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Abstract
Inspired by the work of Jachymski, we slightly extend some fixed point theorems with
a graph and show that some best proximity point theorems for α-ψ -contraction
mappings of Jleli and Samet can be deduced by our results.
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1 Introduction
Let f be a mapping on a nonempty set X. We say that z ∈ X is a fixed point of f if z = fz.
In 1922, Banach established one of the most famous fixed point theorems, namely the
Banach contraction principle (see [2]), which has been generalized in many directions
(for examples, see [1, 3, 6, 7]).

Let A, B be nonempty subsets of a metric space (X, d) and T : A → B. We say that z ∈ A is
a best proximity point of T if d(z, Tz) = d(A, B). Note that if A∩B �= ∅, then a best proximity
point becomes a fixed point.

In this paper, we slightly extend some fixed point theorems with a graph, which were
introduced by Jachymski [4], and show that some best proximity point theorems for α-ψ-
contraction mappings of Jleli and Samet (see Theorems 3.1, 3.2 and 3.3 in [5]) can be
deduced by our results.

The following two theorems were proved by Jachymski in 2008.

Theorem J1 Let (X, d) be a complete metric space, f : X → X be a mapping and G be a
directed graph. Suppose that

(A1) for any sequence {xn} in X if limn xn = x for some x ∈ X and (xn, xn+1) ∈ E(G) for all
n ≥ 1, then there exists a subsequence {xnk } of {xn} such that (xnk , x) ∈ E(G) for all
k ≥ 1.

Assume that f satisfies the followings:
(1) For all x, y ∈ X if (x, y) ∈ E(G), then (fx, fy) ∈ E(G);
(2) There is λ ∈ (0, 1) such that for all x, y ∈ X if (x, y) ∈ E(G), then d(fx, fy) ≤ λd(x, y).

Then Fix(f ) := {x : x = fx} �= ∅ if and only if Xf := {x : (x, fx) ∈ E(G)} �= ∅.

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13663-023-00745-y
https://crossmark.crossref.org/dialog/?doi=10.1186/s13663-023-00745-y&domain=pdf
mailto:ardsalee.p@msu.ac.th
http://creativecommons.org/licenses/by/4.0/


Ardsalee Fixed Point Theory Algorithms Sci Eng          (2023) 2023:6 Page 2 of 9

Theorem J2 Let (X, d) be a complete metric space, f : X → X be a mapping and G be a
directed graph. Suppose that

(A2) f is orbitally G-continuous.
Assume that f satisfies the followings:

(1) For all x, y ∈ X if (x, y) ∈ E(G), then (fx, fy) ∈ E(G);
(2) There is λ ∈ (0, 1) such that for all x, y ∈ X if (x, y) ∈ E(G), then d(fx, fy) ≤ λd(x, y).

Then Fix(f ) �= ∅ if and only if Xf �= ∅.

2 Basics concepts and notations
Let X be a nonempty set and � := {(x, x) : x ∈ X}. In this paper, a directed graph G on X
means the set of its vertices V (G) is X and the set of its edges E(G) is a subset of X × X
and we assume that � ⊂ E(G) and G has no parallel edges.

Let G be a directed graph. The conversion of G, denoted by G–1, is the graph such that
V (G–1) = V (G) and E(G–1) = {(x, y) : (y, x) ∈ E(G)}. The undirected graph obtained from
G, denoted by ˜G, is the graph such that V (˜G) = V (G) and E(˜G) = E(G) ∪ E(G–1).

For x, y ∈ V (G), a path in a directed graph G from x to y of length N is a sequence {xi}N
i=0

such that x0 = x, xN = y and (xi–1, xi) ∈ E(G) for i = 1, 2, . . . , N .
A directed graph G is connected if every pair of vertices has a path. A directed graph G

is weakly connected if ˜G is connected.
The following definition was introduced by Jachymski.

Definition 2.1 ([4]) Let (X, d) be a metric space and G be a directed graph. A mapping f :
X → X is called orbitally G-continuous if for all x, y ∈ X and any sequence {kn} of positive
integers

lim
n

f kn x = y
(

f kn x, f kn+1 x
) ∈ E(G) for all n > 0

⎫

⎬

⎭

⇒ lim
n

f
(

f kn x
)

= fy.

By using the concept of orbitally G-continuity of f , we slightly extend Theorems J1 and
J2 by weakening the continuity of f and the completeness of (X, d).

Definition 2.2 Let (X, d) be a metric space and G be a directed graph. A mapping f : X →
X is called weakly orbitally G-continuous if for all x, y ∈ X,

lim
n

f nx = y
(

f nx, f n+1x
) ∈ E(G) for all n > 0

⎫

⎬

⎭

⇒ lim
n

f
(

f nx
)

= fy.

The following example shows that there is a weakly orbitally G-continuous mapping
which is not orbitally G-continuous.

Example 2.1 Let X = [0,∞) with the usual metric | · |. Let G be a directed graph on X with
E(G) = � ∪ {(x, y) : x, y ∈ (0, 1)}. Suppose f : X → X is a mapping defined by

f (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1/2 if x = 0 or x = 1,

1/x if 0 < x < 1,

1/x2 if x > 1.
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Since there is no x ∈ X such that (f nx, f n+1x) ∈ E(G) for all n > 0, we have that f is weakly
orbitally G-continuous.

Note that limn f 2n+1(1) = 0 and (f 2n+1(1), f 2n+3(1)) ∈ E(G) for all n > 0 but limn f (f 2n+1(1))
does not exist. That is, f is not orbitally G-continuous.

Definition 2.3 Let (X, d) be a metric space and f : X → X be a mapping. Let G be a di-
rected graph. We say that (X, d) is weakly (f , G)-orbitally complete if for all x ∈ X,

{

f nx
}

is Cauchy
(

f nx, f n+1x
) ∈ E(G) for all n > 0

⎫

⎬

⎭

⇒ lim
n

f nx = y for some y ∈ X.

3 Main results
We denote by � the set of nondecreasing functions ψ : [0,∞) → [0,∞) such that
∑∞

n=1 ψn(t) < ∞ for all t > 0.

Lemma 3.1 Let ψ ∈ � . Then the followings hold:
(1) ψ(t) < t for all t > 0;
(2) ψ(0) = 0.

Proof (2) follows immediately from (1) and a proof of (1) can be found in [8]. �

Lemma 3.2 Let (X, d) be a metric space with a directed graph G and f be a self-mapping
on X. If Fix(f ) �= ∅, then Xf �= ∅.

Proof Assume Fix(f ) �= ∅. Let z ∈ X such that z = fz. Since E(G) contains all loops, we get
(z, fz) ∈ E(G), that is, z ∈ Xf . �

Theorem 3.1 Let (X, d) be a metric space and G be a directed graph. Suppose that
(A1) for any sequence {xn} in X if limn xn = x for some x ∈ X and (xn, xn+1) ∈ E(G) for all

n ≥ 1, then there exists a subsequence {xnk } of {xn} such that (xnk , x) ∈ E(G) for all
k ≥ 1.

Suppose that f : X → X and ψ ∈ � satisfy the followings:
(1) For all x, y ∈ X if (x, y) ∈ E(G), then (fx, fy) ∈ E(G);
(2) For all x, y ∈ X if (x, y) ∈ E(G), then d(fx, fy) ≤ ψ(d(x, y)).

Suppose that X is weakly (f , G)-orbitally complete. Then Fix(f ) �= ∅ if and only if Xf �= ∅.

Proof It follows immediately from Lemma 3.2 that Fix(f ) �= ∅ implies Xf �= ∅. On the other
hand, we assume that there is x0 ∈ X such that (x0, fx0) ∈ E(G). For each n ≥ 1, we have
(f nx0, f n+1x0) ∈ E(G) which implies that d(f n+1x0, f n+2x0) ≤ ψ(d(f nx0, f n+1x0)). Since ψ is
nondecreasing, d(f nx0, f n+1x0) ≤ ψn(d(x0, fx0)). Then

∞
∑

n=1

d
(

f nx0, f n+1x0
) ≤

∞
∑

n=1

ψn(d(x0, fx0)
)

< ∞

which implies that {f nx0} is a Cauchy sequence. Note that X is weakly (f , G)-orbitally com-
plete. Therefore, there is z ∈ X such that limn f nx0 = z. By Condition (A1), there exists a
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subsequence {f nk x0} of {f nx0} such that (f nk x0, z) ∈ E(G) for all k ≥ 1. By Condition (2) and
Lemma 3.1, it follows that

d
(

f nk +1x0, fz
) ≤ ψ

(

d
(

f nk x0, z
)) ≤ d

(

f nk x0, z
)

.

Therefore, d(z, fz) = limk d(f nk +1x0, fz) ≤ limk d(f nk x0, z) = 0, that is, z ∈ Fix(f ). �

Theorem 3.2 Let (X, d) be a metric space and G be a directed graph. Let f : X → X be a
mapping such that

(A2∗) f is weakly orbitally G-continuous.
Let ψ ∈ � . Suppose that f and ψ satisfy the followings:

(1) For all x, y ∈ X if (x, y) ∈ E(G), then (fx, fy) ∈ E(G);
(2) For all x, y ∈ X if (x, y) ∈ E(G), then d(fx, fy) ≤ ψ(d(x, y)).

Suppose that X is weakly (f , G)-orbitally complete. Then Fix(f ) �= ∅ if and only if Xf �= ∅.

Proof Let x0 ∈ X such that (x0, fx0) ∈ E(G). By following the proof of Theorem 3.1, we have
that limn f nx0 = z for some z ∈ X. Since the condition (A2∗) holds, we get z = limn f n+1x0 =
fz and this completes the proof. �

Remark 3.1 Theorems 3.1 and 3.2 extend Theorems J1 and J2 as follows:
1. The orbitally G-continuity of f in Theorem J2 implies that f is weakly orbitally

G-continuous in Theorem 3.2;
2. The completeness of (X, d) implies that X is weakly (f , G)-orbitally complete;
3. In Theorems J1 and J2, if we put ψ(t) = λt for all t ∈ [0,∞), then ψ ∈ � .

Inspired by the work of Jachymski (see [4, Theorem 3.1]), the following theorem char-
acterizes the uniqueness of a fixed point (if it exists) of a mapping in a metric space with
a directed graph.

Theorem 3.3 Let (X, d) be a metric space and G be a directed graph. The followings are
equivalent:

(1) G is weakly connected;
(2) For any f : X → X with limn d(f nx, f ny) = 0 whenever (x, y) ∈ E(G), card(Fix(f )) ≤ 1.

Proof (1)⇒(2): We assume that G is weakly connected. Let f : X → X be a mapping such
that limn d(f nx, f ny) = 0 whenever (x, y) ∈ E(G). Let u and v be two fixed points of f , that
is, u = fu and v = fv. Since G is weakly connected, there is a path {xi}N

i=0 of length N such
that

x0 = u, xN = v and (xi–1, xi) ∈ E(˜G) for all i = 1, 2, . . . , N .

Therefore,

d(u, v) = lim
n

d
(

f nu, f nv
) ≤ lim

n

N
∑

i=1

d
(

f nxi–1, f nxi
)

= 0.

That is, card(Fix(f )) ≤ 1.
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(2)⇒(1): Suppose that G is not weakly connected. Then there are x, y ∈ X such that there
is no path from x to y in ˜G. Note that x �= y. We define f : X → X by for all w ∈ X

fw =

⎧

⎨

⎩

x if there exists a path in ˜G from w to x;

y otherwise.

Note that x and y are two different fixed points of f . Let (u, v) ∈ E(G). Then fu = fv = x or
fu = fv = y which implies that limn d(f nu, f nv) = 0. This completes the proof. �

4 Discussion on best proximity fixed point results for α-ψ -proximal contrative
type mappings

In this section, we discuss some best proximity fixed point results for α-ψ-proximal con-
trative type mappings of of Jleli and Samet in [5] that can be deduced by our results.

Let A and B be two nonempty subsets of a metric space (X, d). We recall the following
notations:

d(A, B) := inf
{

d(a, b) : a ∈ A, b ∈ B
}

;

A0 :=
{

a ∈ A : d(a, b) = d(A, B) for some b ∈ B
}

;

B0 :=
{

b ∈ B : d(a, b) = d(A, B) for some a ∈ A
}

.

Definition 4.1 ([5]) Let A and B be two nonempty subsets of a metric space (X, d). Then
the pair (A, B) is said to have the P-property if

d(x1, y1) = d(x2, y2) = d(A, B) ⇒ d(x1, x2) = d(y1, y2),

where x1, x2 ∈ A and y1, y2 ∈ B.

Definition 4.2 ([5]) Let A and B be two nonempty subsets of a metric space (X, d). Let
T : A → B and α : A × A → [0,∞). We say that T is α-proximal admissible if

α(x1, x2) ≥ 1

d(u1, Tx1) = d(u2, Tx2) = d(A, B)

⎫

⎬

⎭

⇒ α(u1, u2) ≥ 1

for all x1, x2, u1, u2 ∈ A.

Definition 4.3 ([5]) Let A and B be two nonempty subsets of a metric space (X, d). Let T :
A → B and α : A × A → [0,∞) and ψ ∈ � . We say that T is an α-ψ-proximal contraction
if

α(x, y)d(Tx, Ty) ≤ ψ
(

d(x, y)
)

for all x, y ∈ A.

Definition 4.4 ([5]) Let A and B be two nonempty subsets of a metric space (X, d). Let T :
A → B and α : A × A → [0,∞). We say that T is (α, d)-regular if for all (x, y) ∈ α–1([0, 1)),
there exists z ∈ A0 such that

α(x, z) ≥ 1 and α(y, z) ≥ 1.
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The following three theorems were proved by Jleli and Samet in 2013.

Theorem JS1 Let A, B be nonempty closed subsets of a complete metric space (X, d) such
that A0 is nonempty. Let α : A × A → [0,∞) and ψ ∈ � . Suppose that T : A → B satisfies
the followings:

(B1) T(A0) ⊂ B0 and (A, B) satisfies the P-property;
(B2) T is α-proximal admissible;
(B3) T is an α-ψ-proximal contraction;
(B4) There are u, v ∈ A0 such that d(v, Tu) = d(A, B) and α(u, v) ≥ 1;
(B5) If {xn} is a sequence in A such that α(xn, xn+1) ≥ 1 for all n > 0 and limn xn → x ∈ A,

then there is a subsequence {xnk } of {xn} such that α(xnk , x) ≥ 1 for all k > 0.
Then there is z ∈ A0 such that d(z, Tz) = d(A, B).

Theorem JS2 Let A, B be nonempty closed subsets of a complete metric space (X, d) such
that A0 is nonempty. Let α : A × A → [0,∞) and ψ ∈ � . Suppose that T : A → B satisfies
the followings:

(B1) T(A0) ⊂ B0 and (A, B) satisfies the P-property;
(B2) T is α-proximal admissible;
(B3) T is an α-ψ-proximal contraction;
(B4) There are u, v ∈ A0 such that d(v, Tu) = d(A, B) and α(u, v) ≥ 1;

(B5′) T is continuous.
Then there is z ∈ A0 such that d(z, Tz) = d(A, B).

Theorem JS3 Let A, B be nonempty subsets of a metric space (X, d) such that A0 is
nonempty. Let α : A × A → [0,∞) and ψ ∈ � . Suppose that T : A → B satisfies the fol-
lowings:

(B1) T(A0) ⊂ B0 and (A, B) satisfies the P-property;
(B2) T is α-proximal admissible;
(B3) T is an α-ψ-proximal contraction.

If T is (α, d)-regular, then T has at most one best proximity point.

To show that Theorems JS1, JS2 and JS3 are the consequences of our Theorems 3.1, 3.2
and 3.3, respectively, we need the following lemmas.

Lemma 4.1 Let (X, d) be a metric space. Let A, B ⊂ X such that A0 is nonempty and (A, B)
has the P-property. Suppose that T : A → B is a mapping such that T(A0) ⊂ B0. Then, for
each x ∈ A0, the set {u ∈ A0 : d(u, Tx) = d(A, B)} is a singleton set.

Proof Let x ∈ A0. Put P := {u ∈ A0 : d(u, Tx) = d(A, B)}. Since T(A0) ⊂ B0, P is nonempty.
Let u1, u2 ∈ P. Then d(u1, Tx) = d(u2, Tx) = d(A, B). Since (A, B) satisfy the P-property, we
get d(u1, u2) = d(Tx, Tx) = 0, that is, u1 = u2. �

Lemma 4.2 Let A, B be nonempty subsets of a metric space (X, d) such that A0 is nonempty.
Let α : A × A → [0,∞) and ψ ∈ � . Suppose that T : A → B satisfies the followings:

(B1) T(A0) ⊂ B0 and (A, B) satisfies the P-property;
(B2) T is α-proximal admissible;
(B3) T is an α-ψ-proximal contraction.
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Let f : A0 → A0 be defined by for each x ∈ A0

fx = u where u ∈ A0 with d(u, Tx) = d(A, B)

and G0 a directed graph defined by V (G0) = A0 and

E(G0) =
{

(x, y) ∈ A0 × A0 : α(x, y) ≥ 1
} ∪ {

(x, x) : x ∈ A0
}

.

Then f and G0 satisfy the followings:
(1) f is well-defined;
(2) For all x, y ∈ X if (x, y) ∈ E(G0), then (fx, fy) ∈ E(G0);
(3) For all x, y ∈ X if (x, y) ∈ E(G0), then d(fx, fy) ≤ ψ(d(x, y)).

Proof It follows from Lemma 4.1 that f is well-defined.
To see (2), let (x, y) ∈ E(G0). If x = y, then fx = fy which implies that (fx, fy) ∈ E(G0).

Otherwise, we assume that α(x, y) ≥ 1. Note that d(fx, Tx) = d(fy, Ty) = d(A, B) and T is
α-proximal admissible. We have α(fx, fy) ≥ 1, which implies that (fx, fy) ∈ E(G0).

To see (3), let (x, y) ∈ E(G0). If x = y, then d(fx, fy) = 0 = ψ(d(x, y)). Otherwise, we assume
that α(x, y) ≥ 1. Note that d(fx, Tx) = d(fy, Ty) = d(A, B). Since T is an α-ψ-proximal con-
traction and (A, B) satisfies the P-property, we get d(fx, fy) = d(Tx, Ty) ≤ α(x, y)d(Tx, Ty) ≤
ψ(d(x, y)), as desired. �

Lemma 4.3 Let A, B be nonempty closed subsets of a metric space (X, d) such that A0 is
nonempty. Suppose that T : A → B satisfies T(A0) ⊂ B0 and (A, B) satisfies the P-property.
Let f : A0 → A0 be defined by for each x ∈ A0

fx = u where u ∈ A0 with d(u, Tx) = d(A, B).

Then for each z ∈ A0, z = fz if and only if d(z, Tz) = d(A, B).

Proof It obtains immediately by the definition of f . �

The following is a proof of Theorem JS1 using our Theorem 3.1.

Proof of Theorem JS1 Let all assumptions in Theorem JS1 be satisfied. We define a map-
ping f : A0 → A0 and a graph G0 as in Lemma 4.2. Then f and G0 satisfy the conditions
(1) and (2) in Theorem 3.1.

To see that the metric space (A0, d) with the directed graph G0 satisfies Condition (A1) in
Theorem 3.1, let {xn} be a sequence in A0 with limn xn = x for some x ∈ A0 and (xn, xn+1) ∈
E(G0) for all n ≥ 1. If {n : α(xn, xn+1) ≥ 1} is finite, then there is N ≥ 1 such that, for each
n ≥ N , xn = x, that is, (xn, x) ∈ E(G0). Otherwise, we assume that {n : α(xn, xn+1) ≥ 1} is
infinite. Note that α(xn, xn+1) ≥ 1 whenever xn �= xn+1. Then there is a subsequence {̃xn} of
{xn} such that α(̃xn, x̃n+1) ≥ 1 for all n ≥ 1. By the condition (B5), there is a subsequence
{̃xnk } of {̃xn} such that, for each k ≥ 1, α(̃xnk , x) ≥ 1, that is, (̃xnk , x) ∈ E(G0).

We now show that (A0, d) is weakly (f , G0)-orbitally complete. Let x ∈ A0. Assume
that {f nx} is Cauchy and (f nx, f n+1x) ∈ E(G0) for all n ≥ 1. Since X is complete and A
is closed, there is z ∈ A such that limn f nx = z. If {n : α(f nx, f n+1x) ≥ 1} is finite, then



Ardsalee Fixed Point Theory Algorithms Sci Eng          (2023) 2023:6 Page 8 of 9

there is N ≥ 1 such that f nx = z for all n ≥ N , that is, z ∈ A0. Otherwise,we assume that
{n : α(f nx, f n+1x) ≥ 1} is infinite. Using Condition (B5), there is a subsequence {f nk x} of
{f nx} such that α(f nk x, z) ≥ 1 for all k ≥ 1. Then we have

d
(

Tf nk x, Tz
) ≤ α

(

f nk x, z
)

d
(

Tf nk x, Tz
) ≤ ψ

(

d
(

f nk x, z
)) ≤ d

(

f nk x, z
)

.

We get limk Tf nk x = Tz. By the definition of f , d(f nk +1x, Tf nk x) = d(A, B) for all k ≥ 1.
Therefore,

d(z, Tz) = lim
k

d
(

f nk +1x, Tf nk x
)

= d(A, B).

That is z ∈ A0.
Finally, we show that {x : (x, fx) ∈ E(G0)} �= ∅. Since d(v, Tu) = d(A, B) and α(u, v) ≥ 1, we

have v = fu and hence (u, fu) ∈ E(G0). By using our Theorem 3.1, there is p ∈ A0 such that
p = fp. By Lemma 4.3, we have d(p, Tp) = d(A, B), as desired. �

The following is a proof of Theorem JS2 via Theorem 3.2.

Proof of Theorem JS2 Let all assumptions in Theorem JS2 be satisfied. We define a map-
ping f : A0 → A0 and a graph G0 as in Lemma 4.2. Then we have f and G0 satisfy (1) and
(2) in Theorem 3.2.

To see that f satisfies Condition (A2∗) in Theorem 3.2, let x, y ∈ A0 such that limn f nx = y
and (f nx, f n+1x) ∈ E(G0) for all n ≥ 1. Note that d(fw, Tw) = d(A, B) for all w ∈ A0. Since
(A, B) has the P-property and T is continuous,

lim
n

d
(

f
(

f nx
)

, fy
)

= lim
n

d
(

T
(

f nx
)

, Ty
)

= 0.

Finally, we show that (A0, d) is weakly (f , G0)-orbitally complete. Let x ∈ A0. Assume that
{f nx} is Cauchy and (f nx, f n+1x) ∈ E(G0) for all n ≥ 1. Since X is complete and A is closed,
there is z ∈ A such that limn f nx = z. By the continuity of T , we have limn T(f nx) = Tz. This
implies that

d(z, Tz) = lim
n

d
(

f
(

f nx
)

, T
(

f nx
))

= d(A, B).

That is z ∈ A0. Note that Condition (B4) implies (u, fu) ∈ E(G0). By using Theorem 3.2,
there is p ∈ A0 such that p = fp which implies that d(p, Tp) = d(A, B). �

Finally, we show a proof of Theorem JS3 by using our Theorem 3.3.

Proof of Theorem JS3 We assume that all the assumptions hold and suppose that T
is (α, d)-regular. We define the mapping f : A0 → A0 and the directed graph G0 as in
Lemma 4.2. Since T is (α, d)-regular, we obtain immediately that G0 is weakly connected.
Note that for each (x, y) ∈ E(G0),

(fx, fy) ∈ E(G0) and d(fx, fy) ≤ ψ
(

d(x, y)
)

.
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Therefore,

lim
n

d
(

f nx, f ny
) ≤ lim

n
ψn(d(x, y)

)

= 0.

By Theorem 3.3, we have card(Fix(f )) ≤ 1. Using Lemma 4.3, T has at most one best prox-
imity point. The proof is complete. �
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