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Abstract
In this paper, we introduce fuzzy generalized β-F-contractions as a generalization of
fuzzy F-contractions with admissible mappings. We deduce sufficient conditions for
the existence and uniqueness of fixed points for fuzzy generalized β-F-contractions
in complete strong fuzzy metric spaces. Our results generalize several fixed-point
results from the literature. We present an application of our main result.
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1 Introduction and preliminary results
Fixed point theory was initiated by Banach [1] with his celebrated Banach contraction
principle in 1922. It has been generalized into many directions by mathematicians (see
[2]) and served as an important tool to solve problems in various fields (see [3–5], and
[6]). Inspired by the concept of fuzzy set by Zadeh [7], Kramosil and Michálek [8] defined
fuzzy metric spaces as a generalization of probabilistic metric spaces. Later, George and
Veeramani [9] modified the notion of a fuzzy metric space to obtain Hausdorff topology.
The study of fixed-point theorems in fuzzy metric space was initiated by Grabiec [10]. He
introduced a fuzzy version of the Banach contraction principle in a fuzzy metric space.
Subsequently, mathematicians proposed various contractive conditions and studied the
existence of fixed points of these contractions in fuzzy metric spaces. For example, see
[11–14], and [15].

In 2012, Wardowski [16] introduced the concept of an F-contraction as a new type of
contraction in complete metric spaces. After that, several mathematicians extended F-
contractions to various spaces (see [17–23], and [24]). Recently, Huang et al. [25] intro-
duced fuzzy F-contractions, a generalization of F-contractions with simpler conditions in
fuzzy metric spaces and presented some fixed-point theorems for fuzzy F-contractions.
Recent works related to fuzzy F-contractions can be found in [26–28], and references
therein. Samet et al. [29] introduced the notion of an α-admissible contractive mapping
and proved some fixed-point theorems in the setting of metric spaces. Gopal and Vetro
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[30] adopted the idea and introduced α-admissible and β-admissible fuzzy contractive
mappings, which generalized some fixed-point results in fuzzy metric spaces.

In this paper, motivated by the works of Gopal and Vetro [30] and Huang et al. [25],
we introduce generalized fuzzy F-contractions with admissible property in a fuzzy metric
space. We prove some fixed point theorems for such types of contractive mappings and
provide an application to illustrate our results.

Before we proceed to our main results, we recall some definitions and notions that will
be used throughout the rest of the paper.

Definition 1 ([31]) A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous triangular
norm (t-norm for short) if the following conditions hold:

T1. a ∗ 1 = a for all a ∈ [0, 1];
T2. ∗ is associative and commutative;
T3. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, where a, b, c, d ∈ [0, 1];
T4. ∗ is continuous.

Some commonly seen continuous t-norms are min{a, b}, a · b, and max{a + b – 1, 0}.

Definition 2 ([9]) The 3-tuple (X, M,∗) is said to be a fuzzy metric space if X is an ar-
bitrary nonempty set, ∗ is a continuous t-norm, and M is a fuzzy set on X × X × (0,∞)
satisfying the following conditions:

FMS1. M(x, y, t) > 0;
FMS2. M(x, y, t) = 1 if and only if x = y;
FMS3. M(x, y, t) = M(y, x, t);
FMS4. M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s);
FMS5. M(x, y, ·) : (0,∞) → (0, 1] is continuous

for all x, y ∈ X.

In the definition above, if we replace the triangular inequality with the condition
FMS4*. M(x, z, t) ≥ M(x, y, t) ∗ M(y, z, t) for all x, y, z ∈ X and t > 0,

then (X, M,∗) is called a strong fuzzy metric space.

Definition 3 ([9]) Let (X, M,∗) be a fuzzy metric space, and let {xn} be a sequence in X.
Then

1. {xn} is convergent if there exists x ∈ X such that limn→∞ M(xn, x, t) = 1 for all t > 0;
2. {xn} is a Cauchy sequence if for all ε ∈ (0, 1) and t > 0, there exists n0 ∈N such that

M(xn, xm, t) > 1 – ε for all n, m ≥ n0;
3. (X, M,∗) is complete if every Cauchy sequence is convergent.

Remark 1 George and Veeramani [9] mentioned that for a fuzzy metric space (X, M,∗),
{xn} converges to x ∈ X if and only if limn→∞ xn = x.

For the rest of this paper, we denote by F the class of all mappings F : [0, 1] → R such
that for all x, y ∈ [0, 1], x < y implies Fx < Fy. In other words, F is strictly increasing on
[0, 1].
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Definition 4 ([25]) Let (X, M,∗) be a fuzzy metric space, and let F ∈ F . The mapping
g : X → X is said to be a fuzzy F-contraction if there exists τ ∈ (0, 1) such that

τ · F
(
M(gx, gy, t)

) ≥ F
(
M(x, y, t)

)

for all x, y ∈ X such that x �= y and t > 0.

Definition 5 ([30]) A mapping g : X → X is said to be a β-admissible mapping if there
exists a function β : X × X × (0,∞) → (0,∞) such that for all x, y ∈ X and t > 0,

β(x, y, t) ≤ 1 ⇒ β(gx, gy, t) ≤ 1.

The rest of the paper is organized as follows. In Sect. 2, we present our main results
of fuzzy generalized β-F-contraction mappings in a fuzzy metric space together with an
example. Next, we provide an application of our result in finding the solution of the integral
equation in Sect. 3. Finally, Sect. 4 concludes the paper.

2 Main results
We start this section by defining fuzzy generalized β-F-contraction.

Definition 6 Let (X, M,∗) be a fuzzy metric space. Let β : X × X × (0,∞) → (0,∞) be
a function, and let F ∈ F . A function g : X → X is said to be a fuzzy generalized β-F-
contraction if there exists τ ∈ (0, 1) such that for all x, y ∈ X, x �= y, and t > 0,

τ · β(x, y, t) · F
(
M(gx, gy, t)

) ≥ F
(
N(x, y, t)

)
, (1)

where N(x, y, t) = min{M(x, y, t), M(x, gx, t), M(y, gy, t)}.

Definition 7 Let (X, M,∗) be a fuzzy metric space. Let β : X × X × (0,∞) → (0,∞) be a
function, and let F ∈F . A function g : X → X is said to be a fuzzy β-F-contraction if there
exists τ ∈ (0, 1) such that for all x, y ∈ X, x �= y, and t > 0,

τ · β(x, y, t) · F
(
M(gx, gy, t)

) ≥ F
(
M(x, y, t)

)
. (2)

If in Definition 6 we take N(x, y, t) = M(x, y, t) for all x, y ∈ X and t > 0, then we obtain
Definition 7. Therefore we can say that a fuzzy β-F-contraction is a fuzzy generalized
β-F-contraction. However, the converse is false. Furthermore, if we let β(x, y, t) = 1 for all
x, y ∈ X, x �= y, and t > 0, then we obtain Definition 4.

Theorem 1 Let (X, M,∗) be a complete strong fuzzy metric space, and let g : X → X be
a fuzzy generalized β-F-contraction, where F ∈ F . Assume that the following conditions
hold:

1. g is β-admissible;
2. there exists x0 ∈ X such that β(x0, gx0, t) ≤ 1 for all t > 0;
3. for each sequence {xn} in X such that β(xn, xn+1, t) ≤ 1 for all n ∈N∪ {0} and t > 0,

there exists k0 ∈N∪ {0} such that β(xm, xn, t) ≤ 1 for all n > m ≥ k0 and t > 0;
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4. if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈N∪ {0} and t > 0 and if
xn → x as n → ∞, then β(xn, x, t) ≤ 1 for all n ∈N∪ {0}.

Then g has a fixed point.

Proof Let x0 ∈ X be such that β(x0, gx0, t) ≤ 1 for all t > 0. We define a sequence {xn} by
xn+1 = gxn for all n ∈ N ∪ {0}. If there exists n ∈ N ∪ {0} such that xn+1 = xn, then xn is a
fixed point of g , and the proof is complete. Now assume that xn �= xn+1 for all n ∈ N ∪ {0}.
Since β(x0, gx0, t) = β(x0, x1, t) ≤ 1 for all t > 0 and g is β-admissible mapping, this implies
that

β(gx0, gx1, t) = β(x1, x2, t) ≤ 1.

Continuing this process, we conclude that β(xn, xn+1, t) ≤ 1 for all n ∈ N ∪ {0} and t > 0.
Since g is a fuzzy generalized β-F-contraction, there exists τ ∈ (0, 1) satisfying (1). It is
clear that τβ(xn, xn+1, t) < 1 for all n ∈ N ∪ {0} and t > 0. Now substituting x = xn–1 and
y = xn, we get

F
(
M(xn, xn+1, t)

)
= F

(
M(gxn–1, gxn, t)

)
> τβ(xn–1, xn, t)F

(
M(gxn–1, gxn, t)

)

≥ F
(
N(xn–1, xn, t)

)

for all t > 0, where

N(xn–1, xn, t) = min
{

M(xn–1, xn, t), M(xn–1, gxn–1, t), M(xn, gxn, t)
}

= min
{

M(xn–1, xn, t), M(xn–1, xn, t), M(xn, xn+1, t)
}

= min
{

M(xn–1, xn, t), M(xn, xn+1, t)
}

.

If min{M(xn–1, xn, t), M(xn, xn+1, t)} = M(xn, xn+1, t), then

F
(
M(xn, xn+1, t)

)
> τβ(xn–1, xn, t)F

(
M(xn, xn+1, t)

) ≥ F
(
M(xn, xn+1, t)

)
,

which leads to a contradiction. So we have min{M(xn–1, xn, t), M(xn, xn+1, t)} = M(xn–1, xn, t)
and

F
(
M(xn, xn+1, t)

)
> τβ(xn–1, xn, t)F

(
M(xn, xn+1, t)

) ≥ F
(
M(xn–1, xn, t)

)
, (3)

which implies

F
(
M(xn, xn+1, t)

)
> F

(
M(xn–1, xn, t)

)
.

Since F is a strictly increasing function, we get M(xn, xn+1, t) > M(xn–1, xn, t) for all n ∈
N ∪ {0} and t > 0. Hence for all t > 0, the sequence {M(xn, xn+1, t)} is strictly increasing in
the interval [0, 1] and bounded above. This implies that {M(xn, xn+1, t)} is convergent, that
is, for any t > 0, there exists A(t) ∈ [0, 1] such that limn→∞ M(xn, xn+1, t) = A(t). We claim
that A(t) = 1 for all t > 0. Suppose that A(t0) < 1 for some t0 > 0. Taking the limit in both
sides of (3), we obtain

F
(
A(t0)

)
> τβ(xn–1, xn, t0)F

(
A(t0)

) ≥ F
(
A(t0)

)
,
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which leads to a contraction. Therefore we have

lim
n→∞ M(xn, xn+1, t) = 1 (4)

for all t > 0. Now we will show that {xn} is a Cauchy sequence. Suppose that {xn} is not a
Cauchy sequence. Then by condition 3 there exist k0 ∈ N ∪ {0}, ε > 0, two subsequences
{xnk }, {xmk } of {xn}, and s > 0 such that nk > mk ≥ k for all k ∈N∪ {0} with k ≥ k0 and

M(xnk , xmk , s) ≤ 1 – ε and β(xnk , xmk , t) ≤ 1.

Let nk be the smallest integer that satisfies the above inequality. Then

M(xnk –1, xmk , s) > 1 – ε.

Since (X, M,∗) is a strong fuzzy metric space, by (FMS4*) we have

1 – ε ≥ M(xnk , xmk , s) ≥ M(xnk , xnk –1, s) ∗ M(xnk –1, xmk , s)

≥ M(xnk , xnk –1, s) ∗ (1 – ε).

Taking the limit as k → ∞, by (4) and (T1) we obtain

1 – ε ≥ lim
k→∞

M(xnk , xmk , s) ≥ 1 ∗ (1 – ε)

= 1 – ε.

This implies that limk→∞ M(xnk , xmk , s) = 1 – ε. Again, by (FMS4*) we get

M(xnk +1, xmk +1, s) ≥ M(xnk +1, xnk , s) ∗ M(xnk , xmk , s) ∗ M(xmk , xmk +1, s).

Letting k → ∞, by (4) and (T1) we have

lim
k→∞

M(xnk +1, xmk+1, s) = 1 ∗ (1 – ε) ∗ 1

= 1 – ε.

Since τ < 1 and β(xnk , xmk , t) ≤ 1 for all k ∈ N ∪ {0} with k ≥ k0, this implies that
τβ(xnk , xmk , t) < 1 for all k ∈N∪ {0} such that k ≥ k0. Using (1), we get

F
(
M(xnk +1, xmk+1, s)

)
> τβ(xnk , xmk , s)F

(
M(xnk +1, xmk +1, s)

)

≥ F
(
N(xnk , xmk , s)

)
,

(5)

where

N(xnk , xmk , s) = min
{

(M(xnk , xmk , s), M(xnk , xnk +1, s), M(xmk , xmk +1, s)
}

.
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Letting k → ∞, we get

lim
k→∞

N(xnk , xmk , s) = min
{

lim
k→∞

M(xnk , xmk , s), lim
k→∞

M(xnk , xnk +1, s),

lim
k→∞

M(xmk , xmk +1, s)
}

= min{1 – ε, 1, 1}
= 1 – ε.

Therefore letting k → ∞ in both sides of (5), we obtain

F(1 – ε) ≥ τβ(xnk , xmk , s)F(1 – ε) ≥ F(1 – ε).

This implies that F(1 – ε) = 0, which contradicts the fact that F(1 – ε) > 0. Thus
{xn} is a Cauchy sequence. Since (X, M,∗) is complete, there exists x ∈ X such that
limn→∞ M(xn, x, t) = 1 for all t > 0 or, in other words, limn→∞ xn = x. Since β(xn, xn+1, t) ≤ 1
for all n ∈N∪ {0} and t > 0, by condition 4 we have β(xn, x, t) ≤ 1 for all n ∈N∪ {0}. Now
we will show that x is a fixed point of g . Suppose that gx �= x, i.e., M(x, gx, t) < 1. Then by
(1) we obtain

F
(
M(gxn, gx, t)

)
> τβ(xn, x, t)F

(
M(gxn, gx, t)

) ≥ F
(
N(xn, x, t)

)

for all t > 0, where

N(xn, x, t) = min
{

M(xn, x, t), M(xn, gxn, t), M(x, gx, t)
}

= min
{

M(xn, x, t), M(xn, xn+1, t), M(x, gx, t)
}

.

Letting n → ∞ in this inequality, we have

F
(
M(x, gx, t)

)
> τβ(xn, x, t)F

(
M(x, gx, t)

)

≥ F
(
min

{
1, 1, M(x, gx, t)

})
= F

(
M(x, gx, t)

)
,

which leads to a contradiction. Thus gx = x, which means that x is a fixed point of g . �

Corollary 1 Let (X, M,∗) be a complete strong fuzzy metric space, and let g : X → X be a
fuzzy β-F-contraction, where F ∈F . Assume that the following conditions hold:

1. g is β-admissible;
2. there exists x0 ∈ X such that β(x0, gx0, t) ≤ 1 for all t > 0;
3. for each sequence {xn} in X such that β(xn, xn+1, t) ≤ 1 for all n ∈N∪ {0} and t > 0,

there exists k0 ∈N∪ {0} such that β(xm, xn, t) ≤ 1 for all n > m ≥ k0 and t > 0;
4. if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈N∪ {0}, t > 0 and if

xn → x as n → ∞, then β(xn, x, t) ≤ 1 for all n ∈N∪ {0}.
Then g has a fixed point.

Proof Letting N(x, y, t) = M(x, y, t) in (1), the remaining proof follows the same lines as
Theorem 1. �
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Remark 2 Huang et al. [25] mentioned that their results are applicable to strong fuzzy
metric spaces. Therefore, if we let β(x, y, t) = 1 for all x, y ∈ X and t > 0 in the corollary
above, then we obtain the main results of Huang et al. [25] in the context of strong fuzzy
metric spaces. Hence we successfully generalize some fixed point results in the existing
literature.

Now we provide examples to illustrate Theorem 1.

Example 1 Let X be a set of positive real numbers. Let ∗ be a product continuous t-norm,
that is, a ∗ b = a · b for all a, b ∈ X. We define a fuzzy set as follows:

M(x, y, t) =

⎧
⎨

⎩

x
y , x ≤ y,
y
x , y ≤ x,

for x, y ∈ X and t > 0. We can easily verify that (X, M,∗) is a complete strong fuzzy metric
space. Let g(x) = 1/x for all x ∈ X, and let F(y) = ln(y) for 0 < y ≤ 1 and τ = 1/2. Also, define

β(x, y, t) =

⎧
⎨

⎩

1
2 , x ≤ y,

1, y ≤ x.

First of all, we show that g is a β-admissible mapping. Let x, y ∈ X be such that β(x, y, t) =
1/2 ≤ 1. Then x ≤ y, which implies that g(x) = 1/x ≥ 1/y = g(y). It follows that β(gx, gy, t) =
1 ≤ 1. Now suppose β(x, y, t) = 1 ≤ 1, which means that y ≤ x, and thus g(y) = 1/y ≥ 1/x =
g(x). It follows that β(gx, gy, t) = 1/2 ≤ 1. Thus g is a β-admissible mapping. Next, we
proceed to check whether the contractive condition of Theorem 1 is satisfied or not. Let
x, y ∈ X. We will consider the following cases.

Case 1 x ≤ y where x ≥ 1. We have 1 ≤ x ≤ y, gx = 1
x ≤ x, gy = 1

y ≤ y, x2 ≤ y2, and

N(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t)
}

= min

{
x
y

,
1
x
x

,
1
y

y

}

= min

{
x
y

,
1
x2 ,

1
y2

}

=
1
y2 .

This implies that

τ · β(x, y, t) · F
(
M(gx, gy, t)

)
= τ · β(x, y, t) · F

( 1
y
1
x

)

= τ · β(x, y, t) · F
(

x
y

)

=
1
2

· 1
2

· ln

(
x
y

)
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Figure 1 The plane in blue color represents the left-hand
side of the inequality, and the plane in orange color
represents the right-hand side of the inequality

=
1
4

ln

(
x
y

)

≥ ln

(
x
y

)

≥ ln

(
x
y2

)

≥ ln

(
1
y2

)
.

Figure 1 shows the illustration of Case 1 on 3D view.

Case 2 y ≤ x where y ≥ 1. We have 1 ≤ y ≤ x, gx = 1
x ≤ x, gy = 1

y ≤ y, y2 ≤ x2, and

N(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t)
}

= min

{
y
x

,
1
x
x

,
1
y

y

}

= min

{
y
x

,
1
x2 ,

1
y2

}

=
1
x2 .

This implies that

τ · β(x, y, t) · F
(
M(gx, gy, t)

)
= τ · β(x, y, t) · F

( 1
x
1
y

)

= τ · β(x, y, t) · F
(

y
x

)

=
1
2

· 1 · ln

(
y
x

)

=
1
2

ln

(
y
x

)

≥ ln

(
y
x

)
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Figure 2 The plane in blue color represents the left-hand
side of the inequality, and the plane in orange color
represents the right-hand side of the inequality

≥ ln

(
y
x2

)

≥ ln

(
1
x2

)
.

Figure 2 shows the illustration of Case 2 on 3D view.

Case 3 x ≤ y where y < 1. We have x ≤ y < 1, gx = 1
x ≥ x, gy = 1

y ≥ y, y2 ≥ x2, and

N(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t)
}

= min

{
x
y

,
x
1
x

,
y
1
y

}

= min

{
x
y

, x2, y2
}

= x2.

This implies that

τ · β(x, y, t) · F
(
M(gx, gy, t)

)
= τ · β(x, y, t) · F

( 1
y
1
x

)

= τ · β(x, y, t) · F
(

x
y

)

=
1
2

· 1
2

· ln

(
x
y

)

=
1
4

ln

(
x
y

)

≥ ln

(
x
y

)

≥ ln

(
x2

y

)

≥ ln
(
x2).
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Figure 3 The plane in blue color represents the left-hand
side of the inequality, and the plane in orange color
represents the right-hand side of the inequality

Figure 3 shows the illustration of Case 3 on 3D view.

Case 4 y ≤ x where x < 1. We have y ≤ x < 1, gx = 1
x ≥ x, gy = 1

y ≥ y, x2 ≥ y2 and

N(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t)
}

= min

{
y
x

,
x
1
x

,
y
1
y

}

= min

{
y
x

, x2, y2
}

= y2.

This implies that

τ · β(x, y, t) · F
(
M(gx, gy, t)

)
= τ · β(x, y, t) · F

( 1
x
1
y

)

= τ · β(x, y, t) · F
(

y
x

)

=
1
2

· 1 · ln

(
y
x

)

=
1
2

ln

(
y
x

)

≥ ln

(
y
x

)

≥ ln

(
y2

x

)

≥ ln
(
y2).

Figure 4 shows the illustration of Case 4 on 3D view.

Case 5 x ≤ y where x < 1 and y ≥ 1. We have gx = 1
x ≥ 1 > x, gy = 1

y ≤ 1 ≤ y, and

N(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t)
}
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Figure 4 The plane in blue color represents the left-hand
side of the inequality, and the plane in orange color
represents the right-hand side of the inequality

= min

{
x
y

,
x
1
x

,
1
y

y

}

= min

{
x
y

, x2,
1
y2

}
.

This implies that

τ · β(x, y, t) · F
(
M(gx, gy, t)

)
= τ · β(x, y, t) · F

( 1
y
1
x

)

= τ · β(x, y, t) · F
(

x
y

)

=
1
2

· 1
2

· ln

(
x
y

)

=
1
4

ln

(
x
y

)

≥ ln

(
x
y

)

≥ ln
(
N(x, y, t)

)
.

Figure 5 shows the illustration of Case 5 on 3D view.

Case 6 y ≤ x where y < 1 and x ≥ 1. We have gx = 1
x ≤ 1 ≤ x, gy = 1

y ≥ 1 > y, and

N(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t)
}

= min

{
y
x

,
1
x
x

,
y
1
y

}

= min

{
y
x

,
1
x2 , y2

}
.

This implies that

τ · β(x, y, t) · F
(
M(gx, gy, t)

)
= τ · β(x, y, t) · F

( 1
x
1
y

)
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Figure 5 The plane in blue color represents the left-hand
side of the inequality, and the plane in orange color
represents the right-hand side of the inequality

Figure 6 The plane in blue color represents the left-hand
side of the inequality, and the plane in orange color
represents the right-hand side of the inequality

= τ · β(x, y, t) · F
(

y
x

)

=
1
2

· 1 · ln

(
y
x

)

=
1
2

ln

(
y
x

)

≥ ln

(
y
x

)

≥ ln
(
N(x, y, t)

)
.

Figure 6 shows the illustration of Case 6 on 3D view.

Hence all the conditions in Theorem 1 are satisfied. Therefore g has a fixed point. In
fact, we can see that 1 ∈ X is a fixed point of g .

The following example shows that the assumption “strong” in Theorem 1 is not super-
fluous.

Example 2 Let X = [0,∞), and let ∗ be a minimum continuous t-norm. We define the
fuzzy set M by

M(x, y, t) =
t

t + |x – y|
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for x, y ∈ X and t > 0. Then (X, M,∗) is a complete but not strong fuzzy metric space. For
instance, take x = 3, y = 0.5, z = 8, and t = 3. Then we have M(x, z, t) = M(3, 8, 3) = 0.2857,
M(x, y, t) = M(3, 0.5, 3) = 0.5455, and M(y, z, t) = M(0.5, 8, 3) = 0.375. Checking with con-
dition FMS4*, it is clear that on the right-hand side, we get

M(x, y, t) ∗ M(y, z, t) = min
{

M(x, y, t), M(y, z, t)
}

= min{0.5455, 0.375}
= 0.375.

However, 0.2857 � 0.375. Therefore (X, M,∗) is not strong. Now define the mapping g :
X → X by

g(x) =

⎧
⎨

⎩
x + 1, x ∈ [0, 1],
√

x, x ∈ (1,∞),

for x ∈ X. Let F(y) = y for y ∈ [0, 1], and let τ = 9/10. Also, define β : X × X × (0,∞) →
(0,∞) as

β(x, y, t) =

⎧
⎨

⎩
2, x, y ∈ [0, 1],

1 otherwise,

for x, y ∈ X and t > 0. It is easy to show that g is a fuzzy generalized F-contraction and
conditions 1, 2, 3, and 4 of Theorem 1 hold. Observe that the mapping g does not have
any fixed point.

In [25] the following theorem is obtained using Definition 4.

Theorem 2 ([25]) Let (X, M,∗) be a complete fuzzy metric space such that

lim
t→0+

M(x, y, t) > 0

for all x, y ∈ X. If g : X → X is a continuous fuzzy F-contraction, then g has a unique fixed
point.

The following example shows that Theorem 1 we obtained above is applicable but not
Theorem 2 in [25].

Example 3 Let X = [0,∞), and let ∗ be a product continuous t-norm. We define the fuzzy
set M by

M(x, y, t) = e
–|x–y|

t

for x, y ∈ X, and t > 0. Then (X, M,∗) is a complete strong fuzzy metric space.
Define the self-mapping g : X → X by

g(x) =

⎧
⎨

⎩

1
4 x2, x ∈ [0, 1],

4x, x ∈ (1,∞),
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for x ∈ X. Let F(y) = –1
ln(y) for 0 < y ≤ 1, and let τ = 1/2. Also, let β : X ×X × (0,∞) → (0,∞)

be defined as

β(x, y, t) =

⎧
⎨

⎩

1
2 , x, y ∈ [0, 1],

3 otherwise,

for t > 0. It is clear that g is a fuzzy generalized β-F-contraction. Let x, y ∈ X be such that
β(x, y, t) ≤ 1. Based on the definition of β , it follows that x, y ∈ [0, 1]. In the case where
x ∈ [0, 1], we have x2 ≤ x, which implies

0 ≤ 1
4

x2 ≤ 1
4

x ≤ x ≤ 1.

Thus by the definition of g we obtain gx, gy ∈ [0, 1], which means that β(gx, gy, t) = 1
2 ≤ 1.

This shows that g is β-admissible. In addition, there exists x0 ∈ X such that β(x0, gx0, t) ≤ 1
for all t > 0. Indeed, let x = 1/2. Then for all t > 0,

β

(
1
2

, g
(

1
2

)
, t

)
= β

(
1
2

,
1

16
, t

)
=

1
2

≤ 1.

Consider a sequence {xn} in X such that β(xn, xn+1, t) ≤ 1 for all n ∈ N ∪ {0} and t > 0
and limn→∞ xn = x. Also, let k0 = 1 where n > m ≥ k0. By the definition of β it follows that
xn ∈ [0, 1] for all n ∈N∪ {0}. Assume that x > 1. Then xn < x, and we get

M(xn, x, t) = e
–|xn–x|

t < e
–1
t < 1

for all n ∈ N ∪ {0} and t > 0, which contradicts the assumption that limn→∞ xn = x. Thus
we have x ∈ [0, 1]. Hence β(xn, x, t) = 1/2 ≤ 1 and β(xn, xm, t) ≤ 1 for all m, n ∈ N ∪ {0}.
Consequently, all the hypotheses in Theorem 1 are satisfied. This implies that g has a fixed
point, which is x = 0.

However, g is not a fuzzy F-contraction. To see this, consider x = 1, y = 400, and t = 30.
It follows that gx = 1/4 and gy = 1600. Checking the inequality in the Definition 4, we have

τ · F
(
M(gx, gy, t)

)
=

1
2

· –1

ln(e
–| 1

4 –1600|
30 )

=
1
2

· 1599.75
30

= 0.0094

on the left-hand side and

F
(
M(x, y, t)

)
=

–1

ln(e
–|1–400|

30 )

=
399
30

= 0.0752
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on the right-hand side. Since 0.0094 � 0.0752, we conclude that Theorem 2 of [25] does
not hold for this example.

In the next theorem, we present a result by using a weaker condition compared with (1).

Theorem 3 Let (X, M,∗) be a complete strong fuzzy metric space with a ∗ b = min{a, b} for
all a, b ∈ [0, 1]. Moreover, let β : X × X × (0,∞) → (0,∞), F ∈ F , and g : X → X be such
that there exists τ ∈ (0, 1) satisfying

τ · β(x, y, t) · F
(
M(gx, gy, t)

) ≥ F
(
N∗(x, y, t)

)
(6)

for all x, y ∈ X and t > 0, where

N∗(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t), M(x, gy, t), M(y, gx, t)
}

.

In addition, assume that the following conditions hold:
1. g is β-admissible;
2. there exists x0 ∈ X such that β(x0, gx0, t) ≤ 1 for all t > 0;
3. for each sequence {xn} in X such that β(xn, xn+1, t) ≤ 1 for all n ∈N∪ {0} and t > 0,

there exists k0 ∈N∪ {0} such that β(xm, xn, t) ≤ 1 for all n > m ≥ k0 and t > 0;
4. if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈N∪ {0} and t > 0 and if

xn → x as n → ∞, then β(xn, x, t) ≤ 1 for all n ∈N∪ {0}.
Then g has a fixed point.

Proof Let x0 ∈ X be such that β(x0, gx0, t) ≤ 1 for all t > 0. We define the sequence {xn} by
xn+1 = gxn for n ∈ N ∪ {0}. If there exists n ∈ N ∪ {0} such that xn+1 = xn, then xn is a fixed
point of g , and the proof is complete. Now assume that xn �= xn+1 for all n ∈ N∪ {0}. Since
β(x0, gx0, t) = β(x0, x1, t) ≤ 1 for all t > 0 and g is β-admissible mapping, this implies that

β(gx0, gx1, t) = β(x1, x2, t) ≤ 1.

Continuing this process, we conclude that β(xn, xn+1, t) ≤ 1 for all n ∈N∪{0} and t > 0. By
the hypothesis there exists τ ∈ (0, 1) that satisfies (6). It is clear that τβ(xn, xn+1, t) < 1 for
all n ∈N∪ {0} and t > 0. Using (6), we have

F
(
M(xn, xn+1, t)

)
= F

(
M(gxn–1, gxn, t)

)
> τβ(xn–1, xn, t)F

(
M(gxn–1, gxn, t)

)

≥ F
(
N∗(xn–1, xn, t)

)

for all t > 0, where

N∗(xn–1, xn, t) = min
{

M(xn–1, xn, t), M(xn–1, gxn–1, t), M(xn, gxn, t),

M(xn–1, gxn, t), M(xn, gxn–1, t)
}

= min
{

M(xn–1, xn, t), M(xn–1, xn, t), M(xn, xn+1, t),

M(xn–1, xn+1, t), M(xn, xn, t)
}

= min
{

M(xn–1, xn, t), M(xn, xn+1, t), M(xn–1, xn+1, t), 1
}

.
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Since the t-norm is minimum, by (FMS4*) we obtain

M(xn–1, xn+1, t) ≥ M(xn–1, xn, t) ∗ M(xn, xn+1, t)

= min
{

M(xn–1, xn, t), M(xn, xn+1, t)
}

.

So we have

N∗(xn–1, xn, t) = min
{

M(xn–1, xn, t), M(xn, xn+1, t)
}

for all n ∈N∪ {0} and t > 0. If min{M(xn–1, xn, t), M(xn, xn+1, t)} = M(xn, xn+1, t), then

F
(
M(xn, xn+1, t)

)
> τβ(xn–1, xn, t)F

(
M(xn, xn+1, t)

) ≥ F
(
M(xn, xn+1, t)

)
,

which leads to a contradiction. So we have min{M(xn–1, xn, t), M(xn, xn+1, t)} = M(xn–1, xn, t)
and

F
(
M(xn, xn+1, t)

)
> τβ(xn–1, xn, t)F

(
M(xn, xn+1, t)

) ≥ F
(
M(xn–1, xn, t)

)
, (7)

which implies

F
(
M(xn, xn+1, t)

)
> F

(
M(xn–1, xn, t)

)
.

Since F is a strictly increasing function, we get M(xn, xn+1, t) > M(xn–1, xn, t)) for all n ∈
N ∪ {0} and t > 0. Hence for all t > 0, the sequence {M(xn, xn+1, t)} is strictly increasing in
the interval [0, 1] and bounded above. This implies that {M(xn, xn+1, t)} is convergent, that
is, for any t > 0, there exists A(t) ∈ [0, 1] such that limn→∞ M(xn, xn+1, t) = A(t). We claim
that A(t) = 1 for all t > 0. Suppose that A(t0) < 1 for some t0 > 0. Taking the limit in both
sides of (7), we obtain

F
(
A(t0)

)
> τβ(xn–1, xn, t)F

(
A(t0)

) ≥ F
(
A(t0)

)
,

which leads to a contradiction. Therefore we have

lim
n→∞ M(xn, xn+1, t) = 1 (8)

for all t > 0. Now we will show that {xn} is a Cauchy sequence. Suppose that {xn} is not a
Cauchy sequence. Then by condition 3 there exist k0 ∈ N ∪ {0}, ε > 0, two subsequences
{xnk }, {xmk } of {xn}, and s > 0 such that nk > mk ≥ k for all k ∈N∪ {0} with k ≥ k0 and

M(xnk , xmk , s) ≤ 1 – ε and β(xnk , xmk , t) ≤ 1.

Let nk be the smallest integer satisfying the above inequality. This means that

M(xnk –1, xmk , s) > 1 – ε.
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Using (FMS4*) and the minimum t-norm, we have

1 – ε ≥ M(xnk , xmk , s) ≥ min
{

M(xnk , xnk –1, s), M(xnk –1, xmk , s)
}

≥ min
{

M(xnk , xnk –1, s), 1 – ε
}

.

Taking the limit as k → ∞, by (8) we obtain

1 – ε ≥ lim
k→∞

M(xnk , xmk , s) ≥ min{1, 1 – ε} = 1 – ε.

This implies that limk→∞ M(xnk , xmk , s) = 1 – ε. Again, by (FMS4*) and minimum t-norm
we get

M(xnk +1, xmk +1, s) ≥ min
{

M(xnk +1, xnk , s), M(xnk , xmk , s), M(xmk , xmk +1, s)
}

.

Letting k → ∞, by (8) we have

lim
k→∞

M(xnk +1, xmk+1, s) = min{1, 1 – ε, 1} = 1 – ε.

Since τ < 1 and β(xnk , xmk , t) ≤ 1 for all k ∈ N ∪ {0} with k ≥ k0, this implies that
τβ(xnk , xmk , t) < 1 for all k ∈N∪ {0} with k ≥ k0. Using (6), we get

F(M(xnk +1, xmk +1, s) > τβ(xnk , xmk , s)F
(
M(xnk +1, xmk +1, s)

)

≥ F
(
N∗(xnk , xmk , s)

)
,

(9)

where

N∗(xnk , xmk , s) = min
{

M(xnk , xmk , s), M(xnk , xnk +1, s), M(xmk , xmk +1, s),

M(xnk , xmk +1, s), M(xmk , xnk +1, s)
}

.

Since

M(xnk , xmk +1, s) ≥ min
{

M(xnk , xmk , s), M(xmk , xmk +1, s)
}

and

M(xmk , xnk +1, s) ≥ min
{

M(xmk , xnk , s), M(xnk , xnk +1, s)
}

,

we have

N∗(xnk , xmk , s) = min
{

(M(xnk , xmk , s), M(xnk , xnk +1, s), M(xmk , xmk +1, s)
}

.

Letting k → ∞, we get

lim
k→∞

N∗(xnk , xmk , s) = min
{

lim
k→∞

M(xnk , xmk , s), lim
k→∞

M(xnk , xnk +1, s),
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lim
k→∞

M(xmk , xmk +1, s)
}

= min{1 – ε, 1, 1}
= 1 – ε.

Therefore taking the limit as k → ∞ in both sides of (9), we obtain

F(1 – ε) ≥ τβ(xnk , xmk , s)F(1 – ε) ≥ F(1 – ε).

This implies that F(1 – ε) = 0, which contradicts the fact that F(1 – ε) > 0. Thus
{xn} is a Cauchy sequence. Since (X, M,∗) is complete, there exists x ∈ X such that
limn→∞ M(xn, x, t) = 1 for all t > 0 or, in other words, limn→∞ xn = x. Together with the
fact that β(xn, xn+1, t) ≤ 1 for all n ∈ N ∪ {0} and t > 0, which we obtained above, by con-
dition 4 we have β(xn, x, t) ≤ 1 for all n ∈N∪ {0}. Now we will show that x is a fixed point
of g . Suppose that gx �= x, that is, M(x, gx, t) < 1. Then by (6) we get

F
(
M(gxn, gx, t)

)
> τβ(xn, x, t)F

(
M(gxn, gx, t)

) ≥ F
(
N∗(xn, x, t)

)

for all t > 0, where

N∗(xn, x, t) = min
{

M(xn, x, t), M(xn, gxn, t), M(x, gx, t), M(xn, gx, t),

M(x, gxn, t)
}

= min
{

M(xn, x, t), M(xn, xn+1, t), M(x, gx, t), M(xn, gx, t),

M(x, xn+1, t)
}

.

Taking the limit as n → ∞ in the inequality above, we have

F
(
M(x, gx, t)

)
> τβ(xn, x, t)F

(
M(x, gx, t)

) ≥ F
(
min

{
1, 1, M(x, gx, t), M(x, gx, t), 1

})

= F
(
M(x, gx, t)

)
,

which leads to a contradiction. Thus gx = x, which means that x is a fixed point of g . �

Remark 3 We can obtain Corollary 1 from Theorem 3 by letting N∗(x, y, t) = M(x, y, t) for
x, y ∈ X and t > 0 in (6).

Remark 4 Note that Example 2 can be used to show that the assumption “strong” in The-
orem 3 is not superfluous.

Note that the results above do not guarantee that the fixed points are unique. To obtain
the uniqueness of the fixed point, we will consider the following condition:

(U) For any pair of fixed points x, y ∈ X , β(x, y, t) ≤ 1 for all t > 0.

Theorem 4 In addition to the hypotheses of Theorem 1, suppose that condition (U) holds.
Then g has a unique fixed point.
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Proof The existence of a fixed point follows from Theorem 1. Assume that x, y ∈ X are
fixed points of g such that x �= y, that is, M(x, y, t) < 1. Considering condition (U), we have
β(x, y, t) ≤ 1 for all t > 0. Since g is a fuzzy generalized β-F-contraction mapping, by (1)
we obtain

F
(
M(gx, gy, t)

)
> τβ(x, y, t)F

(
M(gx, gy, t)

) ≥ F
(
N(x, y, t)

)

for all t > 0, where

N(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t)
}

.

Since gx = x and gy = y, we have

N(x, y, t) = min
{

M(x, y, t), M(x, x, t), M(y, y, t)
}

= min
{

M(x, y, t), 1, 1
}

= min
{

M(x, y, t), 1
}

= M(x, y, t).

It follows that

F
(
M(x, y, t)

)
> F

(
M(x, y, t)

)
,

which leads to a contradiction. Hence we conclude that x = y. �

Corollary 2 In addition to the hypotheses of Corollary 1, suppose that condition (U) holds.
Then g has a unique fixed point.

Theorem 5 In addition to the hypotheses of Theorem 3, suppose that condition (U) holds.
Then g has a unique fixed point.

Proof The existence of fixed point follows from Theorem 3. Assume that x, y ∈ X are a
fixed point of g such that x �= y, that is, M(x, y, t) < 1. By condition (U) we have β(x, y, t) ≤ 1
for all t > 0. By (6) we obtain

F
(
M(gx, gy, t)

)
> τβ(x, y, t)F

(
M(gx, gy, t)

) ≥ F
(
N∗(x, y, t)

)

for all t > 0, where

N∗(x, y, t) = min
{

M(x, y, t), M(x, gx, t), M(y, gy, t), M(x, gy, t), M(y, gx, t)
}

.

Since gx = x and gy = y, we have

N∗(x, y, t) = min
{

M(x, y, t), M(x, x, t), M(y, y, t), M(x, y, t), M(y, x, t)
}

= min
{

M(x, y, t), 1, 1, M(x, y, t), M(x, y, t)
}

= min
{

M(x, y, t), 1
}



Wong et al. Fixed Point Theory Algorithms Sci Eng          (2023) 2023:8 Page 20 of 22

= M(x, y, t).

It follows that

F
(
M(x, y, t)

)
> F

(
M(x, y, t)

)
,

which leads to a contradiction. Hence we conclude that x = y. �

3 Applications
In this section, we present an application of our result in finding the solution for an inte-
gral equation. Let us define the class of functions � := {φ(t) : (0,∞) → (0,∞)} such that
∫ t

0 φ(u) du is increasing and continuous for all t > 0. The following theorem is our fixed-
point result for the Wardowski-type contraction via β-admissible mappings of the integral
type in a fuzzy metric space.

Theorem 6 Let (X, M,∗) be a complete fuzzy metric space, and let g : X → X be a fuzzy
generalized β-F-contraction. Let φ be a mapping in � such that

τβ(x, y, t)
∫ F(M(gy,gy,t))

0
φ(t) dt ≥

∫ F(N(x,y,t))

0
φ(t) dt,

where N(x, y, t) = min{M(x, y, t), M(x, gx, t), M(y, gy, t)} for x, y ∈ X and t > 0. Suppose that
the following conditions hold:

1. g is β-admissible;
2. there exists x0 ∈ X such that β(x0, gx0, t) ≤ 1 for all t > 0;
3. for each sequence {xn} in X such that β(xn, xn+1, t) ≤ 1 for all n ∈N∪ {0} and t > 0,

there exists k0 ∈N∪ {0} such that β(xm, xn, t) ≤ 1 for all n > m ≥ k0 and t > 0;
4. if {xn} is a sequence in X such that β(xn, xn+1, t) ≤ 1 for all n ∈N∪ {0} t > 0 and if

xn → x as n → ∞, then β(xn, x, t) ≤ 1 for all n ∈N∪ {0}.
5. For any pair of fixed points x, y ∈ X , β(x, y, t) ≤ 1 for all t > 0.

Then g has a unique fixed point.

Proof Let φ(t) = 1. Now apply Theorem 1 followed by Theorem 4. Then we obtain the
desired result. �

4 Conclusions
In this paper, we have introduced fuzzy generalized β-F-contractions as an extension of
fuzzy F-contractions. We proved several fixed-point results for this contraction and its
variation under the setting of complete strong fuzzy metric spaces. In addition, we pro-
vided a sufficient condition to obtain the uniqueness of a fixed point for this contraction.
At the end of this paper, we showed an application of our main result in finding the solution
for an integral equation. As mentioned in Remark 2, our work extends and generalizes the
results of [25]. This is supported by Example 3, which shows that our result is applicable,
but not the result in [25].

Since the debut of F-contractions in metric spaces, they received considerable attention
from other researchers. Lately, Gautam et al. [26] introduced Kannan F-contractions as
an extension of F-contractions. They obtained common fixed-point results for Kannan
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F-contractions in quasi-partial b-metric spaces and gave an application of their result in
functional equations. Now, if we consider fuzzy a metric space, it is interesting to see if we
can incorporate Kannan’s contractive condition for fuzzy generalized β-F-contractions.
We will end this paper with an open problem: “Can we obtain the existence and uniqueness
of a fixed point for a Kannan-type fuzzy generalized F-contractive mapping under a fuzzy
metric space setting?”.
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