularization
technique associated with a strongly monotone subproblem. Hoewever, in the case when
f in (1.1) is nonmonotone, the regularization subproblem ceases to be strongly monotone
and the iterative method becomes complex.

It is well known that pseudomonotone operators are obvious generalizations of the
monotone operators and many real-life EPs can be modeled with pseudomonotone bi-
functions. One of the notable methods used to solve the nonmonotone (in particular,
the pseudomonotone) EP is the extragradient algorithm (EA). The EA was introduced
by Koperlevich [30] and later redefined by Trans et al. [40]. Recently, Khammahawong et
al. [26] employed an EA to approximate the solution of a strongly pseudomonotone EP
in a Hadamard (complete Riemannian) manifold. Their proposed algorithm is as follows:
Given x0, y0 ∈ C, the sequence {yn} is generated as:

⎧
⎨

⎩
xn+1 ∈ arg miny∈C{f (yn, y) + 1

2λn
d2(xn, y)},

yn+1 ∈ arg miny∈C{f (yn, y) + 1
2λn

d2(xn+1, y)},
(1.2)

where {λn} is a positive sequence and f is a strongly pseudomonotone bifunction. They
obtained the convergence result of (1.2) under some mild conditions. We note that algo-
rithm (1.2) has been extensively studied in both Hilbert and Banach spaces, see [37–39]
and other references therein. To obtain the convergence of the sequence generated by (1.2)
(and in the work of Khatibzadeh and Mohebbi [27] in Hadamard spaces) there is need to
know in advance the estimates of the Lipschitz-like constants of the bifunction. These are
usually not easy to derive when the structure of the bifunction is not simple and may affect
the efficiency of the algorithm.

In 2021, Iusem and Mohebbi [18] introduced two EA with a linesearch technique to solve
(1.2) with a pseudomontone bifunction in Hadamard spaces. Their proposed algorithms
are as follows:

Algorithm 1.1 (Extragradient Algorithm with Linesearch (EAL))
Initialization: Choose x0 ∈ C ⊂ X. Take δ ∈ (0, 1), λ̂, λ̄ satisfying 0 < λ̂ ≤ λ̄, and λn ⊆ [λ̂, λ̄].
Iterative Step: Given xn, define

zn ∈ arg min

{
f (xn, y) +

1
2λn

d2(xn, y) : y ∈ C
}

. (1.3)

If xn = zn stop. Otherwise, let

l(n) = min

{
l ≥ 0 : λnf (yl, xn) – λnf (yl, zn) ≥ δ

2
d2(zn, xn)

}
,
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where

yl = 2–lzn ⊕ (
1 – 2–l)xn.

Take

αn := 2–l(n),

yn = αnzn ⊕ (1 – αn)xn,

wn = PHn (xn),

where

Hn =
{

y ∈ X : f (yn, y) ≤ 0
}

.

Then,

xn+1 = PCwn.

Iusem and Mohebbi [18] obtained the �-convergence of EAL to an element in EP(f , C).
In addition, they proposed another algorithm to ensure strong convergence that was more
desirable than the �-convergence in EAL. Precisely, the algorithm is as follows:

Algorithm 1.2 (Halpern Extragradient Algorithm with Linesearch (HEAL))
Initialization: Choose x0 ∈ C, u ∈ X. Consider a sequence {γn} ⊂ (0, 1) such that
limn→∞ γn = 0 and

∑∞
n=0 γn = ∞.

Iterative Step: Given xn, define

zn ∈ arg min

{
f (xn, y) +

1
2λn

d2(xn, y) : y ∈ C
}

. (1.4)

If xn = zn stop. Otherwise, let

l(n) = min

{
l ≥ 0 : λnf (yl, xn) – λnf (yl, zn) ≥ δ

2
d2(zn, xn)

}
,

where

yl = 2–lzn ⊕ (
1 – 2–l)xn.

Take

αn := 2–l(n),

yn = αnzn ⊕ (1 – αn)xn,

wn = PHn (xn),
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where

Hn =
{

y ∈ X : f (yn, y) ≤ 0
}

.

Then,

vn = γnu ⊕ (1 – γn)wn,

xn+1 = PCvn.

It is worth noting that Algorithm 1.1 and Algorithm 1.2 eliminate the challenges ob-
served in (1.2) and [27] by introducing a linesearch technique. However, the presence of
linesearch techniques in the algorithms to select step sizes will require more computation
of nested iterations, which will be time consuming.

Motivated by the work of Iusem and Mohebbi [18] and other works in this direction, we
introduce a self-adaptive extragradient algorithm in Hadamard spaces that does not need
to have prior knowledge of Lipschitz-like constants or require a linesearch technique for
execution. Our algorithm converges strongly to a common solution of the EP and the fixed
point of a multivalued nonexpansive mapping. Furthermore, we give a numerical example
in a Hadamard space to demonstrate the efficiency of our method. Our result extends and
complements other recent results in this direction. Our contributions in this work are
briefly highlighted as follows:

(i) Our work extends step-adaptive algorithms for pseudomonotone EP from linear
spaces (see, for example, [4, 14–16, 21, 23]) to nonlinear spaces.

(ii) Our work improves the works of Khatibzadeh and Mohebbi [27], also that of Iusem
and Mohebbi [18]. That is, our algorithm neither depends on the Lipschitz
constants nor uses a linesearch technique.

2 Preliminaries
In this section, we present some notations, known definitions, and useful results that will
be needed in the proof of our main result. Throughout this work, we use the notations
“⇀” and “→” to denote �-convergence and strong convergence, respectively.

Let X be a metric space and x, y ∈ X. A geodesic from x to y is a map (or a curve) c from
the closed interval [0, d(x, y)] ⊂ R to X such that c(0) = x, c(d(x, y)) = y and d(c(t), c(t′)) =
|t – t′| for all t, t′ ∈ [0, d(x, y)]. The image of c is called a geodesic segment joining x to y.
When it is unique, this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a
geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset C of a
geodesic space X is said to be convex, if for any two points x, y ∈ C, the geodesic joining
x and y is contained in C, that is, if c : [0, d(x, y)] → X is a geodesic such that x = c(0) and
y = c(d(x, y)), then c(t) ∈ C ∀t ∈ [0, d(x, y)]. A geodesic triangle �(x1, x2, x3) in a geodesic
metric space (X, d) consists of three vertices (points in X) with unparameterized geodesic
segments between each pair of vertices. For any geodesic triangle there is a comparison
(Alexandrov) triangle �̄ ⊂ R

2, such that d(xi, xj) = dR2 (x̄i, x̄j), for i, j ∈ {1, 2, 3}. A geodesic
space X is a CAT(0) space if the distance between an arbitrary pair of points on a geodesic
triangle � does not exceed the distance between its corresponding pair of points on its
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comparison triangle �̄. If � and �̄ are geodesic and comparison triangles in X, respec-
tively, then � is said to satisfy the CAT(0) inequality for all points x, y of � and x̄, ȳ of �̄

if

d(x, y) = dR2 (x̄, ȳ). (2.1)

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z], then the CAT(0)
inequality implies

d2(x, y0) ≤ 1
2

d2(x, y) +
1
2

d2(x, z) –
1
4

d(y, z). (2.2)

Berg and Nikolaev [2] introduced the notion of quasilinearization in a CAT(0) space as

follows: Let a pair (a, b) ∈ X × X denoted by
−→
ab, be called a vector. Then, the quasilin-

earization map 〈·, ·〉 : (X × X) × (X × X) →R is defined by

〈−→ab,
−→
cd〉 =

1
2
(
d2(a, d) + d2(b, c) – d2(a, c) – d2(b, d)

)
, for all a, b, c, d ∈ X. (2.3)

It is easy to see that 〈−→ab,
−→
ab〉 = d2(a, b), 〈−→ba,

−→
cd〉 = –〈−→ab,

−→
cd〉, 〈−→ab,

−→
cd〉 = 〈−→ae ,

−→
cd〉 + 〈−→eb ,

−→
cd〉,

and 〈−→ab,
−→
cd〉 = 〈−→cd ,

−→
ab〉, for all a, b, c, d, e ∈ X. Furthermore, a geodesic space X is said to

satisfy the Cauchy–Schwartz inequality, if

〈−→ab,
−→
cd〉 ≤ d(a, b)d(c, d)

for all a, b, c, d ∈ X. It is well known that a geodesically connected space is a CAT(0) space if
and only if it satisfies the Cauchy–Schwartz inequality [12]. Also, it is known that complete
CAT(0) spaces are called Hadamard spaces.

Let {xn} be a bounded sequence in a metric space X and r(·, {xn}) : X → [0,∞) be a
continuous functional defined by r(x, {xn}) = lim supn→∞ d(x, xn). The asymptotic radius
of {xn} is given by r({xn}) := inf{r(x, {xn}) : x ∈ X}, while the asymptotic center of {xn} is the
set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. A sequence {xn} in X is said to be �-convergent
to a point x ∈ X if A({xnk }) = {x} for every subsequence {xnk } of {xn}. In this case, we say
that x is the �-limit of {xn} (see [11, 29]). The notion of �-convergence in metric spaces
was introduced and studied by Lim [33], and it is known as the analog of the notion of
weak convergence in Banach spaces.

Let X be a geodesic convex metric space and A be a nonempty subset of X. A subset A
is called proximinal (see [9]), if for each x ∈ X there exists a ∈ A such that

dist(x, A) = inf
{

d(x, a) : a ∈ A
}

.

It is well known that if A is proximinal, then A is closed. We denote the family of all
nonempty proximinal subsets of X by P(X) and the family of closed and bounded sub-
sets of X by CB(X), respectively. If A and B are nonempty subsets of X, then the Hausdorff
metric H on P(X) is defined by

H(A, B) = max
{

sup
a∈A

dist(a, B), sup
b∈B

dist(b, A)
}

, ∀A, B ∈ P(X).
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Let T : X → CB(X) be a multivalued mapping. A point x ∈ X is called a strict fixed point
of T if Tx = {x}. In this case, T is said to satisfy the end point condition and denote the
set of end points of the mapping T as E(T). The mapping T is said to be multivalued
nonexpansive, if

H(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.

Remark 2.1 Let T : C → CB(C) be a multivalued mapping. If p ∈ C is an end point of the
mapping T , then p is also a fixed point of T . That is, E(T) ⊆ F(T), in fact equality holds if
T is single valued. However, the converse may not hold.

Example 2.2 Let X = R and C = {x : 0 ≤ x ≤ 1} with the usual metric. For each x ∈ C, let
T : C → CB(X) be defined as Tx = [0, xn], 1 ≤ n < ∞. It is obvious that T is nonexpansive
with E(T) = {0} and F(T) = {0, 1}.

Definition 2.3 Let X be a Hadamard space. A multivalued nonlinear mapping T : X → 2X

is said to be demiclosed if for any bounded sequence {xn} in X such that �– limn→∞ xn = x∗

and limn→∞ d(xn, zn) = 0, (where zn ∈ Txn) we have that x∗ ∈ F(T).

Lemma 2.4 ([17]) Let X be a metric space and A, B are nonempty subsets in P(X). Then,
for all a ∈ A, there exists b ∈ B such that d(a, b) ≤ H(A, B).

Definition 2.5 Let X be a Hadamard space. A function h : X → (–∞,∞] is said to be
(i) convex, if

h
(
λx ⊕ (1 – λ)y

) ≤ λh(x) + (1 – λ)h(y), ∀x, y ∈ X,λ ∈ (0, 1),

(ii) lower semicontinuous (or upper semicontinuous) at a point x ∈ C, if

h(x) ≤ lim inf
n→∞ h(xn)

(
or h(x) ≥ lim sup

n→∞
h(xn)

)
, (2.4)

for each sequence {xn} in C such that lim
n→∞xn = x,

(iii) lower semicontinuous (or upper semicontinuous) on C, if it is lower
semicontinuous (or upper semicontinuous) at every point in C.

The convex programming associated with the proper, convex, and lower semicontinuous
function h for all λ > 0 is given by:

arg min
x∈X

(
h(x) +

1
2λ

d2(x, y)
)

(2.5)

for all y ∈ X.

Remark 2.6 ([24]) The subproblem (2.5) is well defined for all λ > 0.

Definition 2.7 Let C be a nonempty, closed, and convex subset of a Hadamard space X.
A bifunction f : C × C →R is said to be
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(i) monotone, if

f (x, y) + f (y, x) ≤ 0, ∀x, y ∈ C;

(ii) pseudomonotone if

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0, ∀x, y ∈ C.

It is well known that monotone bifunctions are pseudomonotone, but the converse is
not true in general (see, for instance [20, 22]).

Definition 2.8 Let X be a Hadamard space. A bifunction f is said to satisfy the Lipschitz-
like continuity if there exist two constants c1, c2 > 0 such that

f (x, y) + f (y, z) ≥ f (x, z) – c1d2(x, y) – c2d2(y, z), ∀x, y, z ∈ X.

To solve the EP, the following assumptions are important and necessary on the bifunc-
tion f in establishing our result:

(A1) f (x, ·) : X →R is convex and lower semicontinuous for all x ∈ X ,
(A2) f (·, y) is �-upper semicontinuous for all x ∈ X ,
(A3) f satisfies the Lipschitz-type continuity condition,
(A4) f is pseudomonotone.

Definition 2.9 Let C be a nonempty, closed, and convex subset of a Hadamard space X.
The metric projection is a mapping PC : X → C that assigns to each x ∈ X, the unique
point PCx ∈ C such that

d(x, PCx) = inf
{

d(x, y) : y ∈ C
}

.

Lemma 2.10 ([12]) Every bounded sequence in a Hadamard space has a �-convergent
subsequence.

Lemma 2.11 Let X be a Hadamard space, x, y, z ∈ X, and t, s ∈ [0, 1]. Then,
(i) d(tx ⊕ (1 – t)y, z) ≤ td(x, z) + (1 – t)d(y, z) (see [12]).

(ii) d2(tx ⊕ (1 – t)y, z) ≤ td2(x, z) + (1 – t)d2(y, z) – t(1 – t)d2(x, y) (see [12]).
(iii) d2(tx ⊕ (1 – t)y, z) ≤ t2d2(x, z) + (1 – t)2d2(y, z) + 2t(1 – t)〈−→xz ,−→yz 〉 (see [8]).

Lemma 2.12 ([25]) Let X be a Hadamard space, {xn} be a sequence in X, and x ∈ X. Then,
{xn} �-converges to x if and only if

lim sup
n→∞

〈−→xnx,−→yx〉 ≤ 0, ∀y ∈ X.

Lemma 2.13 ([8]) Let C be a nonempty, convex subset of a Hadamard space X, x ∈ X and
u ∈ C. Then, u = PCx if and only if 〈−→ux,−→yu〉 ≤ 0, for all y ∈ C.

Lemma 2.14 ([10]) Let X be a Hadamard space and T : X → X be a nonexpansive map-
ping. Then, T is �-demiclosed.
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Lemma 2.15 ([36]) Let X be a Hadamard space and {xn} be a sequence in X. If there exists
a nonempty subset C in which

(i) limn→∞ d(xn, z) exists for every z ∈ C, and
(ii) if {xnk } is a subsequence of {xn} that is �-convergent to x, then x ∈ C,

then, there is a p ∈ C such that {xn} is �-convergent to p in X.

Lemma 2.16 ([41]) Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1 – αn)an + αnδn + γn, n ≥ 0,

where {αn}, {δn}, and {γn} satisfy the following conditions:
(i) {αn} ⊂ [0, 1], �∞

n=0αn = ∞,
(ii) lim supn→∞ δn ≤ 0,

(iii) γn ≥ 0(n ≥ 0), �∞
n=0γn < ∞.

Then, limn→∞ an = 0.

Lemma 2.17 ([34]) Let {an} be a sequence of real numbers such that there exists a sub-
sequence {nj} of {n} with anj < anj+1 ∀j ∈ N. Then, there exists a nondecreasing sequence
{mk} ⊂ N such that mk → ∞ and the following properties are satisfied by all (sufficiently
large) numbers k ∈N:

amk ≤ amk +1 and ak ≤ amk +1.

In fact, mk = max{i ≤ k : ai < ai+1}.

3 Main results
In this section, we present our algorithm and its convergence analysis for approximat-
ing the solutions of EP and the fixed point of a multivalued nonexpansive mapping in
Hadamard spaces. In the following, let C be a nonempty, closed, convex subset of a
Hadamard space X, f : X × X → R be a bifunction satisfying (A1)–(A4) and let T : C →
CB(X) be a multivalued nonexpansive mapping such that Tx∗ = {x∗}. Suppose the solution
set of the aforementioned problems is

	 := EP(f , C) ∩ F(T) �= ∅.

Now, we present our algorithm as follows:

Algorithm 3.1 (Self-Adaptive Extragradient Algorithm (SAEA))
Initialization: Choose u, x0 ∈ C, n ≥ 0, λn > 0, μ ∈ (0, 1).
Iterative steps: Take {αn} ⊆ (0, 1) such that limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and {βn} ⊆ (0, 1)

such that lim infn→∞(1 – αn)βn > 0. Given the nth iterate, compute the (n + 1)th iterate via
the following procedure:

Step 1: Compute

yn = arg min

{
f (xn, y) +

1
2λn

d2(xn, y) : y ∈ C
}

. (3.1)

If xn = yn, then stop. Otherwise go to Step 2.
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Step 2: Compute

wn = arg min

{
f (yn, y) +

1
2λn

d2(xn, y) : y ∈ C
}

. (3.2)

Step 3: Compute

xn+1 = αnu ⊕ (1 – αn)
[
βnhn ⊕ (1 – βn)wn

]
,

where hn ∈ Twn.
Step 4: Evaluate

λn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{λn, μ[d2(xn ,yn)+d2(wn ,yn)]
2[f (xn ,wn)–f (xn ,yn)–f (yn ,wn)]+

},
if f (xn, wn) – f (xn, yn) – f (yn, wn) > 0,

λ0, otherwise.

(3.3)

Set n := n + 1 and go back to Step 1.

We begin with the following lemma that is crucial to the nonincreasing monotonicity of
sequence (3.3). The lemma has been proved by many authors in the framework of Hilbert
and Banach spaces (see [22, 42] and other references therein). We state the lemma here in
a Hadamard-space setting and give the proof for completeness.

Lemma 3.2 The sequence {λn} defined by (3.3) is monotonically nonincreasing and
bounded and

lim
n→∞λn = λ ≥

{
μ

2 max{c1, c2} ,λ1

}
.

Proof It is obvious that the sequence {λn} is monotonic nonincreasing. By the Lipschitz-
like property of f , we obtain that

[d2(xn, yn) + d2(wn, yn)]
2[f (xn, wn) – f (xn, yn) – f (yn, wn)]

≥ [d2(xn, yn) + d2(wn, yn)]
2[c1d2(xn, yn) + c2d2f (yn, wn)]

≥ μ

2 max{c1, c2} .

Hence, the sequence {λn} is nonincreasing and has the lower bound μ

2 max{c1,c2} . Hence, the
limit limn→∞ λn = λ > 0 exists. �

The following lemma is vital in proving the convergence of our proposed Algorithm 3.1.

Lemma 3.3 Assume the bifunction f satisfies Assumption (A1). Suppose {wn}, {xn}, and
{yn} are generated as in Algorithm 3.1 and y ∈ C. Then,

1
2
[
d2(wn, xn) – d2(xn, y) + d2(wn, y)

] ≤ λn
[
f (xn, y) – f (xn, wn)

]
. (3.4)
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Proof Take y ∈ C. Since wn is a solution of (3.2), let vn = ty ⊕ (1 – t)wn such that t ∈ [0, 1).
Then, from Lemma 2.11(i), we have

f (xn, wn) +
1

2λn
d2(wn, xn)

≤ f (xn, y) +
1

2λn
d2(y, xn)

≤ f
(
xn, ty ⊕ (1 – t)wn

)
+

1
2λn

d2(ty ⊕ (1 – t)wn, xn
)

≤ tf (xn, y) + (1 – t)f (xn, wn)

+
1

2λn

{
td2(y, xn) + (1 – t)d2(wn, xn) – t(1 – t)d2(y, wn)

}
. (3.5)

The inequality (3.5) can be reduced to

1
2λn

{
d2(wn, xn) – d2(y, xn) – (1 – t)d2(y, wn)

} ≤ f (xn, y) – f (xn, wn). (3.6)

If t → 1– in (3.6), we have

1
2λn

{
d2(wn, xn) – d2(y, xn) – d2(y, wn)

} ≤ f (xn, y) – f (xn, wn),

which implies that

1
2
{

d2(wn, xn) – d2(y, xn) – d2(y, wn)
} ≤ λn

[
f (xn, y) – f (xn, wn)

]
. (3.7)

�

Lemma 3.4 Suppose {wn}, {xn}, and {yn} are sequences generated by Algorithm 3.1. Then,

d2(wn, x∗) ≤ d2(xn, x∗) –
(

1 –
μλn

λn+1

)
d2(xn, yn) –

(
1 –

μλn

λn+1

)
d2(wn, yn).

Proof From (3.2), we have

f (xn, wn) – f (xn, yn) – f (yn, wn) ≤ μ

2λn+1

[
d2(xn, yn) + d2(wn, yn)

]
. (3.8)

Since λn > 0, we obtain from (3.8) that

λnf (xn, wn) ≤ λn
[
f (xn, yn) + f (yn, wn)

]
+

μλn

2λn+1

[
d2(xn, yn) + d2(wn, yn)

]
. (3.9)

This implies from (3.6) and the quasilinearization properties that

〈−→wny,−−→xnwn〉 ≥ λn
[
f (xn, wn) – f (xn, y)

]
. (3.10)
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Thus, from (3.9) and (3.10), we have

〈−→wny,−−→xnwn〉 ≥ λn
[
f (xn, wn) – f (xn, y)

]
–

(
1 –

μλn

2λn+1

)
d2(xn, yn)

–
(

1 –
μλn

2λn+1

)
d2(wn, yn). (3.11)

From (3.2) and Remark 2.6, we can obtain that

λn
[
f (xn, wn) – f (xn, yn)

] ≥ 〈−−→ynxn,−−→ynwn〉. (3.12)

Hence, from (3.11) and (3.12), we have

〈−→wny,−−→xnwn〉 ≥ 〈−−→ynxn,−−→ynwn〉 –
(

1 –
μλn

2λn+1

)
d2(xn, yn) –

(
1 –

μλn

2λn+1

)
d2(wn, yn),

which implies that

2〈−−→ynxn,−−→ynwn〉 ≥ 2〈−−→ynxn,−−→ynwn〉 –
(

1 –
μλn

λn+1

)
d2(xn, yn) –

(
1 –

μλn

λn+1

)
d2(wn, yn). (3.13)

The following facts are obvious from the quasilinearization properties

⎧
⎨

⎩
2〈−−→ynxn,−−→ynwn〉 = {d2(yn, wn) + d2(xn, yn) – d2(xn, wn)},
2〈−−→xnwn,−→wny〉 = {d2(xn, y) – d2(xn, wn) – d2(wn, y)}.

(3.14)

Hence, from (3.13) and (3.14), we obtain

d2(wn, y) ≤ d2(xn, y) –
(

1 –
μλn

λn+1

)
d2(xn, yn) –

(
1 –

μλn

λn+1

)
d2(wn, yn). (3.15)

For each x∗ ∈ 	, by Assumption (A4) on f and f (x∗, yn) ≥ 0, it implies that f (yn, x∗) ≤ 0.
Hence, if x∗ = y in (3.15) we have

d2(wn, x∗) ≤ d2(xn, x∗) –
(

1 –
μλn

λn+1

)
d2(xn, yn) –

(
1 –

μλn

λn+1

)
d2(wn, yn). (3.16)

�

Theorem 3.5 Let C be a nonempty, closed, and convex subset of a Hadamard space X. Sup-
pose that f : C ×C →R is a bifunction satisfying conditions (A1)–(A4) and T : X → CB(X)
is a multivalued nonexpansive mapping such that Tx∗ = {x∗}. Suppose that the solution set
	 �= ∅. Then, the sequence {xn} generated by Algorithm 3.1 converges strongly to û = P	û.

Proof We first show that the sequence {xn} is bounded. Let κ ∈ (1 – μ) be some fixed
number. From Lemma 3.2

lim
n→∞

(
1 –

μλn

λn+1

)
= 1 – μ > κ > 0.



Aremu et al. Fixed Point Theory Algorithms Sci Eng          (2023) 2023:4 Page 12 of 22

Thus, there exists n ∈N such that
(

1 –
μλn

λn+1

)
> κ > 0, ∀n ∈N.

This implies that

d2(wn, x∗) ≤ d2(xn, x∗) – κ
(
d2(xn, yn) + d2(wn, yn)

)
. (3.17)

Let x∗ ∈ 	 and from Algorithm 3.1, Lemma 2.11(i), (3.17), and the multivalued nonexpan-
sivity of T we obtain

d
(
xn+1, x∗) = d

(
αnu ⊕ (1 – αn)

(
βnhn ⊕ (1 – βn)wn

)
, x∗)

≤ αnd
(
u, x∗) + (1 – αn)d

(
βnhn ⊕ (1 – βn)wn, x∗)

≤ αnd
(
u, x∗) + (1 – αn)

[
βnd

(
hn, x∗) + (1 – βn)d

(
wn, x∗)]

≤ αnd
(
u, x∗) + (1 – αn)

[
βnH

(
Twn, Tx∗) + (1 – βn)d

(
wn, x∗)]

= αnd
(
u, x∗) + (1 – αn)d

(
wn, x∗)

≤ αnd
(
u, x∗) + (1 – αn)d

(
xn, x∗)

≤ max
{

d
(
u, x∗), d

(
xn, x∗)}

...

≤ max
{

d
(
u, x∗), d

(
x1, x∗)}. (3.18)

Therefore, {xn} is bounded. It follows also that {wn} and {yn} are bounded.
From Algorithm 3.1, Lemma 2.11(ii), Lemma 3.4, and (3.17), we obtain that

d2(xn+1, x∗)

= d2(αnu ⊕ (1 – αn)
(
βnhn ⊕ (1 – βn, )wn, x∗)

≤ αnd2(u, x∗) + (1 – αn)d2(βnhn ⊕ (1 – βn, )wn, x∗)

– αn(1 – αn)d2(u,βnhn ⊕ (1 – βn, )wn
)

≤ αnd2(u, x∗) + (1 – αn)
[
βnd2(hn, x∗) + (1 – βn, )d2(wn, x∗) – βn(1 – βn)d2(hn, wn)

]

– αn(1 – αn)
[
βnd2(u, hn) + (1 – βn, )d2(u, wn) – βn(1 – βn)d2(hn, wn)

]

≤ αnd2(u, x∗)

+ (1 – αn)
[
βnH2(Twn, Tx∗) + (1 – βn, )d2(wn, x∗) – βn(1 – βn)d2(hn, wn)

]

– αn(1 – αn)
[
βnd2(u, hn) + (1 – βn, )d2(u, wn)

]
– βn(1 – βn)d2(hn, wn)]

≤ αnd2(u, x∗) + (1 – αn)
[
d2(wn, x∗) – βn(1 – βn)d2(hn, wn)

]

≤ αnd2(u, x∗)

+ (1 – αn)
[

d2(xn, x∗) –
(

1 –
μλn

λn+1

)
d2(xn, yn) –

(
1 –

μλn

λn+1

)
d2(wn, yn)

]

– (1 – αn)βn(1 – βn)d2(hn, wn). (3.19)
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This implies from (3.19) that

d2(hn, wn) ≤ αnd2(u, x∗)
(1 – αn)βn(1 – βn)

+
[d2(xn, x∗) – d2(xn+1, x∗)]

(1 – αn)βn(1 – βn)
. (3.20)

We next divide the rest of the proof into two cases:
Case 1: Assume that {d2(xn, x∗)} is a monotone nondecreasing sequence. Then,

{d2(xn, x∗)} is convergent and

lim
n→∞

(
d2(xn, x∗) – d2(xn+1, x∗)) = 0. (3.21)

Then, by this fact and the condition on αn, we obtain that

lim
n→∞ d2(hn, wn) = 0. (3.22)

From (3.19) we have

(1 – αn)
[(

1 –
μλn

λn+1

)
d2(xn, yn) –

(
1 –

μλn

λn+1

)
d2(wn, yn)

]

≤ αnd2(u, x∗) + d2(xn, x∗) – d2(xn+1, x∗).

This implies that

lim
n→∞ d2(xn, yn) = d2(wn, yn) = 0. (3.23)

We obtain from (3.23) that

d(xn, wn) ≤ d(xn, yn) + d(yn, wn) −→ 0. (3.24)

Also, from (3.22) and (3.23) we obtain that

d(hn, xn) ≤ d(hn, wn) + d(wn, xn) −→ 0. (3.25)

Again, from (3.22), (3.24), and (3.25), we have

dist(wn, Twn) ≤ d(wn, xn) + d(xn, hn) + dist(hn, Twn)

≤ d(wn, xn) + d(xn, hn) + d(hn, wn) −→ 0. (3.26)

By the nonexpansivity of T , (3.25), and (3.26), we obtain

dist(xn, Txn) ≤ d(xn, wn) + dist(wn, Twn) + H(Twn, Txn)

≤ 2d(xn, wn) + dist(wn, Twn) −→ 0. (3.27)

From Algorithm 3.1 and Lemma 2.11(i), we obtain

d(xn+1, xn) ≤ αnd(u, xn) + (1 – αn)βnd(hn, xn) + (1 – αn)(1 – βn)d(wn, xn).
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Hence, from (3.24), (3.25), and the condition on αn, we have

lim
n→∞ d(xn+1, xn) = 0. (3.28)

Since {xn} is bounded, by Lemma 2.10 there exists a subsequence {xnk } of the sequence
{xn} such that �-limn→∞ xnk = z for some z ∈ C. Then, it follows from (3.25) and the demi-
closedness property of T that z ∈ F(T).

From Algorithm 3.1, wn solves the subproblem (3.2). By letting v = twn ⊕ (1 – t)y such
that t ∈ [0, 1) and y ∈ C, we have

f (yn, wn) +
1

2λn
d2(xn, wn)

≤ f (yn, v) +
1

2λn
d2(xn, v)

≤ f
(
yn, twn ⊕ (1 – t)y

)
+

1
2λn

d2(xn, twn ⊕ (1 – t)y
)

≤ tf (yn, wn) + (1 – t)f (yn, y) +
1

2λn

{
td2(xn, wn) + (1 – t)d2(xn, y)

– t(1 – t)d2(wn, y)
}

. (3.29)

By a similar approach as in (3.8)–(3.10), we have from (3.29) that

f (yn, wn) – f (yn, y) ≤ 1
2λn

{
d2(xn, y) – d2(xn, wn) – td2(wn, y)

}
. (3.30)

If t → 1–, we obtain that

f (yn, wn) – f (yn, y) ≤ 1
2λn

{
d2(xn, y) – d2(xn, wn) – d2(wn, y)

}
. (3.31)

This implies from (3.31) that

f (yn, y) ≥ 1
2λn

{
d2(xn, wn) + d2(wn, y) – d2(xn, y)

}
+ f (yn, wn), (3.32)

which by quasilinearization properties is equivalent to

f (yn, y) ≥ 1
λn

〈−→wny,−−→xnwn〉 + f (yn, wn). (3.33)

Thus, from (3.23), (3.24), and λn > 0 we have that f (yn, y) ≥ 0. Since {xn} is �-convergent
to z, by the fact that f (yn, y) ≥ 0 and Assumption (A3), we conclude that f (z, y) ≥ 0. Thus,
z ∈ EP(f , C). Hence, z ∈ 	. Now, let sn = βnhn ⊕ (1 – βn)wn, then by Lemma 2.11(i), (3.24),
and (3.25) we have that

d(sn, xn) ≤ βnd(hn, xn) + (1 – βn)d(wn, xn) −→ 0. (3.34)



Aremu et al. Fixed Point Theory Algorithms Sci Eng          (2023) 2023:4 Page 15 of 22

Since {xn} is bounded, we can choose a subsequence {xnk } of {xn} that is �-convergent to
z ∈ 	 such that

lim sup
n→∞

〈−→uû,
−→
xnû〉 = lim

k→∞
〈−→uû,

−−→
xnk û〉 = 〈−→uû,

−→
zû〉.

Then, by Lemma 2.13, we obtain

lim sup
n→∞

〈−→uû,
−→
xnû〉 = 〈−→uû,

−→
zû〉 ≤ 0. (3.35)

Furthermore, by quasilinearization properties, we have

〈−→uû,
−→
snû〉 = 〈−→uû,−−→snxn〉 + 〈−→uû,

−→
xnû〉

≤ d(u, û)d(sn, xn) + 〈−→uû,
−→
xnû〉. (3.36)

Thus, from (3.34) and (3.35), we obtain that

lim sup
n→∞

〈−→uû,
−→
snû〉 ≤ 0. (3.37)

Also, by the condition on αn and inequality (3.37), we obtain

lim sup
n→∞

[
αnd2(u, û) + 2(1 – αn)〈−→uû,

−→
snû〉] ≤ 0. (3.38)

Furthermore, we obtain from Algorithm 3.1, (3.18), Lemma 3.4, and Lemma 2.11(iii) that

d2(xn+1, û) ≤ α2
nd2(u, û) + (1 – αn)2d2(sn, û) + 2αn(1 – αn)〈−→uû,

−→
snû〉

≤ α2
nd2(u, û) + (1 – αn)2[βnd2(hn, û) + (1 – βn)d2(wn, û)

]

+ 2αn(1 – αn)〈−→uû,
−→
snû〉

≤ α2
nd2(u, û) + (1 – αn)2[βnH2(Twn, Tû) + (1 – βn)d2(wn, û)

]

+ 2αn(1 – αn)〈−→uû,
−→
snû〉

≤ α2
nd2(u, û) + (1 – αn)2d2(wn, û) + 2αn(1 – αn)〈−→uû,

−→
snû〉

≤ α2
nd2(u, û) + (1 – αn)2d2(xn, û) + 2αn(1 – αn)〈−→uû,

−→
snû〉

≤ (1 – αn)d2(xn, û) + αn
(
αnd2(u, û) + 2(1 – αn)〈−→uû,

−→
snû〉). (3.39)

Therefore, from (3.38) and (3.39), we conclude by Lemma 2.16 that {xn} converges strongly
to û = P	û.

Case 2: Suppose that {d2(xn, û)} is not a monotone decreasing sequence, then there exists
a subsequence {d2(xnk , û)} of {d2(xn, û)} such that d2(xnk , û) ≤ d2(xnk +1, û), ∀k ∈ N. Then,
by Lemma 2.17, there exists a nondecreasing sequence {mk} ⊆N such that mk → ∞ and

d2(xmk , û) < d2(xmk +1, û) and d2(xk , û) < d2(xk+1, û), k ∈N. (3.40)
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Thus, from Algorithm 3.1, Lemma 2.11(i), and (3.18), we have

0 ≤ lim
k→∞

(
d2(xmk +1, û) – d2(xmk , û)

)

≤ lim sup
n→∞

(
d2(xn+1, û) – d2(xn, û)

)

≤ lim sup
n→∞

(
αnd2(u, û) + (1 – αn)d2(sn, û) – d2(xn, û)

)

≤ lim sup
n→∞

(
αnd2(u, û) + (1 – αn)

[
βnd2(hn, û) + (1 – βn)d2(wn, û)

]
– d2(xn, û)

)

≤ lim sup
n→∞

(
αnd2(u, û) + (1 – αn)

[
βnH2(Twn, Tû) + (1 – βn)d2(wn, û)

]
– d2(xn, û)

)

≤ lim sup
n→∞

(
αnd2(u, û) + (1 – αn)d2(wn, û) – d2(xn, û)

)

≤ lim sup
n→∞

αn
(
d2(u, û) – d2(xn, û)

)
= 0.

This implies that

lim
k→∞

(
d
(
xmk+1, x∗) – d

(
xmk , x∗)) = 0.

From (3.34), this implies that limk→∞ d(smk , xmk ) = 0. Hence, by this fact and αmk → 0, we
have

d(xmk +1, xmk ) ≤ αmk d(u, xmk ) + (1 – αnk )d(smk , xnk) −→ 0. (3.41)

Following the same argument as in Case 1, we obtain

lim
k→∞

〈−→uû,
−−→
smk û〉 ≤ 0

and

lim
k→∞

[
αmk d2(u, û) + 2(1 – αmk )〈−→uû,

−−→
smk û〉] ≤ 0. (3.42)

Hence, from (3.39), we obtain

d2(xmk +1, û) ≤ (1 – αmk )d2(xmk , û) + αmk

(
αmk d2(u, û) + 2(1 – αmk )〈−→uû,

−→
snû〉).

In addition, from (3.40), we have that

d2(xmk , û) ≤ d2(xmk +1, û),

which implies that

lim
k→∞

d2(xmk , û) = 0.

Thus, from Cases 1 and 2, we conclude that {xn} converges strongly to û = P	û. This com-
pletes the proof. �
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4 Numerical example
In this section, we present a numerical experiment to demonstrate the performance of our
method. All codes were written in MATLAB 2020 on a Dell Core i5 PC.

Example 4.1 Let Y := {(x, ex) : x ∈ R} and Xn := {(n, y) : y ≥ en} for each n ∈ Z. Set X :=
Y ∪ ⋃

n∈Z Xn equipped with a metric d : X × X → [0,∞), defined for all x = (x1, x2), y =
(y1, y2) ∈ X by

d(x, y) =

⎧
⎨

⎩

∫ y1
x1

‖γ̇ (t)‖2 dt + |x2 – ex1 | + |y2 – ey1 | if x1 �= y1,

|x2 – y2| if x1 = y1,
(4.1)

where γ̇ is the derivative of the curve γ : R → X given as γ (t) := (t, et) for each t ∈ R (see
[5]). Then, (X, d) is a Hadamard space.

Now, let T : X → CB(X) be defined by Tx = {(–x1, e–x1 ), (0, 0)} for all x = (x1, x2) ∈ X.
Clearly, F(T) = {(0, 0)} and also satisfies the end-point condition. We check that T is non-
expansive. Indeed, for each (x1, x2), (y1, y2) ∈ X, we have

dist
((

x1, ex1
)
, Ty

)
= inf

{
d
((

x1, ex1
)
,
(
–y1, e–y1

))
, d

(
(0, 0),

(
x1, ex1

))}
.

However,

d
((

x1, ex1
)
,
(
–y1, e–y1

))
=

⎧
⎨

⎩

∫ x1
–y1

‖γ̇ (t)‖2 dt + |e–y1 – e–y1 | + |ex1 – ex1 | if x1 �= y1,

|e–y1 – ex1 | if x1 = y1

=

⎧
⎨

⎩

∫ x1
–y1

‖γ̇ (t)‖2 dt if x1 �= y1,

|e–y1 – ex1 | if x1 = y1,

and

d
(
(0, 0),

(
x1, ex1

))
=

⎧
⎨

⎩

∫ x1
0 ‖γ̇ (t)‖2 dt + |0 – e0| + |ex1 – ex1 | if x1 �= 0,

ex1 if x1 = 0

=

⎧
⎨

⎩

∫ x1
0 ‖γ̇ (t)‖2 dt + 1 if x1 �= 0,

1 if x1 = 0.

Therefore,

dist
((

x1, ex1
)
, Ty

)
= d

((
x1, ex1

)
,
(
–y1, e–y1

))
.

Also,

dist
(
(0, 0), Ty

)
= inf

{
d
(
(0, 0),

(
–y1, e–y1

))
, d

(
(0, 0), (0, 0)

)}

= d
(
(0, 0), (0, 0)

)
.
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Similarly,

dist
((

y1, ey1
)
, Tx

)
= inf

{
d
((

y1, ey1
)
,
(
–x1, e–x1

))
, d

(
(0, 0),

(
y1, ey1

))}

= d
((

y1, ey1
)
,
(
–x1, e–x1

))

and

dist
(
(0, 0), Tx

)
= inf

{
d
(
(0, 0),

(
–x1, e–x1

))
, d

(
(0, 0), (0, 0)

)}

= d
(
(0, 0), (0, 0)

)
.

Hence,

H(Tx, Ty) = max
{

sup
a∈Tx

dist(a, Ty), sup
b∈Ty

dist(b, Tx)
}

= max
{
sup

{
d
((

–x1, e–x1
)
,
(
–y1, e–y1

))
, d

(
(0, 0), (0, 0)

)}
,

sup
{

d
((

–y1, e–y1
)
,
(
–x1, e–x1

))
, d

(
(0, 0), (0, 0)

)}}

= d
((

–x1, e–x1
)
,
(
–y1, e–y1

))

=

⎧
⎨

⎩

∫ –y1
–x1

‖γ̇ (t)‖2 dt if x1 �= y1(x1 > y1),

|e–x1 – e–y1 | if x1 = y1

=

⎧
⎨

⎩

∫ –x1
–y1

‖γ̇ (t)‖2 dt if x1 �= y1(x1 < y1),

|e–y1 – e–x1 | if x1 = y1

≤ d(x, y).

Therefore, T is a multivalued nonexpansive mapping.
Furthermore, let P(n,R) be the space of (n × n) positive symmetric definite matrices

endowed with the Riemannian metric

〈A, B〉E := Tr
(
E–1AE–1B

)
,

for all A, B ∈ TE(P(n,R)) and every E ∈ P(n,R). The pair (P(n,R), 〈A, B〉E) is a Hadamard
space (see [27]). Let R+ be the set of positive real numbers. Now, consider the space P(n,R)
such that n = 1 with an inner product 〈a, b〉λ = 1

λ2 ab for λ > 0 and a, b ∈ TλR
+ = R. Let

(X, d) be a metric space with X = R
+ and d : X × X →R be defined by

d(a, b) = | ln a – ln b|,

with the geodesic between a, b ∈ X defined as γ (κ) = a( b
a )κ . Therefore, the pair (X, d) is a

CAT(0) space with the geodesic between a and b given as

lnγ (κ) = ln a
(

b
a

)κ

= ln a + κ(ln b – ln a) = (1 – κ) ln a + κ ln b. (4.2)
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Now, let f : X × X → R be bifunctions defined by f (x, y) = ln x(ln y
x ). From (4.2), we have

that

f
(
x,γ (κ)

)
= ln x

(
ln

γ (κ)
x

)
= (1 – κ) ln x

(
ln

a
x

)
+ κ ln x

(
ln

b
x

)

= (1 – κ)f (x, a) + κf (x, b).

Clearly, the bifunction f satisfies assumptions (A1) and (A2). Next, we show that f satisfies
assumption (A3). Let x, y, z ∈ X, then

f (x, y) + f (y, z) – f (x, z) = ln x
(

ln
y
x

)
+ ln y

(
ln

z
y

)
– ln x

(
ln

z
x

)
(4.3)

= ln x
(

ln
y
x

– ln
z
x

)
+ ln y

(
ln

z
y

)
(4.4)

= ln x
(

ln
y
z

)
– ln y

(
ln

y
z

)
(4.5)

= | ln x – ln y|| ln y – ln z| (4.6)

= d(x, y)d(y, z) (4.7)

≥ –
1
2

d(x, y)d(y, z) (4.8)

≥ –
1
2

d(x, y) –
1
2

d(y, z).

Hence, f satisfies the Lipschitz-type condition with Lipschitz constants c1 = c2 = 1
2 . More-

over,

f (x, y) + f (y, x) = ln x
(

ln
y
x

)
+ ln y

(
ln

x
y

)
(4.9)

= ln x
(

ln
y
x

)
– ln y

(
ln

y
x

)
(4.10)

=
(

ln
x
y

)(
ln

y
x

)
(4.11)

= –
(

ln
x
y

)2

≤ 0.

Hence, f is monotone (and thus pseudomonotone).
For the sake of numerical computation, we choose αn = 1

n+1 , βn = 2n
5n+3 , λ0 = 0.9, μ = 0.6,

u =
√

3
3 ; for Algorithm EA, we choose y0 = 1

33 , λn = 1
2c1

; for Algorithm EAL, we take δ = 0.4,
λn = 1

2c1
, αn = 1

n+1 , and in addition for Algorithm HEAL, we take βn = 2n
5n+5 . We compute

the algorithms for three different points. The stopping criteria used for the algorithms
is Err = ‖xn – yn‖ < 10–6. The numerical results are shown in Table 1 and Figs. 1–3. The
numerical computation shows that our proposed algorithm successfully approximates the
common solution of the pseudomonotone equilibrium problem and the fixed point of a
nonexpansive mapping. Furthermore, it performs better than the other methods in the
literature in terms of number of iterations and CPU time taken for the computation.
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Table 1 Computational result for Example 4.1

Case I (x0 =
√
3) Case II (x0 = 5) Case III (x0 = 11)

SAEA algorithm Iter. 4 5 7
Time (s) 0.0190 0.0157 0.0328

EA algorithm Iter. 24 37 24
Time (s) 0.0911 0.1591 0.0880

EAL algorithm Iter. 37 29 42
Time (s) 0.1562 0.0775 0.1664

HEAL algorithm Iter. 11 10 10
Time (s) 0.0548 0.0289 0.0518

Figure 1 Example 4.1, Case I

Figure 2 Example 4.1, Case II

5 Conclusion
In this paper, we studied a self-adaptive extragradient algorithm for approximating a com-
mon solution of a pseudomonotone equilibrium problem and fixed-point problem for a
multivalued nonexpansive mapping in Hadamard spaces. We proposed an algorithm and
obtained strong convergence without prior knowledge of the Lipschitz constants of the
pseudomonotone bifunction. Furthermore, we provide a numerical experiment to demon-
strate the efficiency of our algorithm. Our result extends and complements recent results
in the literature.
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Figure 3 Example 4.1, Case III
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