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Abstract
The goal of this paper is to develop new fixed points for quasi upper semicontinuous
set-valued mappings and compact continuous (single-valued) mappings, and related
applications for useful tools in nonlinear analysis by applying the best approximation
approach for classes of semiclosed 1-set contractive set-valued mappings in locally
p-convex and p-vector spaces for p ∈ (0, 1]. In particular, we first develop general fixed
point theorems for quasi upper semicontinuous set-valued and single-valued
condensing mappings, which provide answers to the Schauder conjecture in the
affirmative way under the setting of locally p-convex spaces and topological vector
spaces for p ∈ (0, 1]; then the best approximation results for quasi upper
semicontinuous and 1-set contractive set-valued mappings are established, which are
used as tools to establish some new fixed points for nonself quasi upper
semicontinuous set-valued mappings with either inward or outward set conditions
under various boundary situations. The results established in this paper unify or
improve corresponding results in the existing literature for nonlinear analysis, and
they would be regarded as the continuation of the related work by Yuan (Fixed Point
Theory Algorithms Sci. Eng. 2022:20, 2022)–(Fixed Point Theory Algorithms Sci. Eng.
2022:26, 2022) recently.
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1 Introduction
It is known that the class of p-seminorm spaces (0 < p ≤ 1) is an important generalization
of the usual normed spaces with rich topological and geometrical structures, and related
studies have received a lot of attention (e.g., see Alghamdi et al. [5], Balachandran [7], Bay-
oumi [8], Bayoumi et al. [9], Bernuées and Pena [13], Chang et al. [26], Ding [34], Ennassik
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and Taoudi [38], Ennassik et al. [37], Gal and Goldstein [45], Gholizadeh et al. [46], Jar-
chow [61], Kalton [62, 63], Kalton et al. [64], Machrafi and Oubbi [82], Park [100], Qiu and
Rolewicz [109], Rolewicz [114], Sezer et al. [119], Silva et al. [123], Simons [124], Tabor et
al. [127], Tan [128], Wang [131], Xiao and Lu [134], Xiao and Zhu [135], Yuan [142–145],
and many others). However, to the best of our knowledge, the corresponding basic tools
and associated results in the category of nonlinear functional analysis have not been well
developed, thus the goal of this paper is to develop some important tools in nonlinear anal-
ysis for semiclosed 1-set contractive mappings under the framework of p-vector spaces, in
particular, in locally p-convex spaces by including nonexpansive set-valued mappings as
a special class under uniformly convex Banach spaces or locally convex spaces with Opial
condition.

In particular, we first develop the general fixed point theorems for upper semicontinuous
(USC) set-valued 1-set contractive mappings, which provide answer to Schauder conjec-
ture since 1930s in the affirmative under the general framework of locally p-convex spaces
(when p = 1 being locally convex spaces), then the best approximation results for upper
semicontinuous and 1-set contractive mappings are given with various boundary condi-
tion, which are used as tools to establish fixed points for nonself set-valued mappings with
either inward or outward set conditions; and finally, we give existence results for solutions
of Birkhoff–Kellogg problems, the general principle of nonlinear alternative by including
Leray–Schauder alternative, and related results as special classes. The results given in this
paper do not only include the corresponding results in the existing literature as special
cases, but also are expected to be useful for the study of nonlinear problems arising from
social science, engineering, applied mathematics, and related topics and areas.

Before discussing the study of best approximations and related nonlinear analysis tools
under the framework of p-vector spaces, we would like first to share with readers that
though most of results in nonlinear analysis are normally highly associated with the con-
vexity hypotheses under the locally convex spaces by including normed spaces, Banach
spaces, and metric spaces special classes, it seems that p-vector spaces provide some nice
properties for p-convex subsets, which would play very important roles for us to describe
Birkhoff and Kellogg problems, and related nonlinear problems such as fixed point prob-
lem comparing with convexity in topological vector spaces (TVS) for p in (0, 1) (see the
properties given by Remark 2.1(1), and Lemma 2.1(ii) in Sect. 2 in detail).

Here, we would also like to recall that the first Birkhoff–Kellogg theorem was proved by
Birkhoff and Kellogg [14] in 1922 in discussing the existence of solutions for the equation
x = λF(x), where λ is a real parameter and F is a general nonlinear nonself mapping defined
on an open convex subset U of a topological vector space E. Thus the general form of the
Birkhoff–Kellogg problem is to find an invariant direction for the nonlinear set-valued
mappings F , i.e., to find x0 ∈ U and λ > 0 such that λx0 ∈ F(x0).

Since the Birkhoff and Kellogg theorem given by Birkhoff and Kellogg in 1920s, the study
on Birkhoff–Kellogg problem has received a lot of attention from scholars. For example,
in 1934, one of the fundamental results in nonlinear functional analysis, famously called
the Leray–Schauder alternative, by Leray and Schauder [76] was established via topologi-
cal degree theory, and thereafter, certain other types of Leray–Schauder alternatives were
proved using different techniques other than by using the topological degree approach (see
the works by Granas and Dugundji [53], Furi and Pera [44] in the Banach space setting and
applications to the boundary value problems for ordinary differential equations in non-
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compact cases, a general class of mappings for nonlinear alternative of Leray–Schauder
type in normal spaces, and Birkhoff–Kellogg type theorems for general class mappings in
topological vector spaces by Agarwal et al. [1], Agarwal and O’Regan [2, 3], Park [98], and
O’Regan [91] (see the related references therein).

In this paper, based on the application of our best approximation as a tool for quasi
upper semicontinuous 1-set contractive set-valued mappings, we first establish general
principles for the existence of solutions for Birkhoff–Kellogg problems and related non-
linear alternatives, which then also allows us to give general existence of Leray–Schauder
type and related fixed point theorems for nonself mappings in general vector p-spaces, in
particular, locally p-convex spaces for p ∈ (0, 1]. The results established in this paper not
only include the corresponding results in the existing literature as special cases, but are
also expected to be useful tools for the study of nonlinear problems arising from theory to
practice under the framework of p-vector spaces. In particular, the work in this paper can
be regarded as the continuation of related work established by Yuan [144, 145] recently.

Now we give a brief discussion and background on the best approximation method re-
lated to the study of nonlinear analysis.

We all know that the best approximation method is related to fixed points for nonself
mappings, which tightly links with the classical Leray–Schauder alternative based on the
Leray–Schauder continuation theorem by Leray and Schauder [76], which is a remark-
able result in nonlinear analysis; in addition, there exist several continuation theorems,
which have many applications in the study of nonlinear functional equations (see O’Re-
gan and Precup [93]). Historically, it seems that the continuation theorem is based on the
idea of obtaining a solution of a given equation, starting from one solution for a simpler
equation, the essential part of this theorem is the “Leray–Schauder boundary condition”.
But indeed, it seems that “continuation method” was initiated by Poincare [107], Bernstein
[12]. Certainly, Leray and Schauder [76] in 1934 gave the first abstract formulation of “con-
tinuation principle” using the topological degree theory (see also Granas and Dugundji
[53], Isac [60], Rothe [115, 116], Zeidler [146]). But in this paper, we will see how the best
approximation method could be used for the study of fixed point theorems in p-vector
space (0 < p ≤ 1), which as a basic tool, will help us to develop the principle of nonlinear
alterative, Leray–Schauder alternative, fixed point theorems of Rothe, Petryshyn, Atlman
type for set-valued nonself mappings, and nonlinear alternative with different boundary
conditions. Moreover, the new results given in this paper are highly expected to become
useful tools for the study on optimization, nonlinear programming, variational inequality,
complementarity, game theory, mathematical economics, and related other social science
area.

It is well known that Fan’s best approximation theorem given by Fan [42] in 1969 acts as
a very powerful tool in nonlinear analysis, as discussed by the book of Singh et al. [125]
for the study on the fixed point theory and best approximation with the KKM-map prin-
ciple, among them, the related tools are Rothe type and the principle of Leray–Schauder
alterative in topological vector spaces (in short, TVS) and local convex spaces (in short,
LCS), which are also comprehensively studied by Chang et al. [27–30], Carbone and Conti
[21], Ennassik and Taoudi [38], Ennassik et al. [37], Guo [54], Guo et al. [55], Granas and
Dugundji [53], Isac [60], Kirk and Shahzad [68], Liu [81], Park [101], Rothe [115, 116],
Shahzad [120–122], Xu [136], Yuan [142–145], Zeidler [146], and the references therein.
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Moreover, since the celebrated so-called KKM principle established in 1929 in [70] (see
also Mauldin [84]) was based on the celebrated Sperner combinatorial lemma and first
applied to a simple proof of the Brouwer fixed point theorem, later it became clear that
these three theorems are mutually equivalent and they were regarded as a sort of mathe-
matical trinity (Park [101]). In particular, since Fan extended the classical KKM theorem
to infinite-dimensional spaces in 1961 (see Fan [41–43]), there have been a number of gen-
eralizations and applications in numerous areas of nonlinear analysis and fixed points in
TVS and LCS as developed by Browder [15–20] and the related references therein. Among
them, Schauder’s fixed point theorem [118] in normed spaces is one of the powerful tools
in dealing with nonlinear problems in analysis. Most notably, it has played a major role
in the development of fixed point theory and related nonlinear analysis and mathematical
theory of partial and differential equations and others.

A generalization of Schauder’s theorem from a normed space to general topological vec-
tor spaces is an old conjecture in fixed point theory, which is explained by Problem 54 of
the book “The Scottish Book” by Mauldin [84] and stated as Schauder’s conjecture: “Every
nonempty compact convex set in a topological vector space has the fixed point property, or
in its analytic statement, does a continuous function defined on a compact convex subset
of a topological vector space to itself have a fixed point?”

Based on the discussion by Ennassik and Taoudi [38], Cauty [22, 23] tried to solve
the Schauder conjecture, and Ennassik and Taoudi [38] gave the positive answer to the
Schauder conjecture for single-valued continuous mappings under the framework of p-
vector spaces, where p ∈ (0, 1]. Indeed, from the respective of development on the study
of fixed point theory and related topics in nonlinear analysis, a number of works have been
contributed by Górniewicz [51], Górniewicz et al. [52], Ennassik et al. [37] by using the
p-seminorm method under p-vector spaces; plus corresponding contributions by Ask-
oura and Godet-Thobie [6], Chang [25], Chang et al. [27], Chen [32], Dobrowolski [35],
Gholizadeh et al. [46], Huang et al. [57], Isac [60], Li [79], Li et al. [78], Liu [81], Mańka
[83], Nhu [87], Okon [89], Park [100–102], Reich [110], Smart [126], Weber [132, 133],
Xiao and Lu [134], Xiao and Zhu [135], Xu [139], Xu et al. [140], Yuan [142–145], and
the related references therein under the general framework of p-vector spaces for even
nonself set-valued mappings (0 < p ≤ 1).

The goal of this paper is to develop new fixed points for quasi upper semicontinuous set-
valued mappings, and related some useful tools for nonlinear analysis by applying the best
approximation approach for classes of semiclosed 1-set contractive set-valued mappings
in locally p-convex or p-vector spaces for p ∈ (0, 1]. In particular, we first develop general
fixed point theorems for quasi upper semicontinuous set-valued and single-valued con-
densing mappings, which provide answers to the Schauder conjecture in the affirmative
way under the setting of locally p-convex (and p-vector spaces). Then the best approxi-
mation results for quasi upper semicontinuous and 1-set contractive set-valued are estab-
lished, which are used as tools to establish some new fixed points for nonself quasi upper
semicontinuous set-valued mappings with either inward or outward set conditions under
various situations. These results unify or improve corresponding results in the existing
literature for nonlinear analysis. We do wish that these new results such as the best ap-
proximation, Birkhoff–Kellogg type, nonlinear alternative, fixed point theorems for non-
self set-valued mappings with boundary conditions, Rothe, Petryshyn type, Altman type,
Leray–Schedule type, other related nonlinear problems would play important roles for
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the development of nonlinear analysis of p-seminorm spaces for 0 < p ≤ 1. The results
discussed in this paper do not only unify or improve corresponding results in the existing
literature for nonlinear analysis, but they can also be regarded as the continuation of (or)
related work established by Yuan [144, 145] recently.

The paper consists of eight sections. Section 1 is the introduction. Section 2 describes
general concepts for p-vector spaces, locally p-convex spaces, and p-convexity for p ∈
(0, 1]. In Sect. 3, some basic results of the KKM principle related to abstract convex spaces
are given. In Sect. 4, as an application of the KKM principle in abstract convex spaces,
which include p-convex vector spaces as a special class for p ∈ (0, 1], by combining the
graph approximation lemma for quasi upper semicontinuous set-valued mappings in lo-
cally p-convex spaces, we provide general fixed point theorems for upper semicontinu-
ous self-mappings defined on locally p-convex compact and 1-set contractive upper semi-
continuous set-valued mappings defined on noncompact p-convex subsets in locally p-
convex spaces. In Sect. 5, the general best approximation result for 1-set contractive upper
semicontinuous mappings is first given under the framework of locally p-convex spaces,
which is used as a tool to establish the general existence theorems for fixed points and
the principle of nonlinear alternative and solutions for Birkhoff–Kellogg problem, includ-
ing Leray–Schauder alternative, Rothe type, Altman type associated with various bound-
ary conditions. In Sect. 7, we focus on the study of the general principle for nonlinear
alternative for semiclosed contractive set-valued mappings under various boundary con-
ditions. In Sect. 8, we develop fixed points and a related principle of nonlinear alterative
for the classes of semiclosed 1-set mappings including nonexpansive set-valued mappings
as a special class under uniformly convex Banach spaces or locally convex spaces with the
Opial condition.

For convenience of our discussion, throughout this paper, all p-vector spaces, locally p-
convex spaces are assumed to be Hausdorff and p satisfies the condition for p ∈ (0, 1] unless
specified otherwise. We also denote by N the set of all positive integers, i.e., N := {1, 2, . . . , }.
For a set X, the 2X denotes the family of all subsets of X.

2 The basic results of p-vector spaces
We now recall some notion and definitions of p-convexities, p-vector spaces for Haus-
dorff topological vector spaces, and locally p-convex spaces, which will be used in what
follows (see Jarchow [61], Kalton [62], Rolewicz [114], Bayoumi [8], Gholizadeh et al. [46],
or Ennassik and Taoudi [37]).

Definition 2.1 Let p ∈ (0, 1]. A set A in a vector space X is said to be p-convex if for any
x, y ∈ A we have sx + ty ∈ A, whenever 0 ≤ s, t ≤ 1 with sp + tp = 1; the set A is said to be
absolutely p-convex if for any x, y ∈ A we have sx + ty ∈ A, whenever |s|p + |t|p ≤ 1. In the
case p = 1, the concept of the (absolutely) 1-convexity is simply the usually (absolutely)
convex defined in vector spaces.

Definition 2.2 Let p ∈ (0, 1]. If A is a subset of a topological vector space X, the closure
of A is denoted by A, then the p-convex hull of A and its closed p-convex hull are denoted
by Cp(A) and Cp(A), respectively, which is the smallest p-convex set containing A and the
smallest closed p-convex set containing A, respectively.
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Definition 2.3 Let p ∈ (0, 1], A be p-convex and x1, . . . , xn ∈ A, and ti ≥ 0,
∑n

1 tp
i = 1.

Then
∑n

1 tixi is called a p-convex combination of {xi} for i = 1, 2, . . . , n. If
∑n

1 |ti|p ≤ 1,
then

∑n
1 tixi is called an absolutely p-convex combination. It is easy to see that

∑n
1 tixi ∈ A

for a p-convex set A.

Definition 2.4 A subset A of a vector space X is called balanced (or circled) if λA ⊂ A
holds for all scalars λ satisfying |λ| ≤ 1. We say that A is absorbing if for each x ∈ X there
is a real number ρx > 0 such that λx ∈ A for all λ > 0 with |λ| ≤ ρx.

By Definition 2.4, it is easy to see that the system of all balanced (circled) subsets of X
is easily seen to be closed under the formation of linear combinations, arbitrary unions,
and arbitrary intersections. A balanced set A is symmetric, and thus A = –A. In particular,
every set A ⊂ X determines the smallest circled subset Â of X in which it is contained: Â
is called the circled hull of A. It is clear that Â =

⋃
|λ|≤1 λA holds so that A is circled if and

only if (in short, iff) Â = A. We use Â to denote the closed circled hull of A ⊂ X. In addition,
if X is a topological vector space, then we use the int(A) to denote the interior of set A ⊂ X
and if 0 ∈ int(A), then int(A) is also circled; and we use ∂A to denote the boundary of A
in X.

Definition 2.5 Let X be a vector space and R
+ be a nonnegative part of a real line R.

Then a mapping P : X −→R
+ is said to be a p-seminorm if it satisfies the requirements for

(0 < p ≤ 1):
(i) P(x) ≥ 0 for all x ∈ X ;

(ii) P(λx) = |λ|pP(x) for all x ∈ X and λ ∈ R;
(iii) P(x + y) ≤ P(x) + P(y) for all x, y ∈ X .

An p-seminorm P is called a p-norm if x = 0 whenever P(x) = 0. A topological vector
space with a specific p-norm is called a p-normed space. Of course if p = 1, then X is the
usual normed space. By Lemma 3.2.5 of Balachandra [7], the following proposition gives
a necessary and sufficient condition for a p-seminorm to be continuous.

Proposition 2.1 Let X be a topological vector space, P be a p-seminorm on X and V :=
{x ∈ X : P(x) < 1}. Then P is continuous if and only if 0 ∈ int(V ), where int(V ) is the interior
of V .

Now, given an p-seminorm P, the p-seminorm topology determined by P (in short, the
p-topology) is the class of unions of open balls B(x, ε) := {y ∈ X : P(y – x) < ε} for x ∈ X and
ε > 0.

We also need the following notion for the so-called p-gauge (see Balachandra [7]).

Definition 2.6 Let A be an absorbing subset of a vector space X. For x ∈ X and 0 < p ≤ 1,
set PA = inf{α > 0 : x ∈ α

1
p A}, then the nonnegative real-valued function PA is called p-

gauge (gauge if p = 1). The p-gauge of A is also known as the Minkowski p-functional.

By Proposition 4.1.10 of Balachandra [7], we have the following proposition.

Proposition 2.2 Let A be an absorbing subset of X. Then a p-gauge PA has the following
properties:
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(i) PA(0) = 0;
(ii) PA(λx) = |λ|pPA(x) if λ ≥ 0;

(iii) PA(λx) = |λ|pPA(x) for all λ ∈ R provided A is circled;
(iv) PA(x + y) ≤ PA(x) + PA(y) for all x, y ∈ A provided A is p-convex.

In particular, PA is a p-seminorm if A is absolutely p-convex (and also absorbing).

Remark 2.1 It is worthwhile to note that a 0-neighborhood in a topological vector space is
absolutely 0-neighborhoods, which are also absorbing (see Lemma 2.1.16 of Balachandran
[7] or Proposition 2.2.3 of Jarchow [61]), thus it makes sense for us to define a topological
vector space E to be a topological p-vector space (in short, p-vector space) for p ∈ (0, 1]
by using the concept of the Minkowski p-functional, as given below.

Definition 2.7 A topological vector space X is said to be a topological p-vector space (in
short, p-vector space) if the base of the origin in X is generated by a family of Minkowski
p-functionals (p-gauges) (defined by Definition 2.6), where p ∈ (0, 1].

By incorporating Proposition 2.2, it seems that the following is a natural way to lead us
to have the definition for a p-vector space being locally p-convex, where p ∈ (0, 1].

Definition 2.8 A topological vector space X is said to be locally p-convex if the origin in
X has a fundamental set of absolutely p-convex 0-neighborhoods. This topology can be
determined by p-seminorms which are defined in the obvious way (see p. 52 of Bayoumi
[8], Jarchow [61], or Rolewicz [114]). When p = 1, a locally p-convex space X is reduced
to being a usual locally convex space.

By Proposition 4.1.12 of Balachandra [7], we also have the following proposition.

Proposition 2.3 Let A be a subset of a vector space X, which is absolutely p-convex (0 <
p ≤ 1) and absorbing. Then, we have that

(i) The p-gauge PA is a p-seminorm such that if B1 := {x ∈ X : PA(x) < 1} and
B1 = {x ∈ X : PA(x) ≤ 1}, then B1 ⊂ A ⊂ B1; in particular, ker PA ⊂ A, where
ker PA := {x ∈ X : PA(x) = 0}.

(ii) A = B1 or B1, according to whether A is open or closed in the PA-topology.

Remark 2.2 Let X be a topological vector space, and let U be an open absolutely p-convex
neighborhood of the origin, and let ε be given. If y ∈ ε

1
p U , then y = ε

1
p u for some u ∈ U and

PU (y) = PU (ε
1
p u) = εPU (u) ≤ ε (as u ∈ U implies that PU (u) ≤ 1). Thus, PU is continuous at

zero, and therefore PU is continuous everywhere. Moreover, we have U = {x ∈ X : PU (x) <
1}.

Indeed, since U is open and the scalar multiplication is continuous, we have that for
any x ∈ U there exists 0 < t < 1 such that x ∈ t

1
p U , and so PU (x) ≤ t < 1. This shows that

U ⊂ {x ∈ X : PU (x) < 1}. The conclusion follows by Proposition 2.3.
The following result is a very important and useful result which allows us to make the

approximation for convex subsets in topological vector spaces by p-convex subsets in p-
convex vector spaces (see Lemma 2.1 of Ennassik and Taoudi [37], Remark 2.1 of Qiu and
Rolewicz [109], or Lemma 2.1 of Yuan [144, 145]), thus we omit their proof.
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Lemma 2.1 Let A be a subset of a vector space X, then we have:
(i) If A is r-convex with 0 < r < 1, then αx ∈ A for any x ∈ A and any 0 < α ≤ 1.

(ii) If A is convex and 0 ∈ A, then A is s-convex for any s ∈ (0, 1].
(iii) If A is r-convex for some r ∈ (0, 1), then A is s-convex for any s ∈ (0, r].

Remark 2.3 We would like to point out that results (i) and (iii) of Lemma 2.1 do not hold
for p = 1. Indeed, any singleton {x} ⊂ X is convex in topological vector spaces; but if x �= 0,
then it is not p-convex for any p ∈ (0, 1).

We also need the following proposition, which is Proposition 6.7.2 of Jarchow [61].

Proposition 2.4 Let K be compact in a topological vector X and (1 < p ≤ 1). Then the
closure Cp(K) of the p-convex hull and the closure ACp(K) of absolutely p-convex hull of K
are compact if and only if Cp(K) and ACp(K) are complete, respectively.

We also need the following fact, which is a special case of Lemma 2.4 of Xiao and Zhu
[135].

Lemma 2.2 Let C be a (bounded) closed p-convex subset of a topological vector space
X and 0 ∈ int C, where (0 < p ≤ 1). For each x ∈ X, we define an operator by r(x) :=

x

max{1,(PC (x))
1
p }

, where PC is the Minkowski p-functional of C. Then C is a retract of X and

r : X → C is continuous such that:
(1) if x ∈ C, then r(x) = x;
(2) if x /∈ C, then r(x) ∈ ∂C;
(3) if x /∈ C, then the Minkowski p-functional PC(x) > 1.

Proof Taking s = p in Lemma 2.4 of Xiao and Zhu [135], Proposition 2.3, and Remark 2.2,
the proof is complete. �

Remark 2.4 As discussed in Remark 2.2, Lemma 2.2 still holds if “the bounded closed p-
convex subset C of the p-normed space (X,‖·‖p)” is replaced by “X is a p-seminorm vector
space and C is a bounded closed absorbing p-convex subset with 0 ∈ int C of X”.

For a given p-convex subset C in a given p-vector space E with the origin (zero element)
0 ∈ int(C) with the p-seminorm p (for example, thinking of the p-seminorm PU , which is
the Minkowski p-functional of U), we also denote by dP(x, C) := inf{PU (x – y) : y ∈ C} the
distance of {x} with the set C in space E for p ∈ (0, 1].

For the convenience of our discussion, throughout this paper, we also assume all topo-
logical vector spaces and locally p-convex spaces are Hausdorff unless specified for p ∈
(0, 1].

3 The KKM principle in abstract convex spaces
As mentioned above, Knaster, Kuratowski, and Mazurkiewicz (in short, KKM) [70] in 1929
obtained the so-called KKM principle (theorem) to give a new proof for the Brouwer fixed
point theorem in finite dimensional spaces; and later in 1961, Fan [41] (see also Fan [43])
extended the KKM principle (theorem) to any topological vector spaces and applied it
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to various results including the Schauder fixed point theorem. Since then there have ap-
peared a large number of works devoted to applications of the KKM principle (theorem).
In 1992, such a research field was called the KKM theory for the first time by Park [95].
Then the KKM theory was extended to general abstract convex spaces by Park [99] (see
also Park [100] and [101], Mauldin [84], Granas and Dugundji [53], Yuan [143], and the
related references therein), which actually include locally p-convex spaces (0 < p ≤ 1) as a
special class.

Here we first give some notion and a brief introduction on the abstract convex spaces,
which play an important role in the development of the KKM principle and related appli-
cations. Once again, for the corresponding comprehensive discussion on the KKM theory
and its various applications to nonlinear analysis and related topics, we refer to Agarwal
et al. [1], Granas and Dugundji [53], Mauldin [84], Park [101] and [102], Yuan [143], and
the related comprehensive references therein.

Let 〈D〉 denote the set of all nonempty finite subsets of a given nonempty set D, and
let 2D denote the family of all subsets of D. We have the following definition for abstract
convex spaces essentially introduced by Park [99].

Definition 3.1 An abstract convex space (E, D;�) consists of a topological space E, a
nonempty set D, and a set-valued mapping � : 〈D〉 → 2E with nonempty values �A := �(A)
for each A ∈ 〈D〉, we have �-convex hull of any D′ ⊂ D is denoted and defined by co�D′ :=
∪{�A|A ∈ 〈D′〉} ⊂ E.

A subset X of E is said to be a �-convex subset of (E, D;�) relative to D′ if, for any
N ∈ 〈D′〉, we have �N ⊆ X, that is, co�D′ ⊂ X. For the convenience of our discussion, in
the case E = D, the space (E, E;�) is simply denoted by (E;�) unless specified otherwise.

Definition 3.2 Let (E, D;�) be an abstract convex space and Z be a topological space. For
a set-valued mapping (or, say, multivalued mapping) F : E → 2Z with nonempty values, if a
set-value mapping G : D → 2Z satisfies F(�A) ⊂ G(A) :=

⋃
y∈A G(y) for all A ∈ 〈D〉, then G

is called a KKM mapping with respect to F . Clearly, a classical KKM mapping (see Mauldin
[84]) G : D → 2E is just a KKM mapping with respect to the identity map 1E defined above.

Definition 3.3 The partial KKM principle for an abstract convex space (E, D;�) is that, for
any closed-valued KKM mapping G : D → 2E , the family {G(y)}y∈D has the finite intersec-
tion property. The KKM principle is that the same property also holds for any open-valued
KKM mapping.

An abstract convex space is called a (partial) KKM space if it satisfies the (partial) KKM
principle (resp.). We now give some known examples of (partial) KKM spaces (see Park
[99] and also [100]) as follows.

Definition 3.4 A φA-space (X, D; {φA}A∈〈D〉) consists of a topological space X, a nonempty
set D, and a family of continuous functions φA : 	n → X (that is, singular n-simplices) for
A ∈ {D} with |A| = n + 1. By putting �A := φA(	n) for each A ∈ 〈D〉, the triple (X, D;�)
becomes an abstract convex space.

Remark 3.1 For a φA-space (X, D; {φA}), we see that any set-valued mapping G : D → X
satisfying φA(	J ) ⊂ G(J) for each A ∈ 〈D〉 and J ∈ 〈A〉 is a KKM mapping.
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By the definition given above, it is clear that every φA-space is a KKM space, thus we
have the following fact (see Lemma 1 of Park [100]).

Lemma 3.1 Let (X, D;�) be a φA-space and G : D → 2X be a set-valued (multimap) with
nonempty closed [resp. open] values. Suppose that G is a KKM mapping, then {G(a)}a∈D

has the finite intersection property.

By Definition 2.7, we recall that a topological vector space is said to be locally p-convex
if the origin has a fundamental set of absolutely p-convex 0-neighborhoods. This topology
can be determined by p-seminorms, which are defined in the obvious way (see Jarchow
[61] or p. 52 of Bayoumi [8]).

Now we have a new KKM space as follows inducted by the concept of p-convexity (see
Lemma 2 of Park [100]).

Lemma 3.2 Suppose that X is a subset of the topological vector space E and p ∈ (0, 1], and
D is a nonempty subset of X such that Cp(D) ⊂ X. Let �N := Cp(N) for each N ∈ 〈D〉 for
each pin(0, 1]. Then (X, D;�) is clearly a φA-space.

Proof Since Cp(D) ⊂ X, �N is well defined. For each N = {x0, x1, . . . , xn} ⊂ D, we define
φN : 	n → �N by

∑n
i=0 tiei �→ ∑n

i=0(ti)
1
p xi for p ∈ (0, 1]. Then, clearly, (X, D;�) is a φA-

space. This completes the proof. �

4 Fixed point theorems for set-valued and single-valued mappings in locally
p-convex and p-vector spaces

In this section, we mainly give fixed point theorems for quasi upper semicontinuous set-
valued mappings in locally p-convex spaces and compact continuous single-valued map-
pings in p-vector spaces. These fixed points will allow us to establish Rothe’s principle,
Leray–Schauder alternative in the next section, which would be useful tools in nonlinear
analysis for the study of nonlinear problems arising from theory to practice. Here, we first
gather together necessary definitions, notations, and known facts needed in this section.

Definition 4.1 Let X and Y be two topological spaces. A set-valued mapping (also called
multifunction) T : X −→ 2Y is a point to set function such that for each x ∈ X, T(x) is
a subset of Y . The mapping T is said to be upper semicontinuous (USC) if the subset
T–1(B) := {x ∈ X : T(x) ∩ B �= ∅} (equivalently, the set {x ∈ X : T(x) ⊂ B}) is closed (equiva-
lently, open) for any closed (resp., open) subset B in Y . The function T : X → 2Y is said to
be lower semicontinuous (LSC) if the set T–1(A) is open for any open subset A in Y .

As an application of the KKM principle for general abstract convex spaces, we have the
following general existence result for the “approximation” of fixed points for upper and
lower semicontinuous set-valued mappings in locally p-convex spaces for 0 < p ≤ 1 (see
also the corresponding results given by Theorem 2.7 of Gholizadeh et al. [46], Theorem 5
of Park [100], and related discussion therein).

Theorem 4.1 Let A be a p-convex compact subset of a locally p-convex space X , where
0 < p ≤ 1. Suppose that T : A → 2A is lower (resp. upper) semicontinuous with nonempty
p-convex values. Then, for any given U , which is a p-convex neighborhood of zero in X,
there exists xU ∈ A such that T(xU ) ∩ (xU + U) �= ∅.
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Proof Suppose that U is any given p-convex element of U, there is a symmetric open p-
convex neighborhood V of zero for which V + V ⊂ U in p-convex neighborhood of zero,
we prove the results by two cases: T is lower semicontinuous (LSC) and upper semicon-
tinuous (USC).

Case 1, by assuming that T is lower semicontinuous: As X is a locally p-convex vector
space, suppose that U is a family of neighborhoods of 0 in X. For any element U of U, there
is a symmetric open p-convex neighborhood V of zero for which V + V ⊂ U . Since A is
compact, there exist x0, x1, . . . , xn in A such that A ⊂ ⋃n

i=0(xi + V ). By using the fact that
A is p-convex, we find D := {b0, b2, . . . , bn} ⊂ A for which bi – xi ∈ V for all i ∈ {0, 1, . . . , n},
and we define C by C := Cp(D) ⊂ A. By the fact that T is LSC, it follows that the subset
F(bi) := {c ∈ C : T(c) ∩ (xi + V ) = ∅} is closed in C (as the set xi + V is open) for each
i ∈ {0, 1, . . . , n}. For any c ∈ C, we have ∅ �= T(c) ∩ A ⊂ T(c) ∩ ⋃n

i=0(xi + V ), it follows that
⋂n

i=0 F(bi) = ∅. Now, we apply Lemma 3.1 and Lemma 3.2, which implies that there is N :=
{bi0 , bi1 , . . . , bik } ∈ 〈D〉 and xU ∈ Cp(N) ⊂ A for which xU /∈ F(N), and so T(xu)∩(xij +V ) �= ∅
for all j ∈ {0, 1, . . . , k}. As bi – xi ∈ V and V + V ⊂ U , which imply that xij + V ⊂ bij + U ,
which means that T(xU ) ∩ ((bij + U) �= ∅, it follows that N ⊂ {c ∈ C : T(xU ) ∩ (c + U) �= ∅}.
By the fact that the subsets C, T(xU ), and U are p-convex, we have that xU ∈ {c ∈ C :
T(xU ) ∩ (c + U) �= ∅}, which means that T(xU ) ∩ (xU + U) �= ∅.

Case 2, by assuming T is upper semicontinuous: We define F(bi) := {c ∈ C : T(c) ∩ (xi +
V ) = ∅}, which is then open in C (as the subset xi + V is closed) for each i = 0, 1, . . . , n. Then
the argument is similar to the proof for the case T is USC, and by applying Lemma 3.1 and
Lemma 3.2 again, it follows that there exists xU ∈ A such that T(xU ) ∩ (xU + U) �= ∅. This
completes the proof. �

By Theorem 4.1, we have the following Fan–Glicksberg fixed point theorems (Fan [40])
in locally p-convex vector spaces for (0 < p ≤ 1), which also improve or generalize the
corresponding results given by Yuan [143], Xiao, and Lu [134], Xiao and Zhu [135] into
locally p-convex vector spaces.

Theorem 4.2 Let A be a p-convex compact subset of a locally p-convex vector space X,
where 0 < p ≤ 1. Suppose that T : A → 2A is upper semicontinuous with nonempty p-convex
closed values. Then T has one fixed point.

Proof We denote by U the family of neighborhoods of 0 in X, and U ∈ U, by Theorem 4.1,
there exists xU ∈ A such that T(xU ) ∩ (xU + U) �= ∅. Then there exist aU , bU ∈ A for which
bU ∈ T(aU ) and bU ∈ aU +U . Now, two nets {aU} and {bU} in Graph(T), which is a compact
graph of mapping T as A is compact and T is semicontinuous, we may assume that aU

has a subnet converging to a and {bU} has a subnet converging to b. As U is the family
of neighborhoods for 0, we should have a = b (e.g., by the Hausdorff separation property)
and a = b ∈ T(b) due to the fact that Graph(T) is close (e.g., see Lemma 3.1.1 in p. 40 of
Yuan [142]). The proof is complete. �

In the next part of this section, we are going to establish fixed point theorems for quasi
upper semicontinuous set-valued mappings in topological vector spaces, which include
upper semicontinuous set-valued mappings as a special class. Now we recall the following
definitions.
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By following Repovs̆ et al. [111] (see also Ewert and Neubrunn [39] and Neubrunn
[86]), we recall the following definition for quasi upper semicontinuous (QUSC) map-
pings, which are a generalization of upper semicontinuous (USC) mappings.

Definition 4.2 Let X and Y be two topological spaces and T : X −→ 2Y be a set-valued
mapping. The mapping T is said to be quasi upper semicontinuous (QUSC) at x ∈ X if, for
each of its (x′) neighborhood W (x) and for each neighborhood V of the origin in Y , there
exists a point q(x) ∈ W (x) such that x ∈ Int T–1(T(q(x)) + V )), where T–1(T(q(x)) + V )) =
{z ∈ X : T(z) ⊂ T(q(x)) + V }, and the notation Int T–1(T(q(x)) + V )) denotes the (topolog-
ical) interior of the set T–1(T(q(x)) + V )) in X. The mapping T is said to be quasi supper
semicontinuous if it is quasi upper semicontinuous at each point of its domain.

Remark 4.1 It is clear that in Definition 4.2 for QUSC mappings, for each x ∈ X, by taking
q(x) just being x itself, then it is just the definition for upper semicontinuous mappings
given by Definition 3.1. Therefore, a USC mapping is a QUSC one, but a QUSC mapping
may not be a USC mapping as shown by the example in p. 1094 due to Repovs̆ et al. [111].
In addition, interested readers can see Ewert and Neubrunn [39] and Neubrunn [86] and
the related references therein for the comprehensive study on the quasicontinuity for both
single and set-valued mappings and related applications.

For a given set A in a vector space X, we denote by “lin(A)” the “linear hull” of A in X,
then we also recall the following definition.

Definition 4.3 Let A be a subset of a topological vector space X, and let Y be another
topological vector space. We shall say that A can be linearly embedded in Y if there is a
linear map L : lin(A) → Y (not necessarily continuous) whose restriction to A is a home-
omorphism.

The following Lemma 4.1 is a significant embedded result for compact convex subsets
in topological vector spaces, which is Theorem 1 of Kalton [62], which says that though
not every compact convex set in TVS can be linearly imbedded in a locally convex space
(e.g., see Roberts [112] and Kalton et al. [64]), but for p-convex sets when 0 < p < 1, every
compact p-convex set in topological vector spaces is considered as a subset of a locally
p-convex vector space, hence every such set has sufficiently many p-extreme points.

Secondly, by property (ii) of Lemma 2.1, each convex subset containing zero in a topo-
logical vector space is always p-convex for 0 < p ≤ 1. Thus it is possible for us to transfer
the problem involving p-convex subsets from topological vector spaces into the locally
p-convex vector spaces, which indeed allows us to establish the existence of fixed points
for compact single-valued mappings for noncompact p-convex subsets in locally p-convex
spaces and p-vector spaces (0 < p ≤ 1) to cover the case when the underlying is just a topo-
logical vector space, which provides the answer for Schauder’s conjecture in the affirma-
tive for the general version of compact continuous (single-valued) mappings in topological
vector spaces (following the idea due to Ennassik and Taoudi [38]).

Lemma 4.1 Let K be a compact p-convex subset (0 < p < 1) of a topological vector space X.
Then K can be linearly embedded in a locally p-convex topological vector space.
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Proof It is Theorem 1 of Kalton [62], which completes the proof. �

Remark 4.2 At this point, it is important to note that Lemma 4.1 does not hold for p = 1.
By Theorem 9.6 of Kalton et al. [64], it was shown that the spaces Lp = Lp(0, 1), where
0 < p < 1, contain compact convex sets with no extreme points, which thus cannot be
linearly embedded in a locally convex space, see also Roberts [112].

Definition 4.4 We recall that for two given topological spaces X and Y , a set-valued
mapping T : X → 2Y is said to be compact if there is a compact subset C in Y such that
F(X)(= {y ∈ F(x), x ∈ X}) is contained in C, i.e., F(X) ⊂ C. Now we have the following non-
compact versions of fixed point theorems for compact single-valued mappings defined in
locally p-convex and topological vector spaces for 0 < p ≤ 1.

We now have the following result for a continuous single-valued mapping in locally p-
convex spaces or topological vector spaces.

Theorem 4.3 If K is a nonempty closed p-convex subset of either a Hausdorff locally p-
convex space or a Hausdorff topological vector space X for p ∈ (0, 1], then the compact
single-valued continuous mapping T : K → K has at least a fixed point.

Proof As T is compact, there exists a compact subset A in K such that T(K) ⊂ A. Let
K0 := Cp(A) be the closure of the p-convex hull of the subset A in K . Then K0 is compact
p-convex by Proposition 2.4, and the mapping T : K0 → K0 is continuous.

First, if K is a nonempty closed p-convex subset of a locally p-convex space, where p ∈
(0, 1], the conclusion is obtained by considering the self-mapping T on K0 as an application
of Theorem 3.1 by Ennassik and Taoudi [38].

Second, if K is a nonempty closed p-convex subset of a Hausdorff topological vector
space X, we prove the conclusion by applying Lemma 4.1 in the following two cases.

Case 1: For 0 < p < 1, K0 is a nonempty compact p-convex subset of a topological vector
space E for p ∈ (0, 1), by Lemma 4.1, it follows that K0 can be linearly embedded in a
locally p-convex space E, which means that there exists a linear mapping L : lin(K0) → E
whose restriction to K0 is a homeomorphism. Define the mapping S : L(K0) → L(K0) by
S(Lx) := L(Tx) for each x ∈ K0, then this mapping is easily checked to be well defined. The
mapping S is continuous since L is a (continuous) homeomorphism and T is continuous
on K0. Furthermore, the set L(K0) is compact, being the image of a compact set under a
continuous mapping L, and L(K0) is also p-convex since it is the image of a p-convex set
under a linear mapping. Then, by the conclusion given in the first part above, T has a
fixed point x ∈ K0. Thus there exists x ∈ K0 such that Lx = S(Lx) = L(Tx), thus it implies
that x = T(x) since L is a homeomorphism, which is the fixed point of T .

Case 2: For p = 1, taking any point x0 ∈ K0, let K ′
0 := K0 – {x0}. Now define a new mapping

T0 : K ′
0 → K ′

0 by T0(x – x0) := T(x) – x0 for each x – x0 ∈ K ′
0. By the fact that now K ′

0 is
compact and s-convex by Lemma 2.1(ii) for some s ∈ (0, 1), and T0 is also continuous and
has a fixed point in K ′

0 by the proof in Case 1, so T has a fixed point in K0. The proof is
complete. �

Before we establish the main results for the existence of fixed point theorem for quasi
upper semicontinuous set-valued mappings in locally p-convex spaces, by following the
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idea for the proof of Theorem 1.10 by Repovs̆ et al. [111] for the graph approximation of
quasi upper semicontinuous set-valued mappings, using the concept of the “p-convexity”
in locally p-convex spaces to replace the usual concept of “convexity” in LCS and TVS
(see also related discussions by Ben-El-Mechaiekh [10], Ben-El-Mechaiekh and Saidi [11],
Cellina [24], Kryszewsky [73], Repovs̆ et al. [111], and related applications), we have the
following Lemma 4.2, which is then used to establish a general fixed point theorem for
upper semicontinuous set-valued mappings in locally p-convex spaces for p ∈ (0, 1], which
is actually an extension of Theorems 4.2 and 4.3.

We recall that if X and Y are two topological spaces and F : X → 2Y is a set-valued
mapping, and we denote by either Graph F or �F the graph of F in X × Y , and α is a given
open cover of �F in X × Y , then a (single- or set-valued) mapping G : X → Y is said to
be an α-approximation (also called α-graph approximation) of F if for each point p ∈ �G

there exists a point q ∈ �F such that p and q lie in some common element of the over α; and
when G is a single-valued (continuous), G is also called a selection (continuous) mapping.
In the case Y is a topological vector space, if 
 is the open cover of X and V is an open
neighborhood of their origin in Y , then 
 × {y + V }y∈Y is one open cover of X × Y , which
is denoted by 
 × V as used below. The following result was first given by Chang et al.
[26], we provide the proof in detail here for the convenience of self-contained reading.

Lemma 4.2 Let X be a paracompact space and Y be a topological vector space and p ∈
(0, 1]. If F : X → 2Y is an upper semicontinuous mapping with p-convex values, then for
each open cover 
 of X, and each p-convex open neighborhood V of the origin in Y , there
exists a continuous single-valued (
× V )-approximation for the set-valued mapping F . In
particular, the conclusion holds if V is any convex open neighborhood of the origin in Y .

Proof Let 
 be an open covering of X, and let V be a p-convex open neighborhood of the
origin in Y . For each x ∈ X, fix an arbitrary element W (x) ∈ 
 such that x ∈ W (x), then
we first claim the following statements:

(1) By the upper semicontinuity (USC) of the mapping F , for each x ∈ X, there exists an
open neighborhood U(x) ⊂ W (x) such that F(z) ⊂ F(x) + V for all z ∈ U(x);

(2) As X is paracompact, by Theorem 3.5 of Dugundji [36] (see also Theorem 28 in
Chap. 5 of Kelly [66]), without loss of generality, let the family {G(x)}x∈X be a covering,
which is a star refinement of the covering {U(x)}x∈X of X (and see also the discussion on
pp. 167–168 by Dugundji [36] for the concept of the star refinement for a given covering);

(3) Using the upper semicontinuity property again for the mapping F , for each x ∈ X,
there exists an open neighborhood U ′(x) ⊂ G(x) such that F(z) ⊂ F(x) + V for all z ∈ U ′(x);

(4) Let {eα}α∈A be a locally finite continuous partition of unity inscribed into the covering
{U ′(x)}x∈X of X, where A is the index set, with �α∈Aeα(x) = 1 for each x ∈ X; and for each
α ∈ A, we can choose xα ∈ X such that supp eα ⊂ U ′(xα) and one point yα ∈ F(xα), where
supp eα is the support of eα (defined by supp eα := {x ∈ X : eα(x) �= 0}); and

(5) Finally, define a mapping f : X → Y by f (x) := �α∈Ae
1
p
α (x)yα for each x ∈ X, where

yα ∈ F(xα) as given by (4) above, then f is well defined, where the sum is taken over all

α ∈ A with eα(x) > 0. By (3), it follows that �α∈A(e
1
p
α (x))p = �α∈Aeα(x) = 1.

Now we show that f is indeed the desired single-valued continuous mapping, which is
the (
 × V )-approximation for the mapping F . Indeed, for any given x0 ∈ X, we have that

x0 ∈ St
{

x0, {supp eα}α∈A
} ⊂ St

{
x0,

{
U ′(x)

}
x∈X

} ⊂ St
{

x0,
{

G(x)
}

x∈X

} ⊂ U
(
x′) ⊂ W

(
x′)
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for some x′ ∈ X, where St{x0, {supp eα}α∈A} denotes the star of the point {x0} with re-
spect to the family {supp eα}α∈A and defined by St{x0, {supp eα}α∈A} := ∪{U : x0 ∈ U , U ∈
{supp eα}α∈A} (see also the corresponding discussion for the notation and concept on p. 349
given by Ageev and Repovs̆ [4]).

By the definition of upper semicontinuity, we have that x′ ∈ W (x′). Hence the points x0

and x′ are 
-close.
Secondly, if eα(x0) > 0 for α ∈ A, then x0 ∈ G(xα) and xα ∈ G(xα) by (3) above. Thus

xα ∈ St{x0, {G(x)}x∈X} ⊂ U(x′). Therefore, yα ∈ F(xα) ⊂ F(x′) + V , i.e., yα – vα ∈ V for some

vα ∈ F(x′) for α ∈ A. But then, for v := �αe
1
p
α (x0)vα ∈ F(x′) as F is p-convex-valued and we

know that �α∈A(e
1
p
α (x))p = �α∈Aeα(x) = 1 as shown by (5) above, and yα – vα ∈ V , too, for

α ∈ A, thus we have that f (x0) – v = �e
1
p
α (x0)(yα – vα) ∈ V as V is p-convex. Hence, the

point (x0, f (x0)) ∈ Graph(f ) is (
 × V )-close to the point (x′, v) ∈ Graph(F).
In particular, as each convex neighborhood of the origin in Y is also p-convex for each

p ∈ (0, 1], the conclusion holds. The proof is complete. �

As an application of Lemma 4.2, we now have the following fixed point theorem for
quasi upper semicontinuous set-valued mappings in locally p-convex spaces for p ∈ (0, 1],
which was first initially discussed by Chang et al. [26].

Theorem 4.4 Let K be a compact s-convex subset of a Hausdorff locally p-convex space
X, where p, s ∈ (0, 1]. If T : K → 2K is a quasi upper continuous set-valued mapping with
nonempty closed p-convex values and its graph is closed, then T has a fixed point in K .

Proof We give the proof by using the graph approximation approach for upper semicon-
tinuous set-valued mappings established in this section above. Let U be the family of abso-
lutely p-convex open neighborhoods of the origin in X. By the fact the family {x + u}x∈K is
an open covering of K , we denote the family {x+u}x∈K by 
. Now, by Lemma 4.2, it follows
that there exists one (single-valued) continuous mapping fu : K → K , which is (
 × u)-
approximation of the mapping T . By Theorem 4.3, fu has a fixed point xu = fu(xu) in K for
each u ∈ U. Note that (xu, fu(xu)) = (xu, xu) ∈ Graph(fu), which is (
 × u)-approximation of
the Graph(T), and the graph of T is closed due to the assumption, we will prove T has
a fixed point x∗, which is indeed the limit of some subnet of the family {xu}u∈U in K , i.e.,
x∗ ∈ T(x∗), by using notations of language in general topology (for related references on
the discussion for normed spaces or topological (vector) spaces, see Cellina [24], Ben-El-
Mechaiekh [10], and Fan [40]).

Indeed, for any given open p-convex member u in U, as the set {x + u}x∈K ×{y + u}y∈K is
an open cover of K × K , by Lemma 4.2, there exists a single-valued continuous mapping
fu : K → K , which is (
 × u)-approximation of the Graph(T), where 
 := {x + u}x∈K as
mentioned above. By Theorem 4.3, fu has a fixed point xu = fu(xu) in K for each u ∈ U. Now,
for xu ∈ K , by following the proof of Lemma 4.2, we observe that, firstly, there exists x′

u ∈ K
such that xu ∈ x′

u + u; and secondly, there also exists vu ∈ F(x′
u) such that fu(xu) – vu ∈ u,

which means that fu(xu) ∈ vu + u.
In summary, for any given u ∈ U, there exists a continuous mapping fu : K → K , which

has at least one fixed point xu ∈ K such that xu = fu(xu) with (xu, xu) = (xu, fu(xu)) ∈
Graph(fu), and we also have the following statements:
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(1) There exists x′
u ∈ K such that xu ∈ x′

u + u; and
(2) There exists vu ∈ F(x′

u) such that fu(xu) – vu ∈ u, which means fu(xu) ∈ vu + u.
Since K is compact, without loss of generality, we may assume that there exists a subnet

(xui )ui∈U converging to x∗ in K . Now we will show that x∗ is the fixed point of T , i.e.,
x∗ ∈ T(x∗).

As K is compact, without loss of generality, we may assume that two nets {xu}u∈U and
{x′

u}u∈U in K have the subnet {xui}ui∈U converging to x∗, and the subnet {x′
ui

}ui∈U converges
to x′∗ respectively in K . By the statement of (1) above, it is clear that we must have x∗ = x′∗;
otherwise, as the family U is the base of absolutely p-convex open neighborhoods of the
origin in X, by (1) we will have the contradiction, and thus our claim that x∗ = x′∗ is true
in a locally p-convex space X.

Now we prove that x∗ is a fixed point of T by using the statement of (2) for all u ∈ U.
As the net {vu}u∈U ⊂ K , we may assume its subnet {vui}ui∈U converges to v∗. Then, by
the statement given by (2), it is clear that we have that limui∈U vui = v∗ = limui∈U fui (xui ) =
limui∈U xui = x∗. By the fact that (vui , x′

ui
) ∈ Graph(T) and the graph of T is closed, it follows

that x∗ = v∗ ∈ T(x∗), which means that x∗ is a fixed point of T . The proof is complete. �

We note that Theorem 4.4 improves or unifies corresponding results given by Cauty [22],
Cauty [23], Chang et al. [27], Dobrowolski [35], Nhu [87], Park [101], Reich [110], Smart
[126], Xiao and Lu [134], Xiao and Zhu [135], Yuan [143–145] under the framework of
compact single-valued or upper semicontinuous set-valued mappings.

Remark 4.3 Theorem 4.3 says that each compact single-valued mapping defined on a
closed p-convex subsets (0 < p ≤ 1) in topological vector spaces has the fixed point prop-
erty, which does not only include or improve most available results for fixed point theo-
rems in the existing literature as special cases (just to mention a few, Ben-El-Mechaiekh
[10], Ben-El-Mechaiekh and Saidi [11], Ennassik and Taoudi [38], Mauldin [84], Granas
and Dugundji [53], O’Regan and Precup [93], Reich [110], Park [101], and the references
therein), but also provides an answer to Schauder conjecture in topological vector spaces
in the affirmative for compact single-valued mappings defined on noncompact convex p-
convex subsets in locally p-convex spaces for 0 < p ≤ 1 or topological vector spaces. In
particular, we note that the answer to Schauder conjecture in the affirmative for a single-
valued continuous mapping recently was obtained by Ennaassik and Taoudi [38] defined
on a nonempty compact p-convex subset in TVS. Actually, we will show that Schauder
conjecture is also true for quasi upper semicontinuous set-valued mappings in locally p-
convex spaces as discussed by Theorems 4.4 and 4.7.

In addition. we we would like to point out that it is not clear if the assumption “T(x)
is with nonempty closed p-convex values” could be replaced with the condition “T(x) is
with nonempty closed s-convex values” in Theorem 4.4. In fact, it seems that the proof of
Theorem 4.3 given by Ennassik et al. [37] only goes through for the case s ≤ p, not for the
general case when both s, p ∈ (0, 1] (please note that the letter p is denoted as the letter r by
Ennassik et al. [37]). Thus, we are still looking for a proper way to prove if the conclusion of
Theorem 4.4 is true under Hausdorff topological vector spaces instead of locally p-convex
spaces for p ∈ (0, 1].

Now, as an immediate consequence of Theorem 4.4, we have the following fixed point
result for QUSC mappings in a locally p-convex space X.
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Corollary 4.1 If K is a nonempty compact s-convex subset of a locally convex space X,
where s ∈ (0, 1], then any quasi upper semicontinuous set-valued mapping T : K → 2K

with nonempty closed convex values and its graph being closed has at least one fixed point.

Proof Apply Theorem 4.4 with p = 1, this completes the proof. �

Corollary 4.1 indeed improves or unifies the corresponding results given by Askoura
and Godet-Thobie [6], Cauty [22], Cauty [23], Chang et al. [27], Chen [32], Theorem 3.1
and Theorem 3.3 of Ennssik and Taoudi [38], Theorem 3.14 of Gholizadeh et al. [46],
Isac [60], Li [79], Nhu [87], Okon [89], Park [102], Reich [110], Smart [126], Xiao and Lu
[134], Yuan [143] under the framework of locally p-convex spaces for set-valued (instead
of single-valued) mappings.

As an application of Theorem 4.4, we have the following fixed point theorem for quasi
upper semicontinuous set-valued mappings in locally p-convex spaces, which could be
regarded as the extension or a set-valued version of Theorem 3.1 and Theorem 3.3 of
Ennassik and Taoudi [38].

Theorem 4.5 If K is a nonempty compact p-convex subset of a Hausdorff locally p-convex
space X, where p ∈ (0, 1], then any quasi upper semicontinuous set-valued mapping T :
K → 2K with nonempty p-convex values and with a closed graph, has at least one fixed
point.

Proof By taking s = p in Theorem 4.4, the conclusion follows. This completes the
proof. �

By following the same idea used in the proof of Theorem 4.3, the conclusion of Theo-
rem 4.4 still holds for compact quasi upper semicontinuous set-valued mappings as stated
by Theorem 4.6 (and thus we omit its proof here).

Theorem 4.6 If K is a nonempty closed s-convex subset of a Hausdorff locally p-convex
space X, where s, p ∈ (0, 1], then any compact quasi upper semicontinuous set-valued map-
ping T : K → 2K with nonempty p-convex values and with a closed graph has at least one
fixed point.

Now, as a special case in Theorem 4.6 with p = 1, we have the following results for
compact QUSC mappings defined on s-convex subsets in locally convex spaces, where
s ∈ (0, 1].

Corollary 4.2 If K is a nonempty closed s-convex subset of a Hausdorff locally convex
space X, then any compact quasi upper semicontinuous set-valued mapping T : K → 2K

with nonempty convex values and with a closed graph has at least one fixed point.

Corollary 4.3 Let K be a closed convex compact subset of a Hausdorff locally convex space
X. If T : K → 2K is a quasi upper continuous set-valued mapping with nonempty closed
convex values and its graph is closed, then T has a fixed point in K .

Corollary 4.4 (Schauder fixed point theorem for USC mappings in LCS) Let K be a closed
convex compact subset of a Hausdorff locally convex space X . If T : K → 2K is an upper
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continuous set-valued mapping with nonempty closed convex values, then T has a fixed
point in K .

So far in this section, as the application of graph approximation for quasi upper semi-
continuous mappings, which is Lemma 4.2, we have established general fixed point the-
orems for general (compact) quasi upper semicontinuous set-valued mappings in locally
p-convex spaces, which allows us not only to answer Schauder’s conjecture in the affirma-
tive under the general framework of locally p-convex spaces, but also to unify or improve
the corresponding results in the existing literature for nonlinear analysis, where pin(0, 1].

We would like to mention that by comparing with topological degree approach or other
related methods used or developed by Cauty [22, 23], Nhu [87], and others, the arguments
used in this section actually provide an accessible way for the study of nonlinear analysis
for p-convex vector spaces for p ∈ (0, 1]. The results given in this paper are new and may
be easily understood and used by general readers in the mathematical community. In ad-
dition, the general fixed point theorems established for quasi upper semicontinuous set-
valued mappings in locally p-convex spaces for p ∈ (0, 1] or in topological vector spaces
would play important roles for the study in functional analysis as those by Agarwal et al.
[1], Ben-El-Mechaiekh [10], Ben-El-Mechaiekh and Saidi [11], Browder [17], Cellina [24],
Chang [25], Chang et al. [27], Ennassik et al. [37], Fan [40, 41], Górniewicz [51], Granas
and Dugundji [53], Guo et al. [55], Nhu [87], Park [101], Reich [110], Smart [126], Ty-
chonoff [130], Weber [132, 133], Xiao and Lu [134], Xiao and Zhu [135], Xu [137], Yuan
[142–145], Zeidler [146], and the related references therein. We would also like to point
out that the results given in this part are new, which is the continuation of the related work
given by Yuan [144, 145] recently.

In order to establish fixed point theorems for the classes of USC 1-set contractive and
condensing mappings in locally p-convex spaces by using the concept of the measure
of noncompactness (or saying, the noncompactness measures) that were introduced and
widely accepted in mathematical community by Kuratowski [74], Darbo [33], and the re-
lated references therein, by following recent work due to Yuan [144, 145], we first need to
have a brief introduction for the concept of noncompactness measures for the so-called
Kuratowski or Hausdorff measures of noncompactness in normed spaces (see Alghamdi
et al. [5], Machrafi and Oubbi [82], Nussbaum [88], Sadovskii [117], Silva et al. [123], Xiao
and Lu [134] for the general concepts under the framework of p-seminorm or locally con-
vex p-convex settings for p ∈ (0, 1], which will be discussed below, too).

The same as those given by Yuan [144, 145], for a given metric space (X, d) (or a p-
normed space (X,‖ · ‖p)), here we recall some notions and concepts for the completeness,
boundedness, relative compactness, and compactness, which will be used in what follows.
Let (X, d) and (Y , d) be two metric spaces and T : X → Y be a mapping (or, say, operator).
Then: 1) T is said to be bounded if for each bounded set A ⊂ X, T(A) is a bounded set of Y ;
2) T is said to be continuous if for every x ∈ X, limn→∞ xn = x implies that limn→∞ T(xn) =
T ; and 3) T is said to be completely continuous if T is continuous and T(A) is relatively
compact for each bounded subset A of X.

Let A1, A2 ⊂ X be bounded of a metric space (X, d), we also recall that the Hausdorff
metric dH (A1, A2) between A1 and A2 is defined by

dH (A1, A2) := max
{

sup
x∈A1

inf
y∈A2

d(x, y), sup
y∈A2

inf
x∈A1

d(x, y)
}

.
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The Hausdorff and Kurotowskii measures of noncompactness (denoted by βH and βK ,
respectively) for a nonempty bounded subset D in X are the nonnegative real numbers
βH (D) and βK (D) defined by

βH (D) := inf{ε > 0 : D has a finite ε-net}

and

βK (D)

:= inf

{

ε > 0 : D ⊂
n⋃

i=1

Di, where Di is bounded and diam Di ≤ ε, n is an integer

}

,

here diam Di means the diameter of the set Di, and it is well known that βH ≤ βK ≤ 2βH .
We also point out that the notions above can be well defined under the framework of p-
seminorm spaces (E,‖ · ‖p)p∈P by following a similar idea and method used by Chen and
Singh [31], Ko and Tasi [71], and Kozlov et al. [72]; see the references therein for more
details.

Let T be a mapping from D ⊂ X to X. Then we have that: 1) T is said to be a k-
set contraction with respect to βK (or βH ) if there is a number k ∈ [0, 1) such that
βK (T(A)) ≤ kβK (A) (or βH (T(A)) ≤ kβH(A)) for all bounded sets A in D; and 2) T is said
to be βK -condensing (or βH -condensing) if (βK (T(A)) < βK (A)) (or βH (T(A)) < βH (A)) for
all bounded sets A in D with βK (A) > 0 (or βH (A) > 0).

For the convenience of our discussion, throughout the rest part of this paper, if a map-
ping “is βK -condensing (or βH -condensing)”, we simply say it is “a condensing mapping”
unless specified otherwise.

Moreover, it is easy to see that: (1) if T is a compact operator, then T is a k-set contrac-
tion; and (2) if T is a k-set contraction for k ∈ (0, 1), then T is condensing.

To establish the fixed points of set-valued condensing mappings in locally p-convex
spaces (and also p-vector spaces) for p ∈ (0, 1], we need to recall some notions introduced
by Machrafi and Oubbi [82] for the measure of noncompactness in locally p-convex vector
spaces, which also satisfies some necessary (common) properties of the classical measures
of noncompactness such as βK and βH mentioned above introduced by Kuratowski [74],
Sadovskii [117](see also related discussion by Alghamdi et al. [5], Nussbaum [88], Silva
et al. [123], Xiao and Lu [134], and the references therein). In particular, the measures of
noncompactness in locally p-vector spaces (for 0 < p ≤ 1) should have the stable property,
which means the measure of noncompactness A is the same by transition to the (closure)
for the p-convex hull of subset A.

For the convenience of discussion, we follow up to use α and β to denote the Kuratowski
and the Hausdorff measures of noncompactness in topological vector spaces, respectively
(see the same way used by Machrafi and Oubbi [82]), unless otherwise stated. The E is used
to denote a Hausdorff topological vector space over the field K ∈ {R,Q}, here R denotes
all real numbers and Q all complex numbers, and p ∈ (0, 1]. Here, the base set of family of
all balanced zero neighborhoods in E is denoted by V0.

We recall that U ∈ V0 is said to be shrinkable if it is absorbing, balanced, and rU ⊂ U
for all r ∈ (0, 1), and we know that any topological vector space admits a local base at zero
consisting of shrinkable sets (see Klee [69], or Jarchow [61] for details).
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Recall that a topological vector space E is said to be a locally p-convex space if E has a
local base at zero consisting of p-convex sets. The topology of a locally p-convex space is
always given by an upward directed family P of p-seminorms, where a p-seminorm on E
is any nonnegative real-valued and subadditive functional ‖ · ‖p on E such that ‖λx‖p =
|λ|p‖x‖p for each x ∈ E and λ ∈ R (i.e., the real number line). When E is Hausdorff, then
for every x �= 0, there is some p ∈ P such that P(x) �= 0. Whenever the family P is reduced to
a singleton, one says that (E,‖ · ‖) is a p-seminorm space. A p-normed space is a Hausdorff
p-seminorm space when p = 1, which is the usual locally convex case. Furthermore, a p-
normed space is a metric vector space with the translation invariant metric dp(x, y) := ‖x –
y‖p for all x, y ∈ E, which is the same notation as that used above.

By Remark 2.2, if P is a continuous p-seminorm on E, then the ball Bp(0, s) := {x ∈ E :
P(x) < s} is shrinkable for each s > 0. Indeed, if r ∈ (0, 1) and x ∈ rBp(0, s), then there exists a
net (xi)i∈I ⊂ Bp(0, s) such that rxi converges to x. By the continuity of P, we get P(x) ≤ rps <
s, which means that rBp(0, s) ⊂ BP(0, s). In general, it can be shown that every p-convex
U ∈V0 is shrinkable.

We recall that given such a neighborhood U , a subset A ⊂ E is said to be U-small if
A – A ⊂ U (or, say, small of order U by Robertson [113]). Now, by following the idea of
Kaniok [65] in the setting of a topological vector space E, we use zero neighborhoods in E
instead of seminorms to define the measure of noncompactness in (local convex) p-vector
spaces (0 < p ≤ 1) as follows: For each A ⊂ E, the U-measures of noncompactness αU (A)
and βU (A) for A are defined by

αU (A) := inf{: r > 0 : A is covered by a finite number of rU-small sets Ai

for i = 1, 2, . . . , n}

and

βU (A) := inf

{

r > 0 : there exists x1, . . . , xn ∈ E such that A ⊂
n⋃

i=1

(xi + rU)

}

,

here we set inf∅ := ∞.
By the definition above, it is clear that when E is a normed space and U is the closed unit

ball of E, αU and βU are nothing else but the Kuratowski measure βK and Hausdorff mea-
sure βH of noncompactness, respectively. Thus, if U denotes a fundamental system of bal-
anced and closed zero neighborhoods in E and FU is the space of all functions φ : U → R,
endowed with the pointwise ordering, then the αU (resp., βU ) measures for noncompact-
ness introduced by Kaniok [65] can be expressed by the Kuratowski (resp., the Hausdorf )
measure of noncompact α(A)(resp., β(A)) for a subset A of E as the function defined from
U into [0,∞) by

α(A)(U) := αU (A)
(
resp.,β(A)(U) := βU (A)

)
.

By following Machrafi and Oubbi [82], to define the measure of noncompactness in (lo-
cally convex) p-vector space E, we need the following notions of basic and sufficient col-
lections for zero neighborhoods in a topological vector space. To do this, let us introduce
an equivalence relation on V0 by saying that U is related to V , written URV , if and only
if there exist r, s > 0 such that rU ⊂ V ⊂ sU . We now have the following definition.
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Definition 4.5 (BCZN) We say that B ⊂ V0 is a basic collection of zero neighborhoods
(in short, BCZN) if it contains at most one representative member from each equivalence
class with respect to R. It is said to be sufficient (in short, SCZN) if it is basic and, for every
V ∈V0, there exist some U ∈B and some r > 0 such that rU ⊂ V .

Remark 4.4 By Remark 2.2, it follows that for a locally p-convex space E, its base set U,
the family of all open p-convex subsets for 0 is BCZB. We also note that: 1) In the case
when E is a normed space, if f is a continuous functional on E, U := {x ∈ E : |f (x)| < 1} and
V is the open unit ball of E, then {U} is basic but not sufficient, but {V } is sufficient; 2)
Secondly, if (E, τ ) is a locally convex space, whose topology is given by an upward directed
family P of seminorms so that no two of them are equivalent, then the collection (Bp)p∈P
is SCZN, where Bp is the open unit ball of p. Further, if W is a fundamental system of zero
neighborhoods in a topological vector space E, then there exists SCZN consisting of W
members; and 3) By following Oubbi [94], we recall that a subset A of E is called uniformly
bounded with respect to a sufficient collectionB of zero neighborhoods if there exists r > 0
such that A ⊂ rV for all V ∈B. Note that in the locally convex space Cc(X) := Cc(X,K), the
set B∞ := {f ∈ C(X) : ‖f ‖∞ ≤ 1} is uniformly bounded with respect to the SCZN {Bk , k ∈
K}, where Bk is the (closed or) open unit ball of the seminorm Pk , where k ∈ K.

Now we are ready to give the definition for the measure of noncompactness in (locally
p-convex) topological vector space E as follows.

Definition 4.6 Let B be SCZN in E. For each A ⊂ E, we define the measure of noncom-
pactness of A with respect to B by αB(A) := supU∈B αU (A).

By the definition above, it is clear that: 1) The measure of noncompactness αB holds
the semiadditivity, i.e., αB(A ∪ B) = max{αB(A),αB(B)}; and 2) αB(A) = 0 if and only if A
is a precompact subset of E (for more properties in detail, see Proposition 1 and related
discussion by Machraf and Oubbi [94]).

As we know, under the normed spaces (and even seminormed spaces), Kuratowski
[74], Darbo [33], and Sadovskii [117] introduced the notions of k-set-contractions for
k ∈ (0, 1) and condensing mappings to establish fixed point theorems in the setting of Ba-
nach spaces, normed or seminorm spaces. By following the same idea, if E is a Hausdorff
locally p-convex space, we have the following definition for general (nonlinear) mappings.

Definition 4.7 A mapping T : C → 2C is said to be a k-set contraction (resp., condensing)
if there is some SCZN B in E consisting of p-convex sets, such that (resp., condensing)
for any U ∈B, there exists k ∈ (0, 1) (resp., condensing) such that αU (T(A)) ≤ kαU (A) for
A ⊂ C (resp., αU (T(A)) < αU (A) for each A ⊂ C with αU (A) > 0).

It is clear that a contraction mapping on C is a k-set contraction mapping (where we
always mean k ∈ (0, 1)), and a k-set contraction mapping on C is condensing; and they
all reduce to the usual cases by the definitions for βK and βH , which are the Kuratowski
measure and the Hausdorff measure of noncompactness, respectively, in normed spaces
(see Kuratowski [74]).

From now on, denote by V0 the set of all shrinkable zero neighborhoods in E, we then
have the following result, which is Theorem 1 of Machrafi and Oubbi [82], saying that



Yuan Fixed Point Theory Algorithms Sci Eng         (2023) 2023:10 Page 22 of 58

in the general setting of locally p-convex spaces, the measure of noncompactness α for
U given by Definition 4.3 is stable from U to its p-convex hull Cp(A) of the subset A
in E, which is key for us to establish fixed points for condensing mappings in locally p-
convex spaces for 0 < p ≤ 1. This also means that the key property for the measures due to
the Kurotowski and Hausdorff measures of noncompactness in normed (or p-seminorm)
spaces also holds for the measure of noncompactness by Definition 4.3 in the setting of lo-
cally p-convex spaces with (0 < p ≤ 1) (for more details, see similar and related discussion
by Alghamdi et al. [5] and Silva et al. [123]).

Lemma 4.3 If U ∈V0 is p-convex for some 0 < p ≤ 1, then α(Cp(A)) = α(A) for every A ⊂ E.

Proof It is Theorem 1 of Machrafi and Oubbi [82]. The proof is complete. �

Now, based on the definition for the measure of noncompactness given by Definition 4.3
(originally from Machrafi and Oubbi [82]), we have the following general extended version
of Schauder, Darbo, and Sadovskii type fixed point theorems in the context of locally p-
convex vector spaces for condensing mappings.

Theorem 4.7 Let C ⊂ E be a complete s-convex subset of a locally p-convex space E with
s, p ∈ (0, 1]. If T : C → 2C is quasi upper semicontinuous and (α) condensing set-valued
mappings with nonempty p-convex values and with a closed graph, then T has a fixed
point in C.

Proof Let B be a sufficient collection of p-convex zero neighborhoods in E with respect
to which T is condensing for any given U ∈ B. We choose some x0 ∈ C and let F be the
family of all closed p-convex subsets A of C with x0 ∈ A and T(A) ⊂ A. Note that F is not
empty since C ∈ F. Let A0 =

⋂
A∈F A. Then A0 is a nonempty closed p-convex subset of C

such that T(A0) ⊂ A0. We shall show that A0 is compact. Let A1 = Cp(T(A0) ∪ {x0}). Since
T(A0) ⊂ A0 and A0 is closed and p-convex, A1 ⊂ A0. Hence, T(A1) ⊂ T(A0) ⊂ A1. It follows
that A1 ∈ F, and therefore A1 = A0. Now, by Proposition 1 of Machrafi and Oubbi [82] and
Lemma 4.3 above (i.e., Theorem 1 and Theorem 2 in [82]), we get αU (T(A0)) = αU (A). Our
assumption on T shows that αU (A0) = 0 since T is condensing. As U is arbitrary from the
familyB, thus A0 is p-convex and compact (see Proposition 4 in [82]). Now, the conclusion
follows by Theorem 4.4 (or Theorem 4.6) above. The proof is complete. �

As an application of Theorem 4.7, we have the following general result, which answers
Schauder conjecture for quasi upper semicontinuous set-valued mappings defined on s-
convex subsets in locally convex spaces, where p ∈ (0, 1].

Theorem 4.8 (Schauder fixed point theorem for QUSC condensing mappings in LCS)
Let K be a nonempty closed p-convex subset of a locally p convex space, where p ∈ (0, 1],
then any quasi upper semicontinuous set-valued (α) condensing mapping T : K → 2K with
nonempty convex values and with a closed graph has at least a fixed point.

Proof By letting s = p in Theorem 4.7, the conclusion follows by Theorem 4.7. Thus we
complete the proof. �

As a special case of Theorem 4.8, we have the following result.
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Theorem 4.9 Let K be a closed p-convex subset of a Hausdorff locally p-convex space X,
where p ∈ (0, 1]. If T : K → 2K is an upper continuous condensing set-valued mapping with
nonempty closed p-convex values, then T has a fixed point in K .

Proof By the fact that each upper semicontinuous (USC) set-valued mapping is quasi up-
per semicontinuous and each USC with closed value has a closed graph, the conclusion
follows by Theorem 4.7. This completes the proof. �

As applications of Theorem 4.9, we have a few theorems of fixed points for condensing
mappings in locally p-convex spaces for p ∈ (0, 1] as follows.

Corollary 4.5 (Darbo type fixed point theorem) Let C be a complete p-convex subset of
a Hausdorff locally p-convex space E with 0 < p ≤ 1. If T : C → 2C is a (k)-set-contraction
(where k ∈ (0, 1)) with closed and p-convex values, then T has a fixed point.

Corollary 4.6 (Sadovskii type fixed point theorem) Let (E,‖ · ‖) be a complete p-normed
space and C be a bounded, closed, and p-convex subset of E, where 0 < p ≤ 1. Then every
USC and condensing mapping T : C → 2C with closed and p-convex values has a fixed
point.

Proof In Theorem 4.7, let B := {Bp(0, 1)}, where Bp(0, 1) stands for the closed unit ball of
E, and by the fact that it is clear that α(A) = (αB(A))p for each A ⊂ E. Then that T satisfies
all conditions of Theorem 4.7. This completes the proof. �

Corollary 4.7 (Darbo type) Let (E,‖ · ‖) be a complete p-normed space and C be a
bounded, closed, and p-convex subset of E, where 0 < p ≤ 1. Then each mapping T : C → C
that is continuous and a set-contraction has a fixed point.

Theorem 4.7 and also Theorem 4.8 improve Theorem 5 of Machrafi and Oubbi [82]
for general condensing mappings that are general upper semicontinuous mappings with
closed p-convex values and also unify the corresponding results in the existing literature,
e.g., see Alghamdi et al. [5], Górniewicz [51], Górniewicz et al. [52], Nussbaum [88], Silva
et al. [123], Xiao and Lu [134], Xiao and Zhu [135], and the references therein.

Secondly, as an application of the KKM principle for abstract convex spaces with graph
approximation Lemma 4.2 for quasi upper semicontinuous set-valued mappings in locally
p-convex spaces, we establish general fixed point theorems for quasi upper semicontinu-
ous set-valued mappings, which allow us to answer Schauder’s conjecture in the affirma-
tive way under the framework of locally p-convex spaces for p ∈ (0, 1].

Before the ending of this section, we would also like to remark that by comparing with
topological method or related arguments used by Askoura et al. [6], Cauty [22, 23], Do-
browolski [35], Nhu [87], Reich [110], the fixed points given in this section improve or
unify the corresponding ones given by Alghamdi et al. [5], Darbo [33], Liu [81], Machrafi
and Oubbi [82], Sadovskii [117], Silva et al. [123], Xiao and Lu [134], Yuan [144, 145], and
those from the references therein.
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5 Best approximation for the class of 1-set contractive mappings in locally
p-convex spaces

The goal of this section is first to establish one general best approximation result for 1-
set upper semicontinuous and hemicompact (see its definition below) nonself set-valued
mappings, which in turn is used as a tool to derive the general principle for the existence of
solutions for Birkhoff–Kellogg problems (see Birkhoff and Kellogg [14]) and fixed points
for nonself 1-set contractive set-valued mappings.

Here, we recall that since the Birkhoff–Kellogg theorem was first introduced and proved
by Birkhoff and Kellogg [14] in 1922 in discussing the existence of solutions for the equa-
tion x = λF(x), where λ is a real parameter and F is a general nonlinear nonself mapping
defined on an open convex subset U of a topological vector space E, now the general form
of the Birkhoff–Kellogg problem is to find the so-called invariant direction for nonlinear
set-valued mappings F , i.e., to find x0 ∈ U (or x0 ∈ ∂U) and λ > 0 such that λx0 ∈ F(x0).

Since the Birkhoff and Kellogg theorem given by Birkhoff and Kellogg in 1920s, the study
on Birkhoff–Kellogg problem has been received a lot of scholars’ attention. For example,
one of the fundamental results in nonlinear functional analysis, called the Leray–Schauder
alternative, was established via topological degree by Leray and Schauder [76] in 1934.
Thereafter, certain other types of Leray–Schauder alternatives were proved using different
techniques other than topological degree, see the work by Granas and Dugundji [53], Furi
and Pera [44] in the Banach space setting and applications to the boundary value problems
for ordinary differential equations, and a general class of mappings for nonlinear alterna-
tive of Leray–Schauder type in normal topological spaces, and also Birkhoff–Kellogg type
theorems for general class mappings in TVS by Agarwal et al. [1], Agarwal and O’Regan
[2, 3], Park [98]. In particular, recently O’Regan [91] used the Leray–Schauder type coinci-
dence theory to establish some Birkhoff–Kellogg problem and Furi–Pera type results for
a general class of set-valued mappings.

In this section, one best approximation result for 1-set contractive mappings in p-
seminorm spaces is first established, which is then used to the general principle for so-
lutions of Birkhoff–Kellogg problems and related nonlinear alternatives, then it allows us
to give general existence results for the Leray–Schauder type and related fixed point the-
orems of nonself mappings in p-seminorm spaces for p ∈ (0, 1]. The new results given in
this part not only include the corresponding results in the existing literature as special
cases, but are also expected to be useful tools for the study of nonlinear problems arising
from theory to practice for 1-set contractive mappings.

We also note that the general nonlinear alternative related to Leray–Schauder alterna-
tive under the framework of p-seminorm spaces for p ∈ (0, 1] given in this section would
be a useful tool for the study of nonlinear problems. In addition, we also note that corre-
sponding results in the existing literature for Birkhoff–Kellogg problems and the Leray–
Schauder alternative have been studied comprehensively by Granas and Dugundji [53],
Isac [60], Park [99–101], Carbone and Conti [21], Chang and Yen [30], Chang et al. [28, 29],
Kim et al. [67], Shahzad [120–122], Singh [125]; and in particular, many general forms have
been recently obtained by O’Regan [92] (see also the references therein).

To study the existence of fixed points for nonself mappings in p-vector spaces, we need
the following definitions.
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Definition 5.1 (Inward and outward sets in p-vector spaces) Let C be a subset of a p-
vector space E and x ∈ E for 0 < p ≤ 1. Then the p-inward set Ip

C(x) and p-outward set
Op

C(x) are defined by
Ip

C(x) := {x + r(y – x) : y ∈ C for any r ≥ 0 (1) if 0 ≤ r ≤ 1 with (1 – r)p + rp =
1; or (2) if r ≥ 1 with ( 1

r )p + (1 – 1
r )p = 1}; and

Op
C(x) := {x + r(y – x) : y ∈ C for any r ≤ 0 (1) if 0 ≤ |r| ≤ 1 with (1 – |r|)p + |r|p =

1; or (2) if |r| ≥ 1 with ( 1
|r| )

p + (1 – 1
|r| )

p = 1}.

From the definition, it is obvious that when p = 1, both the inward and outward sets
Ip

C(x), Op
C(x) are reduced to the definition for the inward set IC(x) and the outward set

OC(x), respectively, in topological vector spaces introduced by Halpern and Bergman [56]
and used for the study of nonself mappings related to nonlinear functional analysis in the
literature. In this paper, we mainly focus on the study of the p-inward set Ip

U (x) for the
best approximation related to the boundary condition for the existence of fixed points in
p-vector spaces. By the special property of p-convex concept when p ∈ (0, 1) and p = 1, we
have the following fact.

Lemma 5.1 Let C be a subset of a p-vector space E and x ∈ E, where 0 < p ≤ 1. Then for
both p-inward and outward sets Ip

C(x) and Op
C(x) defined above, we have

(I) when p ∈ (0, 1), Ip
C(x) = [{x} ∪ C] and Op

C(x) = [{x} ∪ {2x} ∪ –C],
(II) when p = 1, in general [{x} ∪ C] ⊂ Ip

C(x) and [{x} ∪ {2x} ∪ –C] ⊂ Op
C(x).

Proof First, when p ∈ (0, 1), by the definitions of Ip
C(x), the only real number r ≥ 0 satisfy-

ing the equation (1 – r)p + rp = 1 for r ∈ [0, 1] is r = 0 or r = 1, and when r ≥ 1, the equation
( 1

r )p + (1 – 1
r )p = 1 implies that r = 1. The same reason for Op

C(x), it follows that r = 0 and
r = –1.

Secondly when p = 1, all r ≥ 0 and all r ≤ 0 satisfy the requirement of definition for Ip
C(x)

and Op
C(x), respectively, thus the proof is complete. �

By following the original idea by Tan and Yuan [129] for hemicompact mappings in met-
ric spaces, we introduce the following definition for a mapping being hemicompact in p-
seminorm spaces for p ∈ (0, 1], which is indeed the “(H) condition” used in Theorem 5.1
to prove the existence of best approximation results for 1-set contractive set-valued map-
pings in p-seminorm vector spaces for p ∈ (0, 1].

Definition 5.2 (Hemicompact mapping) Let E be a p-vector space with p-seminorm
for 1 < p ≤ 1. For a given bonded (closed) subset D in E, a mapping F : D → 2E is said
to be hemicompact if each sequence {xn}n∈N in D has a convergent subsequence with
limit x0 such that x0 ∈ F(x0), whenever limn→∞ dPU (xn, F(xn)) = 0 for each U ∈ U, where
dPU (x, C) := inf{PU (x – y) : y ∈ C} is the distance of a single point x with the subset C in E
based on PU , PU is the Minkowski p-functional in E for U ∈ U, which is the base of the
family consisting of all subsets of 0-neighborhoods in E.

Remark 5.1 We would like to point out that Definition 5.2 is indeed an extension for
a “hemicompact mapping” defined from a metric space to a p-vector space with the p-
seminorm, where p ∈ (0, 1] (see Tan and Yuan [129]). By the monotonicity of Minkowski
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p-functionals, i.e., the bigger 0-neighborhoods, the smaller Minkowski p-functionals’ val-
ues (see also p. 178 of Balachandran [7]), Definition 5.2 describes the convergence for the
distance between xn and F(xn) by using the language of seminorms in terms of Minkowski
p-functionals for each 0-neighborhood in U (the base), which is the family consisting of
its 0-neighborhoods in p-vector space E.

Now we have the following Schauder fixed point theorem for 1-set contractive mappings
in locally p-convex spaces for p ∈ (0, 1].

Theorem 5.1 (Schauder fixed point theorem for 1-set contractive mappings) Let U be a
nonempty bounded open p-convex subset of a (Hausdorff ) locally p-convex space E and
its zero 0 ∈ U , and let C ⊂ E be a closed p-convex subset of E such that 0 ∈ C with 0 <
p ≤ 1. If F : C ∩ U → 2C∩U is a quasi upper semicontinuous and 1-set contractive set-
valued mapping with nonempty p-convex values and with a closed graph and satisfying
the following (H) or (H1) condition:

(H) Condition: The sequence {xn}n∈N in U has a convergent subsequence with limit
x0 ∈ U such that x0 ∈ F(x0), whenever limn→∞ dPU (xn, F(xn)) = 0, where dPU (xn, F(xn)) :=
inf{PU (xn – z) : z ∈ F(xn)}, where PU is the Minkowski p-functional for any U ∈ U, which is
the family of all nonempty open p-convex subset containing zero in E.

(H1) Condition: There exists x0 in U with x0 ∈ F(x0) if there exists {xn}n∈N in U such that
limn→∞ dPU (xn, F(xn)) = 0, where PU is the Minkowski p-functional for any U ∈ U, which is
the family of all nonempty open p-convex subsets containing zero in E.

Then F has at least one fixed point in C ∩ U .

Proof Let U be a family of all nonempty open p-convex subset containing zero in E, and
let U be any element in U. As the mapping T is 1-set contractive, take an increasing se-
quence {λn} such that 0 < λn < 1 and limn→∞ λn = 1, where n ∈ N. Now we define a map-
ping Fn : C → 2C by Fn(x) := λnF(x) for each x ∈ C and n ∈ N. Then it follows that Fn is
a λn-set-contractive mapping with 0 < λn < 1, and it is also quasi upper semicontinuous
with p-convex values, and its graph is also closed. Now, by Theorem 4.8 on the condensing
mapping Fn in locally p-convex spaces with p-seminorm PU (which is the Minkowski p-
functional for U ∈ U), for each n ∈ N, there exists xn ∈ C such that xn ∈ Fn(xn) = λnF(xn).
Thus there exists yn ∈ F(xn) such that xn = λnyn. As PU is the Minkowski p-functional
of U in E, it follows that PU is continuous as 0 ∈ int(U) = U . Note that for each n ∈ N,
λnxn ∈ U ∩ C, which implies that xn = r(λnyn) = λnyn, thus PU (λnyn) ≤ 1 by Lemma 2.2.
Note that

PU (yn – xn) = PU (yn – xn)

= PU (yn – λnyn)

= PU

(
(1 – λn)λnyn

λn

)

≤
(

1 – λn

λn

)p

PU (λnyn) ≤
(

1 – λn

λn

)p

,

which implies that limn→∞ PU (yn – xn) = 0 for all U ∈ U.
Now (1) if F satisfies the (H) condition, it implies that the consequence {xn}n∈N has a

convergent subsequence that converges to x0 such that x0 ∈ F(x0). Without loss of gener-
ality, we assume that limn→∞ xn = x0, here yn ∈ F(xn) is with xn = λnyn, and limn→∞ λn = 1,
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it implies that x0 = limn→∞(λnyn), which means y0 := limn→∞ yn = x0. There exists y0(=
x0) ∈ F(x0).

(ii) If F satisfies the (H1) condition, then by the (H1) condition, it follows that there exists
x0 in U such that x0 ∈ F(x0), which is a fixed point of F . We complete the proof. �

Theorem 5.2 (Best approximation for 1-set-contractive mappings) Let U be a bounded
open p-convex subset of a locally p-convex space E (0 < p ≤ 1), zero 0 ∈ U , and C be a
(bounded) closed convex subset of E with also zero 0 ∈ C. Assume that F : U ∩ C → 2C

is a 1-set contractive and quasi upper semicontinuous mapping with nonempty p-convex

values and with a closed graph, and for each x ∈ ∂CU with y ∈ F(x)∩(C�U)), (P
1
p
U (y)–1)p ≤

PU (y – x) for 0 < p ≤ 1 (this is trivial when p = 1). In addition, if F satisfies the following
(H) or (H1) condition:

(H) Condition: The sequence {xn}n∈N in U has a convergent subsequence with limit
x0 ∈ U such that x0 ∈ F(x0), whenever limn→∞ dPU (xn, F(xn)) = 0, where dPU (xn, F(xn)) :=
inf{PU (xn – z) : z ∈ F(xn)}, where PU is the Minkowski p-functional for any U ∈ U, which is
the family of all nonempty open p-convex subsets containing zero in E.

(H1) Condition: There exists x0 in U with x0 ∈ F(x0) if there exists {xn}n∈N in U such that
limn→∞ dPU (xn, F(xn)) = 0, where PU is the Minkowski p-functional for any U ∈ U, which is
the family of all nonempty open p-convex subsets containing zero in E.

Then we have that there exist x0 ∈ C ∩ U and y0 ∈ F(x0) such that

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, Ip

U (x0) ∩ C
)
,

where PU is the Minkowski p-functional of U . More precisely, we have that either (I) or
(II) holds:

(I) F has a fixed point x0 ∈ U ∩ C, i.e.,
0 = PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip

U (x0) ∩ C);
(II) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0)�U with

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, Ip

U (x0) ∩ C
)

=
(
P

1
p
U (y0) – 1

)p > 0.

Proof As E is a p-convex space and U is a bounded open p-convex subset of E, it suffices
to prove that there exists a sequence (xn)n∈N in U and yn ∈ F(xn) such that limn→∞ PU (yn –
xn) = 0, and the conclusion follows by applying the (H) condition.

Let r : E → U be a retraction mapping defined by r(x) := x

max{1,(PU (x))
1
p }

for each x ∈ E,

where PU is the Minkowski p-functional of U . Since the space E’s zero 0 ∈ U(= int U as U is
open), it follows that r is continuous by Lemma 2.2. As the mapping F is 1-set contractive,
take an increasing sequence {λn} such that 0 < λn < 1 and limn→∞ λn = 1, where n ∈ N.
Now, for each n ∈ N, we define a mapping Fn : C ∩ U → 2C by Fn(x) := λnF ◦ r(x) for each
x ∈ C ∩ U . By the fact that C and U are p-convex, it follows that r(C) ⊂ C and r(U) ⊂ U ,
thus r(C ∩ U) ⊂ C ∩ U . Therefore Fn is a mapping from U ∩ C to itself. For each n ∈ N,
by the fact that Fn is a λn-set-contractive mapping with 0 < λn < 1, it is also QUSC with
nonempty p-convex and its graph is also closed. Then it follows by Theorem 4.8 for the
condensing mapping that there exists zn ∈ C ∩ U such that zn ∈ Fn(zn) = λnF ◦ r(zn). As
r(C ∩ U) ⊂ C ∩ U , let xn = r(zn). Then we have that xn ∈ C ∩ U , and there exists yn ∈ F(xn)
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with xn = r(λnyn) such that the following (1) or (2) holds for each n ∈ N: (1) λnyn ∈ C ∩ U ;
or (2) λnyn ∈ C�U .

Now we prove the conclusion by considering the following two cases under (H) condi-
tion and (H1) condition.

Case (I) For each n ∈ N , λnyn ∈ C ∩ U ; or
Case (II) There exists a positive integer n such that λnyn ∈ C�U .
First, by case (I), for each n ∈ N, λnyn ∈ U ∩ C, which implies that xn = r(λnyn) = λnyn,

thus PU (λnyn) ≤ 1 by Lemma 2.2. Note that

PU (yn – xn) = PU (yn – xn)

= PU (yn – λnyn)

= PU

(
(1 – λn)λnyn

λn

)

≤
(

1 – λn

λn

)p

PU (λnyn)

≤
(

1 – λn

λn

)p

,

which implies that limn→∞ PU (yn – xn) = 0. Now, for any V ∈U, without loss of generality,
let U0 = V ∩ U . Then we have the following conclusion:

PU0 (yn – xn) = PU0 (yn – xn)

= PU0 (yn – λnyn)

= PU0

(
(1 – λn)λnyn

λn

)

≤
(

1 – λn

λn

)p

PU0 (λnyn)

≤
(

1 – λn

λn

)p

,

which implies that limn→∞ PU0 (yn – xn) = 0, where PU0 is the Minkowski p-functional of
U0 in E.

Now, if F satisfies the (H) condition, then it follows that the consequence {xn}n∈N has a
convergent subsequence that converges to x0 such that x0 ∈ F(x0). Without loss of general-
ity, we assume that limn→∞ xn = x0, where yn ∈ F(xn) is with xn = λnyn and limn→∞ λn = 1,
and as x0 = limn→∞(λnyn), which implies that y0 = limn→∞ yn = x0. Thus there exists
y0(= x0) ∈ F(x0), we have 0 = dp(x0, F(x0)) = d(y0, U ∩ C) = dp(y0, Ip

U (x0) ∩ C)) as indeed
x0 = y0 ∈ F(x0) ∈ U ∩ C ⊂ Ip

U (x0) ∩ C).
If F satisfies the (H1) condition, then it follows that there exists x0 ∈ U ∩ C with x0 ∈

F(x0). Then we have 0 = PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip
U (x0) ∩ C).

Second, by case (II) there exists a positive integer n such that λnyn ∈ C�U . Then we
have that PU (λnyn) > 1, and also PU (yn) > 1 as λn < 1. As xn = r(λnyn) = λnyn

(PU (λnyn))
1
p

, which
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implies that PU (xn) = 1, thus xn ∈ ∂C(U). Note that

PU (yn – xn) = PU

(
(PU (yn)

1
p – 1)yn

PU (yn)
1
p

)

=
(
P

1
p
U (yn) – 1

)p.

By the assumption, we have (P
1
p
U (yn) – 1)p ≤ PU (yn – x) for x ∈ C ∩ ∂U , it follows that

PU (yn) – 1 ≤ PU (yn) – sup
{

PU (z) : z ∈ C ∩ U
}

≤ inf
{

PU (yn – z) : z ∈ C ∩ U
}

= dp(yn, C ∩ U).

Thus we have the best approximation: PU (yn – xn) = dP(yn, U ∩ C) = (P
1
p
U (yn) – 1)p > 0.

Now we want to show that PU (yn – xn) = dP(yn, U ∩ C) = dp(yn, Ip
U (x0) ∩ C) > 0.

By the fact that (U ∩ C) ⊂ Ip
U (xn) ∩ C, let z ∈ Ip

U (xn) ∩ C�(U ∩ C), we first claim that
PU (yn –xn) ≤ PU (yn –z). If not, we have PU (yn –xn) > PU (yn –z). As z ∈ Ip

U (xn)∩C�(U ∩C),
there exist y ∈ U and a nonnegative number c (actually c ≥ 1 as shown soon below) with
z = xn +c(y–xn). Since z ∈ C, but z /∈ U ∩C, it implies that z /∈ U . By the fact that xn ∈ U and
y ∈ U , we must have the constant c ≥ 1; otherwise, it implies that z(= (1 – c)xn + cy) ∈ U ,
this is impossible by our assumption, i.e., z /∈ U . Thus we have that c ≥ 1, which implies
that y = 1

c z + (1 – 1
c )xn ∈ C (as both xn ∈ C and z ∈ C). On the other hand, as z ∈ Ip

U (xn) ∩
C�(U ∩ C), and c ≥ 1 with ( 1

c )p + (1 – 1
c )p = 1, combining with our assumption that for

each x ∈ ∂CU and y ∈ F(xn)�U , P
1
p
U (y) – 1 ≤ P

1
p
U (y – x) for 0 < p ≤ 1, it then follows that

PU (yn – y) = PU

[
1
c

(yn – z) +
(

1 –
1
c

)

(yn – xn)
]

≤
[(

1
c

)p

PU (yn – z) +
(

1 –
1
c

)p

PU (yn – xn)
]

< PU (yn – xn),

which contradicts that PU (yn –xn) = dP(yn, U ∩C) as shown above, we know that y ∈ U ∩C,
we should have PU (yn – xn) ≤ PU (yn – y)! This helps us to complete the claim: PU (yn –
xn) ≤ PU (yn – z) for any z ∈ Ip

U (xn) ∩ C�(U ∩ C), which means that the following best
approximation of Fan type (see [42, 43]) holds:

0 < dP(yn, U ∩ C) = PU (yn – xn) = dp
(
yn, Ip

U (xn) ∩ C
)
.

Now, by the continuity of PU , it follows that the following best approximation of Fan type
is also true:

0 < PU (yn – xn) = dP(yn, U ∩ C) = dp
(
yn, Ip

U (xn) ∩ C
)

= dp
(
yn, Ip

U (xn) ∩ C
)
.

The proof is complete. �

Remark 5.2 Based on the proof of Theorem 5.2, we have that (1): For the condition “x ∈
∂CU with y ∈ F(x), P

1
p
U (y) – 1 ≤ P

1
p
U (y – x) for 0 < p ≤ 1”, indeed we only need that for “x ∈
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∂CU with y ∈ F(x) ∩ (C�U)), P
1
p
U (y) – 1 ≤ P

1
p
U (y – x) for 0 < p ≤ 1”; (2): Theorem 5.2 also

improves the corresponding best approximation for 1-set contractive mappings given by
Li et al. [78], Liu [81], Xu [139], Xu et al. [140], and the results from the references therein;
and (3): When p = 1, we have a similar best approximation result for the mapping F in the
locally convex spaces with outward set boundary condition below (see Theorem 3 of Park
[97] and related discussion by the references therein).

For the p-vector space with p = 1 being a topological vector space E, we have the follow-
ing best approximation for the outward set OU (x0) based on the point {x0} with respect to
the convex subset U in E.

Theorem 5.3 (Best approximation for outward sets) Let U be a bounded open convex
subset of a locally convex space E (i.e., p = 1) with zero 0 ∈ int U = U (the interior int U = U
as U is open), and let C be a closed p-convex subset of E with also zero 0 ∈ C. Assume that F :
U ∩ C → 2C is a 1-set-contractive quasi upper semicontinuous mapping with nonempty p-
convex values and with a closed graph that satisfies condition (H) or (H1) above. Then there
exist x0 ∈ U ∩ X and y0 ∈ F(x0) such that PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, OU (x0) ∩ C),
where PU is the Minkowski p-functional of U . More precisely, we have that either (I) or (II)
holds:

(I) F has a fixed point x0 ∈ U ∩ C, i.e., x0 ∈ F(x0) such that
PU (y0 – x0) = PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, OU (x0) ∩ C)) = 0;

(II) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0)�U with

PU (y0 – x0) = dP(y0, U ∩ C)

= dp
(
y0, OU (x0) ∩ C

)
= dp

(
y0, OU (x0) ∩ C

)
> 0.

Proof We define a new mapping F1 : U ∩ C → 2C by F1(x) := {2x} – F(x) for each x ∈
U ∩C, then F1 is also compact and upper semicontinuous mapping with nonempty closed
convex values, and F1 satisfies all hypotheses of Theorem 5.2 with p = 1. If follows by
Theorem 5.2 that there exist x0 ∈ U ∩ X and y1 ∈ F1(x0) such that PU (y1 – x0) = dP(y1, U ∩
C) = dp(y1, IU (x0) ∩ C). More precisely, we have the following either (I) or (II) holding:

(I) F1 has a fixed point x0 ∈ U ∩ C (so 0 = PU (y1 – x0) = PU (y1 – x0) = dP(y1, U ∩ C) =
dp(y1, IU (x0) ∩ C));

(II) There exist x0 ∈ ∂C(U) and y1 ∈ F1(x0)�U with

PU (y1 – x0) = dP(y1, U ∩ C) = dp
(
y1, OU (x0) ∩ C

)
> 0.

Now, for any x ∈ OU (x0), there exist r < 0, u ∈ U such that x = x0 + r(u – x0). Let x1 =
2x0 – x, then x1 = 2x0 – x0 – r(u – x0) = x0 + (–r)(u – x0) ∈ IU (x0). Let y1 = 2x0 – y0 for
some y0 ∈ F(x0). As we have PU (y1 – x0) = dP(y1, U ∩ C) = dp(y1, IU (x0) ∩ C), it follows that
PU (y1 – x0) ≤ PU (y1 – x1), which implies that

PU (x0 – y0) = PU (y1 – x0)

≤ PU (y1 – x1) = PU
(
2x0 – y0 – (2x0 – x)

)
= PU (y0 – x)
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for all x ∈ OU (x0). Thus we have PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, OU (x0) ∩ C), and by
the continuity of PU , it follows that

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, OU (x0) ∩ C

)(
P

1
p
U (y0) – 1

)p > 0.

This completes the proof. �

Now, by the application of Theorem 5.2, Theorem 5.3, Remark 5.2, and the argument
used in Theorem 5.2, we have the following general principle for the existence of solutions
for Birkhoff–Kellogg problems in p-seminorm spaces, where (0 < p ≤ 1).

Theorem 5.4 (Principle of Birkhoff–Kellogg alternative) Let U be a bounded open p-
convex subset of a locally p-convex space E (0 < p ≤ 1) with zero 0 ∈ int U = U , and let
C be a closed p-convex subset of E with also zero 0 ∈ C. Assume that F : U ∩ C → 2C is
a 1-set-contractive quasi upper semicontinuous mapping with nonempty p-convex values
and with a closed graph, satisfying the (H) or (H1) condition above. Then F has at least one
of the following two properties:

(I) F has a fixed point x0 ∈ U ∩ C such that x0 ∈ F(x0);
(II) There exist x0 ∈ ∂C(U), y0 ∈ F(x0)�U , and λ = 1

(PU (y0))
1
p

∈ (0, 1) such that

x0 = λy0 ∈ λF(x0); In addition if for each x ∈ ∂CU , P
1
p
U (y) – 1 ≤ P

1
p
U (y – x) for 0 < p ≤ 1

(this is trivial when p = 1), then the best approximation between x0 and y0 is given by

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, Ip

U (x0) ∩ C
)

=
(
P

1
p
U (y0) – 1

)p > 0.

Proof If (I) is not the case, then (II) is proved by Remark 5.2 and by following the proof
in Theorem 5.2 for case (ii): y0 ∈ C�U with y0 := f (x0) ∈ F(x0). Indeed, as y0 /∈ U , it fol-
lows that PU (y0) > 1 and x0 = f (y0) = y0

1

(PU (y0))
1
p

. Now let λ = 1

(PU (y0))
1
p

, we have λ < 1 and

x0 = λy0 with y0 ∈ F(x0). Finally, the additionally assumption in (II) allows us to have the
best approximation between x0 and y0 obtained by following the proof of Theorem 5.2 as
PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip

U (x0) ∩ C) > 0. This completes the proof. �

As an application of Theorem 5.2 for the nonself set-valued mappings discussed in The-
orem 5.3 with outward set condition, we have the following general principle of Birkhoff–
Kellogg alternative in topological vector spaces.

Theorem 5.5 (Principle of Birkhoff–Kellogg alternative in TVS) Let U be a bounded open
p-convex subset of a locally p-convex space E with zero 0 ∈ U , and let C be a closed convex
subset of E with also zero 0 ∈ C. Assume that F : U ∩C → 2C is a 1-set contractive and quasi
upper semicontinuous mapping with nonempty p-convex values and with a closed graph,
satisfying the (H) or (H1) condition (H) above. Then it has at least one of the following two
properties:

(I) F has a fixed point x0 ∈ U ∩ C such that x0 ∈ F(x0);
(II) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0)�U and λ ∈ (0, 1) such that x0 = λy0, and the

best approximation between x0 and y0 is given by
PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip

U (x0) ∩ C) > 0.



Yuan Fixed Point Theory Algorithms Sci Eng         (2023) 2023:10 Page 32 of 58

On the other hand, by the proof of Theorem 5.2, we note that for case (II) of Theorem 5.2,

the assumption “each x ∈ ∂CU with y ∈ F(x), P
1
p
U (y) – 1 ≤ P

1
p
U (y – x)” is only used to guar-

antee the best approximation “PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip
U (x0) ∩ C) > 0”, thus

we have the following Leray–Schauder alternative in p-vector spaces, which, of course,
includes the corresponding results in locally convex spaces as special cases.

Theorem 5.6 (The Leray–Schauder nonlinear alternative) Let C be a closed p-convex sub-
set of p-seminorm space E with 0 ≤ p ≤ 1 and zero 0 ∈ C. Assume that F : C → 2C is a 1-set
contractive and quasi upper semicontinuous mapping with nonempty p-convex values and
with a closed graph, satisfying the (H) or (H1) condition above. Let ε(F) := {x ∈ C : x ∈
λF(x) for some 0 < λ < 1}. Then either F has a fixed point in C or the set ε(F) is unbounded.

Proof We prove the conclusion by assuming that F has no fixed point, then we claim that
the set ε(F) is unbounded. Otherwise, assume the set ε(F) is bounded, and assume that P
is the continuous p-seminorm for E, then there exists r > 0 such that the set B(0, r) := {x ∈
E : P(x) < r}, which contains the set ε(F), i.e., ε(F) ⊂ B(0, r), which means for any x ∈ ε(F),
P(x) < r. Then B(0.r) is an open p-convex subset of E and zero 0 ∈ B(0, r) by Lemma 2.2 and
Remark 2.4. Now let U := B(0, r) in Theorem 5.4, it follows that the mapping F : B(0, r) ∩
C → 2C satisfies all general conditions of Theorem 5.4, and we have that any x0 ∈ ∂CB(0, r),
no any λ ∈ (0, 1) such that x0 = λy0, where y0 ∈ F(x0). Indeed, for any x ∈ ε(F), it follows
that P(x) < r as ε(F) ⊂ B(0, r), but for any x0 ∈ ∂CB(0, r), we have P(x0) = r, thus conclusion
(II) of Theorem 5.4 does not hold. By Theorem 5.4 again, F must have a fixed point, but
this contradicts our assumption that F is fixed point free. This completes the proof. �

Now assume a given p-vector space E equipped with the P-seminorm (by assuming it
is continuous at zero) for 0 < p ≤ 1, then we know that P : E → R

+, P–1(0) = 0, P(λx) =
|λ|pP(x) for any x ∈ E and λ ∈R. Then we have the following useful result for fixed points
due to Rothe and Altman types in locally p-convex spaces, which plays important roles for
optimization problem, variational inequality, complementarity problems (see Isac [60] or
Yuan [143] and the references therein for related study in detail).

Corollary 5.1 Let U be a bounded open p-convex subset of a locally p-convex space E and
zero 0 ∈ U , plus C is a closed p-convex subset of E with U ⊂ C, where 0 < p ≤ 1. Assume
that F : U → 2C is a 1-set contractive quasi upper semicontinuous mapping with nonempty
p-convex values and with a closed graph, satisfying the (H) or (H1) condition above. If one
of the following is satisfied:

(1) (Rothe type condition): PU (y) ≤ PU (x) for y ∈ F(x), where x ∈ ∂U ;
(2) (Petryshyn type condition): PU (y) ≤ PU (y – x) for y ∈ F(x), where x ∈ ∂U ;
(3) (Altman type condition): |PU (y)| 2

p ≤ [PU (y) – x)]
2
p + [PU (x)]

2
p for y ∈ F(x), where

x ∈ ∂U ,
then F has at least one fixed point.

Proof By conditions (1), (2), and (3), it follows that the conclusion of (II) in Theorem 5.4
“there exist x0 ∈ ∂C(U) and λ ∈ (0, 1) such that x0 /∈ λF(x0)” does not hold, thus by the
alternative of Theorem 5.4, F has a fixed point. This completes the proof. �
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By the fact that when p = 1, each locally p-convex space is a locally convex space, we
have the following classical Fan’s best approximation (see [42]) as a powerful tool for the
study in the optimization, mathematical programming, games theory, and mathematical
economics, and other related topics in applied mathematics.

Corollary 5.2 (Fan’s best approximation) Let U be a bounded open convex subset of a
locally convex space E with zero 0 ∈ U , let C be a closed convex subset of E with also zero 0 ∈
C, and assume that F : U ∩ C → 2C is a 1-set contractive and quasi upper semicontinuous
mapping with nonempty closed convex values satisfying the (H) or (H1) condition above.
Assume that PU is the Minkowski p-functional of U in E. Then there exist x0 ∈ U ∩ X and
y0 ∈ T(x0) such that PU (y0 –x0) = dP(y0, U ∩C) = dp(y0, IU (x0)∩C). More precisely, we have
the following either (I) or (II) holding, where WU (x0) is either the inward set IU (x0) or the
outward set OU (x0):

(I) F has a fixed point x0 ∈ U ∩ C,
0 = PU (y0 – x0) = PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, WU (x0) ∩ C));

(II) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0)�U with

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, WU (x0) ∩ C

)
= PU (y0) – 1 > 0.

Proof When p = 1, it automatically satisfies the inequality P
1
p
U (y) – 1 ≤ P

1
p
U (y – x), and in-

deed we have that for x0 ∈ ∂C(U), with y0 ∈ F(x0), we have PU (y0 – x0) = dP(y0, U ∩ C) =
dp(y0, WU (x0) ∩ C) = PU (y0) – 1. The conclusions are given by Theorem 5.2 (or Theo-
rem 5.3). The proof is complete. �

We would like to point out that similar results on Rothe and Leray–Schauder alternative
have been developed by Isac [60], Park [96], Potter [108], Shahzad [120–122], Xiao and
Zhu [135], and the related references therein as tools of nonlinear analysis in locally p-
convex spaces. As mentioned above, when p = 1 and take F as a continuous mapping,
then we obtain the version of Leray–Schauder in locally convex spaces, and thus we omit
its statement in detail.

6 Fixed points for the class of nonself semiclosed 1-set contractive mappings
In this section, based on the best approximation Theorem 5.2 for classes of semiclosed 1-
set contractive mappings developed in Sect. 5, we show how it can be used as a useful tool
to establish fixed point theorems for nonself upper semicontinuous mappings in locally p-
convex spaces for p ∈ (0, 1], including norm spaces and uniformly convex Banach spaces
as special classes.

By following Browder [18], Li [77], Goebel and Kirk [48], Petryshyn [104, 105], Tan and
Yuan [129], Xu [139], and the references therein, we recall some definitions as follows for
p-seminorm spaces, where p ∈ (0, 1].

Definition 6.1 Let D be a nonempty (bounded) closed subset of p-vector spaces (E,‖ · ‖p)
with p-seminorm, where p ∈ (0, 1]. Suppose that f : D → X is a (single-valued) mapping,
then: (1) f is said to be nonexpansive if for each x, y ∈ D, we have ‖f (x) – f (y)‖p ≤ ‖x – y‖p;
(2) f (actually, (I – f )) is said to be demiclosed (see Borwder [18]) at y ∈ X if for any se-
quence {xn}n∈N in D, the conditions xn → x0 ∈ D weakly, and (I – f )(xn) → y0 strongly
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imply that (I – f )(x0) = y0, where I is the identity mapping; (3) f is said to be hemicompact
(see p. 379 of Tan and Yuan [129]) if each sequence {xn}n∈N in D has a convergent sub-
sequence with the limit x0 such that x0 = f (x0), whenever limn→∞ dp(xn, f (xn)) = 0, here
dP(xn, f (xn)) := inf{PU (xn – z) : z ∈ f (xn)}, and PU is the Minkowski p-functional for any
U ∈ U, which is the family of all nonempty open p-convex subset containing zero in E; (4)
f is said to be demicompact (by Petryshyn [104]) if each sequence {xn}n∈N in D has a con-
vergent subsequence whenever {xn – f (xn)}n∈N is a convergent sequence in X; (5) f is said
to be a semiclosed 1-set contractive mapping if f is 1-set contractive mapping and (I – f )
is closed, where I is an identity mapping (by Li [77]); and (6) f is said to be semicontractive
(see Petryshyn [105] and Browder [18]) if there exists a mapping V : D×D → 2X such that
f (x) = V (x, x) for each x ∈ D, with (a) for each fixed x ∈ D, V (·, x) is nonexpansive from D
to X; and (b) for each fixed x ∈ D, V (x, ·) is completely continuous from D to X, uniformly
for u in a bounded subset of D (which means if vj converges weakly to v in D and uj is a
bounded sequence in D, then V (uj, vj) – V (uj, v) → 0, strongly in D).

From the definition above, we first observe that definitions (1) to (6) for set-valued map-
pings can be given in a similar way with the Hausdorff metric H (we omit their definitions
here in detail to save space); Secondly, if f is a continuous demicompact mapping, then
(I – f ) is closed, where I is the identity mapping on X. It is also clear from the definitions
that every demicompact map is hemicompact in seminorm spaces, but the converse is not
true by the example on p. 380 by Tan and Yuan [129]. It is evident that if f is demicom-
pact, then I – f is demiclosed. It is known that for each condensing mapping f , when D or
f (D) is bounded, then f is hemicompact; and also f is demicompact in metric spaces by
Lemma 2.1 and Lemma 2.2 of Tan and Yuan [129], respectively. In addition, it is known
that every nonexpansive map is a 1-set-contractive mapping; and also if f is a hemicompact
1-set-contractive mapping, then f is a 1-set-contractive mapping satisfying the following
(H1) condition (which is the same as “condition (H1)” in Sect. 5, but slightly different from
condition (H) used there in Sect. 5):

(H1) condition: Let D be a nonempty bounded subset of a space E, and assume that
F : D → 2E a set-valued mapping. If {xn}n∈N is any sequence in D such that for each xn,
there exists yn ∈ F(xn) with limn→∞(xn – yn) = 0, then there exists a point x ∈ D such that
x ∈ F(x).

We first note that the “(H1) condition” above is actually the same one as the “condition
(C)” used in Theorem 1 by Petryshyn [105]. Secondly, it was shown by Browder [18] that
indeed the nonexpansive mapping in a uniformly convex Banach X enjoys condition (H1)
as shown below.

Lemma 6.1 Let D be a nonempty bonded convex subset of a uniformly convex Banach
space E. Assume that F : D → E is a nonexpansive (single-valued) mapping, then the map-
ping P := I – F defined by P(x) := (x – F(x)) for each x ∈ D is demiclosed, and in particular,
the “(H1) condition” holds.

Proof By following the argument given on p. 329 (see the proof of Theorem 2.2 and
Corollary 2.1) by Petryshyn [105], the mapping F is demiclosed (which actually is called
Browder’s demiclosedness principle), which says that by the assumption of (H1) condi-
tion, if {xn}n∈N is any sequence in D such that for each xn there exists yn ∈ F(xn) with
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limn→∞(xn – yn) = 0, then we have 0 ∈ (I – F)(D), which means that there exists x0 ∈ D
with 0 ∈ (I – F)(x0), this implies that x0 ∈ F(x0). The proof is complete. �

Remark 6.1 When a p-vector space E is with a p-norm, then “(H) condition” satisfies the
“(H1) condition”. The (H1) condition is mainly supported by the so-called demiclosedness
principle after the work by Browder [18].

Lemma 6.1 above shows that s single-valued nonexpansive mapping defined in a uni-
formly convex Banach space satisfied the (H1) condition. Actually, the nonexpansive set-
valued mappings defined on a special class of Banach spaces with the so-called the “Opial’s
condition” do not only satisfy condition (H1), but also belong to the classes of semiclosed
1-set contractive mappings, as shown below.

The notion of the so-called “Opial’s condition” first given by Opial [90] says that a Banach
space X is said to satisfy Opial’s condition if lim infn→∞ ‖wn – w‖ < lim infn→∞ ‖wn – p‖
whenever (wn) is a sequence in X weakly convergent to w and p �= w. We know that Opial’s
condition plays an important role in the fixed point theory, e.g., see Lami Dozo [75],
Goebel and Kirk [49], Xu [137], and the references therein. The following result shows
that there are nonexpansive set-valued mappings in Banach spaces with Opial’s condition
(see Lami Dozo [75] satisfying the condition (H1).

Lemma 6.2 Let C be convex weakly compact of a Banach space X that satisfies Opial’s
condition. Let T : C → K(C) be a nonexpansive set-valued mapping with nonempty com-
pact values. Then the graph of (I – T) is closed in (X,σ (X, X∗) × (X,‖ · ‖)), thus T satisfies
the “(H1) condition”, where I denotes the identity on X, σ (X, X∗) is the weak topology, and
‖ · ‖ is the norm (or strong) topology.

Proof By following Theorem 3.1 of Lami Dozo [75], it follows that the mapping T is demi-
closed, thus T satisfies the “(H1) condition”. The proof is complete. �

For the convenience of our study, for the fixed point theory for a class of semiclosed 1-
set contractive mappings in p-seminorm spaces, we also need to introduce the following
definition, which is a set-valued generalization of single-value semiclosed 1-set mappings
first discussed by Li [77], Xu [139] (see also Li et al. [78], Xu et al. [140], and the references
therein).

Definition 6.2 Let D be a nonempty (bounded) closed subset of p-vector spaces (E,‖ ·
‖p) with p-seminorm, where p ∈ (0, 1] (which includes norm spaces or Banach spaces as
special classes), and suppose that T : D → X is a set-valued mapping. Then F is said to be a
semiclosed 1-set contraction mapping if T is 1-set contraction, and (I –T) is closed, which
means that for a given net {xn}i∈I , for each i ∈ I , there exists yi ∈ T(xi) with limi∈I(xi – yi) =
0, then 0 ∈ (I – T)(D), i.e., there exists x0 ∈ D such that x0 ∈ T(x0).

By Lemmas 6.1 and 6.2, it follows that each nonexpansive (single-valued) mapping de-
fined on a subset of uniformly convex Banach spaces and each nonexpansive set-valued
mapping defined on a subset of Banach spaces satisfying Opial’s condition is a semiclosed
1-set contractive mapping (see also Goebel [47], Goebel and Kirk [48], Petrusel et al. [103],
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Xu [137], Yangai [141], and the references therein for related discussion). In particular, un-
der the setting of metric spaces or Banach spaces with certain property, it is clear that each
semiclosed 1-set contractive mapping satisfies condition (H1) above.

We know that compared to the single-valued case, based on the study in the literature
about the approximation of fixed points for multivalued mappings, a well-known coun-
terexample due to Pietramala [106] (see also Muglia and Marino [85]) proved in 1991 that
Browder approximation Theorem 1 given by Browder [16] cannot be extended to the gen-
uine multivalued case even on a finite dimensional space R

2. Moreover, if a Banach space
X satisfies Opial’s property (see Opial [90]) that is, if xn weakly converges to x, then we
have that lim sup‖xn – x‖ < lim sup‖xn – y‖ for all x ∈ X and y �= x), then I – f is demi-
closed at 0 (see Lami Dozo [75], Yanagi [141], and the related references therein) provided
f : C :→ K(C) is nonexpansive (here K(C) denotes a family of nonempty compact subsets
of C). We know that all Hilbert spaces and Lp spaces p ∈ (1,∞) have Opial’s property,
but it seems that whether I – f is demiclosed at zero 0 if f is a nonexpansive set-valued
mapping defined on the space X which is uniformly convex (e.g., L[0, 1], 1 < p < ∞, �= 2)
and f : C → K(C) is nonexpansive. Here we remark that for a single-valued nonexpan-
sive mapping f is yes, which is the famous theorem of Browder [15]. A remarkable fixed
point theorem for multivalued mappings is Lim’s result in [80], which says that: If C is
a nonempty closed bounded convex subset of a uniformly convex Banach space X and
f : C → K(C) is nonexpansive, then f has a fixed point.

Now, based on the concept for the semiclosed 1-set contractive mappings, we give the
existence results for their best approximation, fixed points, and related nonlinear alterative
under the framework of p-seminorm spaces for p ∈ (0, 1].

Theorem 6.1 (Schauder fixed point theorem for semiclosed 1-set contractive mappings)
Let U be a nonempty bounded open p-subset of a (Hausdorff ) locally p-convex space E and
its zero 0 ∈ U , and let C ⊂ E be a closed p-convex subset of E such that 0 ∈ C with 0 < p ≤ 1.
If F : C ∩ U → 2C∩U is a quasi upper semicontinuous and semiclosed 1-set contractive set-
valued mappings with nonempty convex p-convex values and with a closed graph, then T
has at least one fixed point in C ∩ U .

Proof As the mapping T is 1-set contractive, take an increasing sequence {λn} such that
0 < λn < 1 and limn→∞ λn = 1, where n ∈ N. Now we define a mapping Fn : C → 2C by
Fn(x) := λnF(x) for each x ∈ C and n ∈ N. Then it follows that Fn is a λn-set-contractive
mapping with 0 < λn < 1, quasi upper semicontinuous with nonempty p-convex, and its
graph is closed. Now, by Theorem 4.8 on the condensing mapping Fn in p-vector space
with p-seminorm PU for each n ∈ N, there exists xn ∈ C such that xn ∈ Fn(xn) = λnF(xn).
Thus there exists yn ∈ F(xn) such that xn = λnyn. Let PU be the Minkowski p-functional
of U in E, it follows that PU is continuous as 0 ∈ int(U) = U . Note that for each n ∈ N,
λnxn ∈ U ∩ C, which implies that xn = r(λnyn) = λnyn, thus PU (λnyn) ≤ 1 by Lemma 2.2.
Note that

PU (yn – xn) = PU (yn – xn)

= PU (yn – λnyn)

= PU

(
(1 – λn)λnyn

λn

)

≤
(

1 – λn

λn

)p

PU (λnyn) ≤
(

1 – λn

λn

)p

,
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which implies that limn→∞ PU (yn – xn) = 0. Now, by the assumption that F is semiclosed,
which means that (I – F) is closed at zero, there exists one point x0 ∈ C such that 0 ∈
(I – F)(C), thus we have x0 ∈ F(x0).

Indeed, without loss of generality, we assume that limn→∞ xn = x0, here yn ∈ F(xn) is
with xn = λnyn, and limn→∞ λn = 1, it implies that x0 = limn→∞(λnyn), which means y0 :=
limn→∞ yn = x0. There exists y0(= x0) ∈ F(x0). We complete the proof. �

Theorem 6.2 (Best approximation for semiclosed 1-set contractive mappings) Let U be
a bounded open p-convex subset of a locally p-convex space E (0 < p ≤ 1) zero 0 ∈ U , and
let C be a (bounded) closed p-convex subset of E with also zero 0 ∈ C. Assume that F :
U ∩ C → 2C is a semiclosed 1-set contractive and quasi upper semicontinuous mapping
with nonempty p-convex values and with a closed graph, and for each x ∈ ∂CU with y ∈
F(x) ∩ (C�U)), (P

1
p
U (y) – 1)p ≤ PU (y – x) for 0 < p ≤ 1 (this is trivial when p = 1). Then we

have that there exist x0 ∈ C ∩ U and y0 ∈ F(x0) such that PU (y0 – x0) = dP(y0, U ∩ C) =
dp(y0, Ip

U (x0) ∩ C), where PU is the Minkowski p-functional of U . More precisely, we have
that either (I) or (II) holds:

(I) F has a fixed point x0 ∈ U ∩ C, i.e.,
0 = PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip

U (x0) ∩ C);
(II) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0)�U with

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, Ip

U (x0) ∩ C
)

=
(
P

1
p
U (y0) – 1

)p > 0.

Proof Let r : E → U be a retraction mapping defined by r(x) := x

max{1,(PU (x))
1
p }

for each x ∈ E,

where PU is the Minkowski p-functional of U . Since the space E’s zero 0 ∈ U(= int U as U is
open), it follows that r is continuous by Lemma 2.2. As the mapping F is 1-set contractive,
take an increasing sequence {λn} such that 0 < λn < 1 and limn→∞ λn = 1, where n ∈ N.
Now we define a mapping Fn : C ∩ U → 2C by Fn(x) := λnF ◦ r(x) for each x ∈ C ∩ U and
n ∈ N. Then it follows that Fn is a λn-set-contractive mapping with 0 < λn < 1 for each
n ∈ N. As C and U are p-convex, we have r(C) ⊂ C and r(U) ⊂ U , so r(C ∩ U) ⊂ C ∩ U .
Thus Fn is a self-mapping defined on C ∩ U , and we can also show that Fn satisfies all
conditions of Theorem 4.8. By Theorem 4.8 for condensing mapping Fn, for each n ∈ N,
there exists zn ∈ C ∩ U such that zn ∈ Fn(zn) = λnF ◦ r(zn). Let xn = r(zn), then we have
xn ∈ C ∩ U , and there exists yn ∈ F(xn) with xn = r(λnyn) such that the following (1) or (2)
holds for each n ∈N:

(1): λnyn ∈ C ∩ U ; or (2): λnyn ∈ C�U .
Now we prove the conclusion by considering the following two cases:
Case (I): For each n ∈ N , λnyn ∈ C ∩ U ; or
Case (II): There exists a positive integer n such that λnyn ∈ C�U .
First, by case (I), for each n ∈ N, λnyn ∈ U ∩ C, which implies that xn = r(λnyn) = λnyn,

thus PU (λnyn) ≤ 1 by Lemma 2.2. Note that

PU (yn – xn) = PU (yn – xn)

= PU (yn – λnyn)

= PU

(
(1 – λn)λnyn

λn

)

≤
(

1 – λn

λn

)p

PU (λnyn) ≤
(

1 – λn

λn

)p

,
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which implies that limn→∞ PU (yn – xn) = 0. Now by the fact that F is semiclosed, it im-
plies that there exists a point x0 ∈ U (i.e., the consequence {xn}n∈N has a convergent sub-
sequence with the limit x0) such that x0 ∈ F(x0). Indeed, without loss of generality, we
assume that limn→∞ xn = x0, where yn ∈ F(xn) is with xn = λnyn and limn→∞ λn = 1, and as
x0 = limn→∞(λnyn), it implies that y0 = limn→∞ yn = x0. Thus there exists y0(= x0) ∈ F(x0),
we have 0 = dp(x0, F(x0)) = d(y0, U ∩ C) = dp(y0, Ip

U (x0) ∩ C)) as indeed x0 = y0 ∈ F(x0) ∈
U ∩ C ⊂ Ip

U (x0) ∩ C).
Second, by case (II), there exists a positive integer n such that λnyn ∈ C�U . Then we

have that PU (λnyn) > 1, and also PU (yn) > 1 as λn < 1. As xn = r(λnyn) = λnyn

(PU (λnyn))
1
p

, it implies

that PU (xn) = 1, thus xn ∈ ∂C(U). Note that

PU (yn – xn) = PU

(
(PU (yn)

1
p – 1)yn

PU (yn)
1
p

)

=
(
P

1
p
U (yn) – 1

)p.

By the assumption, we have (P
1
p
U (yn) – 1)p ≤ PU (yn – x) for x ∈ C ∩ ∂U , it follows that

PU (yn) – 1 ≤ PU (yn) – sup
{

PU (z) : z ∈ C ∩ U
}

≤ inf
{

PU (yn – z) : z ∈ C ∩ U
}

= dp(yn, C ∩ U).

Thus we have the best approximation: PU (yn – xn) = dP(yn, U ∩ C) = (P
1
p
U (yn) – 1)p > 0.

Now we want to show that PU (yn – xn) = dP(yn, U ∩ C) = dp(yn, Ip
U (x0) ∩ C) > 0.

By the fact that (U ∩ C) ⊂ Ip
U (xn) ∩ C, let z ∈ Ip

U (xn) ∩ C�(U ∩ C), we first claim that
PU (yn –xn) ≤ PU (yn –z). If not, we have PU (yn –xn) > PU (yn –z). As z ∈ Ip

U (xn)∩C�(U ∩C),
there exist y ∈ U and a nonnegative number c (actually c ≥ 1 as shown soon below) with
z = xn +c(y–xn). Since z ∈ C, but z /∈ U ∩C, it implies that z /∈ U . By the fact that xn ∈ U and
y ∈ U , we must have the constant c ≥ 1; otherwise, it implies that z(= (1 – c)xn + cy) ∈ U ,
this is impossible by our assumption, i.e., z /∈ U . Thus we have that c ≥ 1, which implies
that y = 1

c z + (1 – 1
c )xn ∈ C (as both xn ∈ C and z ∈ C). On the other hand, as z ∈ Ip

U (xn) ∩
C�(U ∩ C) and c ≥ 1 with ( 1

c )p + (1 – 1
c )p = 1, combining with our assumption that for

each x ∈ ∂CU and y ∈ F(xn)�U , P
1
p
U (y) – 1 ≤ P

1
p
U (y – x) for 0 < p ≤ 1, it then follows that

PU (yn – y) = PU

[
1
c

(yn – z) +
(

1 –
1
c

)

(yn – xn)
]

≤
[(

1
c

)p

PU (yn – z) +
(

1 –
1
c

)p

PU (yn – xn)
]

< PU (yn – xn),

which contradicts that PU (yn – xn) = dP(yn, U ∩ C) as shown above. We know that y ∈
U ∩ C, and we should have PU (yn – xn) ≤ PU (yn – y)! This helps us to complete the claim:
PU (yn – xn) ≤ PU (yn – z) for any z ∈ Ip

U (xn) ∩ C�(U ∩ C), which means that the following
best approximation of Fan’s type (see [42, 43]) holds:

0 < dP(yn, U ∩ C) = PU (yn – xn) = dp
(
yn, Ip

U (xn) ∩ C
)
.
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Now, by the continuity of PU , it follows that the following best approximation of Fan type
is also true:

0 < PU (yn – xn) = dP(yn, U ∩ C) = dp
(
yn, Ip

U (xn) ∩ C
)

= dp
(
yn, Ip

U (xn) ∩ C
)
.

The proof is complete. �

For a p-vector space when p = 1, it is a (Hausdorff) topological vector space E, we have
the following best approximation for the outward set OU (x0) based on the point {x0} with
respect to the convex subset U in E.

Theorem 6.3 (Best approximation for outward sets) Let U be a bounded open convex
subset of a locally convex space E (i.e., p = 1) with zero 0 ∈ int U = U (the interior int U = U
as U is open), and C be a closed convex subset of E with also zero 0 ∈ C. Assume that
F : U ∩C → 2C is a semiclosed 1-set-contractive quasi upper semicontinuous mapping with
nonempty p-convex values and with a closed graph, then there exist x0 ∈ U ∩ X and y0 ∈
F(x0) such that PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, OU (x0) ∩ C), where PU is the Minkowski
p-functional of U . More precisely, we have that either (I) or (II) holds:

(I) F has a fixed point x0 ∈ U ∩ C, i.e.,
PU (y0 – x0) = PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, OU (x0) ∩ C)) = 0;

(II) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0)�U with

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, OU (x0) ∩ C

)
= dp

(
y0, OU (x0) ∩ C

)
> 0.

Proof We define a new mapping F1 : U ∩ C → 2C by F1(x) := {2x} – F(x) for each x ∈
U ∩C, then F1 is also compact and upper semicontinuous mapping with nonempty closed
convex values, and F1 satisfies all hypotheses of Theorem 5.2 with p = 1. It follows by
Theorem 5.2 that there exist x0 ∈ U ∩ X and y1 ∈ F1(x0) such that PU (y1 – x0) = dP(y1, U ∩
C) = dp(y1, IU (x0) ∩ C). More precisely, we have that either (I) or (II) holds:

(I) F1 has a fixed point x0 ∈ U ∩ C (so
0 = PU (y1 – x0) = PU (y1 – x0) = dP(y1, U ∩ C) = dp(y1, IU (x0) ∩ C));

(II) There exist x0 ∈ ∂C(U) and y1 ∈ F1(x0)�U with

PU (y1 – x0) = dP(y1, U ∩ C) = dp
(
y1, OU (x0) ∩ C

)
> 0.

Now, for any x ∈ OU (x0), there exist r < 0, u ∈ U such that x = x0 + r(u – x0). Let x1 =
2x0 – x, then x1 = 2x0 – x0 – r(u – x0) = x0 + (–r)(u – x0) ∈ IU (x0). Let y1 = 2x0 – y0 for
some y0 ∈ F(x0). As we have PU (y1 – x0) = dP(y1, U ∩ C) = dp(y1, IU (x0) ∩ C), it follows that
PU (y1 – x0) ≤ PU (y1 – x1), which implies that

PU (x0 – y0) = PU (y1 – x0) ≤ PU (y1 – x1) = PU
(
2x0 – y0 – (2x0 – x)

)
= PU (y0 – x)

for all x ∈ OU (x0). Thus we have PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, OU (x0) ∩ C) and by
the continuity of PU , it follows that

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, OU (x0) ∩ C

)(
P

1
p
U (y0) – 1

)p > 0.

This completes the proof. �
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Now, by the application of Theorems 6.2 and 6.3, we have the following general principle
for the existence of solutions for Birkhoff–Kellogg problems in p-seminorm spaces, where
(0 < p ≤ 1).

Theorem 6.4 (Principle of Birkhoff–Kellogg alternative) Let U be a bounded open p-
convex subset of a locally p-convex space E (0 < p ≤ 1) with zero 0 ∈ int U = (U) (the in-
terior int U as U is open), and let C be a closed p-convex subset of E with also zero 0 ∈ C.
Assume that F : U ∩ C → 2C is a semiclosed 1-set-contractive quasi upper semicontinuous
mapping with nonempty p-convex values and with a closed graph, then F has at least one
of the following two properties:

(I) F has a fixed point x0 ∈ U ∩ C such that x0 ∈ F(x0);
(II) There exist x0 ∈ ∂C(U), y0 ∈ F(x0)�U , and λ = 1

(PU (y0))
1
p

∈ (0, 1) such that

x0 = λy0 ∈ λF(x0); In addition, if for each x ∈ ∂CU , P
1
p
U (y) – 1 ≤ P

1
p
U (y – x) for 0 < p ≤ 1

(this is trivial when p = 1), then the best approximation between x0 and y0 is given by

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, Ip

U (x0) ∩ C
)

=
(
P

1
p
U (y0) – 1

)p > 0.

Proof If (I) is not the case, then (II) is proved by Remark 5.2 and by following the proof
in Theorem 6.2 for case (ii): y0 ∈ C�U with y0 := f (x0) ∈ F(x0). Indeed, as y0 /∈ U , it fol-
lows that PU (y0) > 1 and x0 = f (y0) = y0

1

(PU (y0))
1
p

. Now let λ = 1

(PU (y0))
1
p

, we have λ < 1 and

x0 = λy0 with y0 ∈ F(x0). Finally, the additional assumption in (II) allows us to have the
best approximation between x0 and y0 obtained by following the proof of Theorem 6.2 as
PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip

U (x0) ∩ C) > 0. This completes the proof. �

As an application of Theorem 6.2 for the nonself set-valued mappings discussed in
Theorem 6.3 with the outward set condition, we have the following general principle of
Birkhoff–Kellogg alternative in locally p-convex spaces.

Theorem 6.5 (Principle of Birkhoff–Kellogg alternative in LCS) Let U be a bounded open
p-convex subset of a locally p-convex space E (0 < p ≤ 1) with zero 0 ∈ U , and let C be a
closed convex subset of E with also zero 0 ∈ C. Assume that F : U ∩ C → 2C is a semiclosed
1-set contractive and quasi upper semicontinuous mapping with nonempty p-convex values
and with a closed graph, then it has at least one of the following two properties:

(I) F has a fixed point x0 ∈ U ∩ C such that x0 ∈ F(x0);
(II) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0)�U and λ ∈ (0, 1) such that x0 = λy0, and the

best approximation between x0 and y0 is given by
PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip

U (x0) ∩ C) > 0.

On the other hand, by the proof of Theorem 6.2, we note that for case (II) of Theorem 6.2,

the assumption “each x ∈ ∂CU with y ∈ F(x), P
1
p
U (y) – 1 ≤ P

1
p
U (y – x)” is only used to guar-

antee the best approximation “PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, Ip
U (x0) ∩ C) > 0”, thus

we have the following Leray–Schauder alternative in p-vector spaces, which, of course,
includes the corresponding results in locally convex spaces as special cases.

Theorem 6.6 (Leray–Schauder nonlinear alternative) Let C be a closed p-convex subset of
p-seminorm space E with 0 < p ≤ 1 and zero 0 ∈ C. Assume that F : C → 2C is a semiclosed
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1-set contractive and quasi upper semicontinuous mapping with nonempty p-convex values
and with a closed graph. Let ε(F) := {x ∈ C : x ∈ λF(x) for some 0 < λ < 1}. Then either F has
a fixed point in C or the set ε(F) is unbounded.

Proof By assuming that case (I) is not true, i.e., F has no fixed point, we claim that
the set ε(F) is unbounded. Otherwise, assume that the set ε(F) is bounded, and as-
sume that P is the continuous p-seminorm for E, then there exists r > 0 such that
the set B(0, r) := {x ∈ E : P(x) < r}, which contains the set ε(F), i.e., ε(F) ⊂ B(0, r),
which means for any x ∈ ε(F), P(x) < r. Then B(0.r) is an open p-convex subset of
E and zero 0 ∈ B(0, r) by Lemma 2.2 and Remark 2.4. Now, let U := B(0, r) in The-
orem 6.4, it follows that the mapping F : B(0, r) ∩ C → 2C satisfies all general con-
ditions of Theorem 6.4, and we have that any x0 ∈ ∂CB(0, r), no any λ ∈ (0, 1) such
that x0 = λy0, where y0 ∈ F(x0). Indeed, for any x ∈ ε(F), it follows that P(x) < r as
ε(F) ⊂ B(0, r), but for any x0 ∈ ∂CB(0, r), we have P(x0) = r, thus conclusion (II) of
Theorem 6.4 does not hold. By Theorem 6.4 again, F must have a fixed point, but
this contradicts with our assumption that F is fixed point free. This completes the
proof. �

Now assume a given p-vector space E equipped with the P-seminorm (by assum-
ing it is continuous at zero) for 0 < p ≤ 1, then we know that P : E → R

+, P–1(0) = 0,
P(λx) = |λ|pP(x) for any x ∈ E and λ ∈ R. Then we have the following useful result for
fixed points due to Rothe and Altman types in p-vector spaces, which plays important
roles for optimization problems, variational inequalities, complementarity problems.

Corollary 6.1 Let U be a bounded open p-convex subset of a locally p-convex space E and
zero 0 ∈ U , plus C is a closed p-convex subset of E with U ⊂ C, where 0 < p ≤ 1. Assume
that F : U → 2C is a semiclosed 1-set contractive quasi upper semicontinuous mapping with
nonempty p-convex values and with a closed graph, and one of the following conditions is
satisfied:

(1) (Rothe type condition): PU (y) ≤ PU (x) for y ∈ F(x), where x ∈ ∂U ;
(2) (Petryshyn type condition): PU (y) ≤ PU (y – x) for y ∈ F(x), where x ∈ ∂U ;
(3) (Altman type condition): |PU (y)| 2

p ≤ [PU (y) – x)]
2
p + [PU (x)]

2
p for y ∈ F(x), where

x ∈ ∂U ,
then F has at least one fixed point.

Proof By conditions (1), (2), and (3), it follows that the conclusion of (II) in Theorem 6.4
“there exist x0 ∈ ∂C(U) and λ ∈ (0, 1) such that x0 /∈ λF(x0)” does not hold, thus by the
alternative of Theorem 6.4, F has a fixed point. This completes the proof. �

By the fact that when p = 1, each p-vector space is a topological vector space, we have
the following classical Fan’s best approximation (see [42]) as a powerful tool for the study
in the optimization, mathematical programming, games theory, mathematical economics,
and other related topics in applied mathematics.

Corollary 6.2 (Fan’s best approximation in LCS) Let U be a bounded open convex subset of
a locally convex space E with zero 0 ∈ U , let C be a closed convex subset of E with also zero
0 ∈ C, and assume that F : U ∩ C → 2C is a semiclosed 1-set contractive and quasi upper
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semicontinuous mapping with nonempty convex values and with a closed graph. Then there
exist x0 ∈ U ∩ X and y0 ∈ T(x0) such that PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, IU (x0) ∩ C),
where PU is the Minkowski p-functional of U in E. More precisely, we have that either (I) or
(II) holds, where WU (x0) is either the inward set IU (x0) or the outward set OU (x0):

(I) F has a fixed point x0 ∈ U ∩ C,
0 = PU (y0 – x0) = PU (y0 – x0) = dP(y0, U ∩ C) = dp(y0, WU (x0) ∩ C));

(II) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0)�U with

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, WU (x0) ∩ C

)
= PU (y0) – 1 > 0.

Proof When p = 1, it automatically satisfies that the inequality: P
1
p
U (y) – 1 ≤ P

1
p
U (y – x), and

indeed we have that for x0 ∈ ∂C(U) with y0 ∈ F(x0), we have PU (y0 – x0) = dP(y0, U ∩ C) =
dp(y0, WU (x0) ∩ C) = PU (y0) – 1. The conclusions are given by Theorem 6.2 (or Theo-
rem 6.3). The proof is complete. �

We would like to point out that similar results on Rothe and Leray–Schauder alternative
have been developed by Isac [60], Park [96], Potter [108], Shahzad [120–122], Xiao and
Zhu [135], and the related references therein as tools of nonlinear analysis in topological
vector spaces. As mentioned above, when p = 1 and take F as a continuous mapping, then
we obtain a version of Leray–Schauder in general local convex spaces, and thus we omit
its statement in detail.

7 Principle of nonlinear alternatives for nonself semiclosed 1-set contractive
mappings

As applications of results in Sect. 6, we now establish general results for the existence of
solutions for Birkhoff–Kellogg problem and the principle of Leray–Schauder alternatives
for semiclosed 1-set contractive mappings in locally p-convex spaces for 0 < p ≤ 1.

Theorem 7.1 (Birkhoff–Kellogg alternative in p-vector spaces) Let U be a bounded open
p-convex subset of a locally p-convex space E (where, 0 < p ≤ 1) with zero 0 ∈ U , let C be
a closed p-convex subset of E with also zero 0 ∈ C, and assume that F : U ∩ C → 2C is
a semiclosed 1-set contractive and quasi upper semicontinuous mapping with nonempty
p-convex values and with a closed graph. In addition, for each x ∈ ∂C(U) with y ∈ F(x),

P
1
p
U (y) – 1 ≤ P

1
p
U (y – x) for 0 < p ≤ 1 (this is trivial when p = 1), where PU is the Minkowski

p-functional of U . Then we have that either (I) or (II) holds:
(I) There exists x0 ∈ U ∩ C such that x0 ∈ F(x0);

(II) There exists x0 ∈ ∂C(U) with y0 ∈ F(x0)�U and λ > 1 such that λx0 = y0 ∈ F(x0), i.e.,
F(x0) ∩ {λx0 : λ > 1} �= ∅.

Proof By following the argument and notations used in Theorem 6.2, we have that either
(1) F has a fixed point x0 ∈ U ∩ C; or
(2) there exist x0 ∈ ∂C(U) and y0 ∈ F(x0) with x0 = f (y0) such that

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, IU (x0) ∩ C

)
= PU (y0) – 1 > 0,

where ∂C(U) denotes the boundary of U relative to C in E and f is the restriction of the
continuous retraction r with respect to the set U in E.
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If F has no fixed point, then (2) above holds and x0 /∈ F(x0). As given in the proof of
Theorem 6.2, we have that y0 ∈ F(x0) and y0 /∈ U , thus PU (y0) > 1 and x0 = f (y0) = y0

(PU (y0))
1
p

,

which means y0 = (PU (y0))
1
p x0. Let λ = (PU (y0))

1
p , then λ > 1, and we have λx0 = yo ∈ F(x0).

This completes the proof. �

Theorem 7.2 (Birkhoff–Kellogg alternative in LCS) Let U be a bounded open convex sub-
set of a locally convex space E with zero 0 ∈ U , let C be a closed convex subset of E with also
zero 0 ∈ C, and assume that F : U ∩ C → 2C is a semiclosed 1-set contractive and quasi
upper semicontinuous mapping with nonempty p-convex values and with a closed graph.
Then we have that either (I) or (II) holds, where WU (x0) is either the inward set IU (x0) or
the outward set OU (x0):

(I) There exists x0 ∈ U ∩ C such that x0 ∈ F(x0);
(II) There exists x0 ∈ ∂C(U) with y0 ∈ F(x0)�U and λ > 1 such that λx0 = y0 ∈ F(x0), i.e.,

F(x0) ∩ {λx0 : λ > 1} �= ∅.

Proof When p = 1, it automatically satisfies that the inequality P
1
p
U (y) – 1 ≤ P

1
p
U (y – x), and

indeed we have that for x0 ∈ ∂C(U) with y0 ∈ F(x0), we have PU (y0 – x0) = dP(y0, U ∩ C) =
dp(y0, WU (x0) ∩ C) = PU (y0) – 1. The conclusions are given by Theorems 6.3 and 6.4. The
proof is complete. �

Indeed, we have the following fixed points for nonself mappings in locally p-convex
spaces for 0 < p ≤ 1 under various boundary conditions.

Theorem 7.3 (Fixed points of nonself mappings) Let U be a bounded open p-convex sub-
set of a locally p-convex space E (where 0 < p ≤ 1) with zero 0 ∈ U , let C be a closed p-convex
subset of E with also zero 0 ∈ C, and assume that F : U ∩ C → 2C is a semiclosed 1-set con-
tractive and quasi upper semicontinuous mapping with nonempty p-convex values and

with a closed graph. In addition, for each x ∈ ∂C(U) with y ∈ F(x), P
1
p
U (y) – 1 ≤ P

1
p
U (y – x)

for 0 < p ≤ 1 (this is trivial when p = 1), where PU is the Minkowski p-functional of U . If F
satisfies any one of the following conditions for any x ∈ ∂C(U)�F(x):

(i) For each y ∈ F(x), PU (y – z) < PU (y – x) for some z ∈ IU (x) ∩ C;
(ii) For each y ∈ F(x), there exists λ with |λ| < 1 such that λx + (1 – λ)y ∈ IU (x) ∩ C;

(iii) F(x) ⊂ IU (x) ∩ C;
(iv) F(x) ∩ {λx : λ > 1} = ∅;
(v) F(∂U) ⊂ U ∩ C;

(vi) For each y ∈ F(x), PU (y – x) �= ((PU (y))
1
p – 1)p;

then F must have a fixed point.

Proof By following the argument and symbols used in the proof of Theorem 6.2 (see also
Theorem 6.4), we have that either

(1) F has a fixed point x0 ∈ U ∩ C; or
(2) There exist x0 ∈ ∂C(U) and y0 ∈ F(x0) with x0 = f (y0) such that

PU (y0 – x0) = dP(y0, U ∩ C) = dp
(
y0, IU (x0) ∩ C

)
= PU (y0) – 1 > 0,

where ∂C(U) denotes the boundary of U relative to C in E and f is the restriction of the
continuous retraction r with respect to the set U in E.
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First, suppose that F satisfies condition (i), if F has no fixed point, then (2) above holds
and x0 /∈ F(x0). Then, by condition (i), it follows that PU (y0 – z) < PU (y0 – x0) for some
z ∈ IU (x) ∩ C, this contradicts the best approximation equations given by (2) above, thus
F mush have a fixed point.

Second, suppose that F satisfies condition (ii), if F has no fixed point, then (2) above
holds and x0 /∈ F(x0). Then, by condition (ii), there exists λ > 1 such that λx0 + (1 – λ)y0 ∈
IU (x) ∩ C. It follows that

PU (y0 – x0) ≤ PU (y0 –
(
λx0 + (1 – λy0)

)

= PU
(
λ(y0 – x0)

)
= |λ|pPU (y0 – x0) < PU (y0 – x0),

this is impossible, and thus F must have a fixed point in U ∩ C.
Third, suppose that F satisfies condition (iii), i.e., F(x) ⊂ IU (x)∩C; then (2), we have that

PU (y0 – x0) and thus x0 = y0 ∈ F(x0), which means F has a fixed point.
Forth, suppose that F satisfies condition (iv), if F has no fixed point, then (2) above

holds and x0 /∈ F(x0). As given by the proof of Theorem 6.2, we have that y0 /∈ U , thus
PU (y0) > 1 and x0 = f (y0) = y0

(PU (y0))
1
p

, which means y0 = (PU (y0))
1
p x0, where (PU (y0))

1
p > 1,

this contradicts the assumption (iv), thus F must have a fixed point in U ∩ C.
Fifth, suppose that F satisfies condition (v), then x0 /∈ F(x0). As x0 ∈ ∂CU , now by condi-

tion (v), we have that F(∂U) ⊂ U ∩C. It follows that for any y0 ∈ F(x0), we have y0 ∈ U ∩C,
thus y /∈ U�∩ C, which implies that 0 < PU (y0 – x0) = dP(y0, U ∩ C) = 0, this is impossible,
thus F must have a fixed point. Here, as pointed out by Remark 5.2, we know that based on
condition (v) the mapping F has a fixed point by applying F(∂U) ⊂ U ∩C is enough, we do

not need the general hypothesis: “for each x ∈ ∂C(U) with y ∈ F(x), P
1
p
U (y) – 1 ≤ P

1
p
U (y – x)

for 0 < p ≤ 1”.
Finally, suppose that F satisfies condition (vi), if F has no fixed point, then (2) above

holds and x0 /∈ F(x0). Then condition (v) implies that PU (y0 – x0) �= ((PU (y))
1
p – 1)p, but our

proof in theorem shows that PU (y0 – x0) = ((PU (y))
1
p – 1)p, this is impossible, thus F must

have a fixed point. Then the proof is complete. �

Now by taking the set C in Theorem 7.1 as the whole p-vector space E itself, we have the
following general results for nonself upper semicontinuous set-valued mappings, which
include the results of Rothe, Petryshyn, Altman, and Leray–Schauder type fixed points as
special cases.

Taking p = 1 and C = E in Theorem 7.3, we have fixed points for nonself upper semi-
continuous set-valued mappings associated with inward or outward sets in locally convex
spaces (LCS) as follows.

Theorem 7.4 (Fixed point theorem of nonself mappings with boundary conditions) Let
U be a bounded open convex subset of a locally convex spaces E with zero 0 ∈ U , and as-
sume that F : U → 2E is a semiclosed 1-set contractive and quasi upper semicontinuous
mapping with nonempty p-convex values and with a closed graph. If F satisfies any one of
the following conditions for any x ∈ ∂(U)�F(x):

(i) For each y ∈ F(x), PU (y – z) < PU (y – x) for some z ∈ IU (x) (or z ∈ OU (x));
(ii) For each y ∈ F(x), there exists λ with |λ| < 1 such that λx + (1 – λ)y ∈ IU (x) (or

OU (x));
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(iii) F(x) ⊂ IU (x) (or OU (x));
(iv) F(x) ∩ {λx : λ > 1} = ∅;
(v) F(∂(U) ⊂ U ;

(vi) For each y ∈ F(x), PU (y – x) �= PU (y) – 1;
then F must have a fixed point.

In what follows, based on the best approximation theorem in a p-seminorm space, we
will also give some fixed point theorems for nonself set-valued mappings with various
boundary conditions, which are related to the study for the existence of solutions for
PDE and differential equations with boundary problems (see Browder [18], Petryshyn
[104, 105], Reich [110]), which would play roles in nonlinear analysis for p-seminorm space
as shown below.

First, as discussed by Remark 5.2, the proof of Theorem 7.2 with the strongly boundary
condition “F(∂(U)) ⊂ U ∩ C” only, we can prove that F has a fixed point, thus we have the
following fixed point theorem of Rothe type in p-vector spaces.

Theorem 7.5 (Rothe type) Let U be a bounded open p-convex subset of a locally p-convex
space E (where 0 < p ≤ 1) with zero 0 ∈ U . Assume F : U → 2E is a semiclosed 1-set con-
tractive and quasi upper semicontinuous mapping with nonempty p-convex values, with a
closed graph, and such that F(∂(U)) ⊂ U , then F must have a fixed point.

Now, as applications of Theorem 7.5, we give the following Leray–Schauder alternative
in p-vector spaces for nonself set-valued mappings associated with the boundary condi-
tion, which often appears in the applications (see Isac [60] and the references therein for
the study of complementary problems and related topics in optimization).

Theorem 7.6 (Leray–Schauder alternative in p-vector spaces) Let E be a locally p-convex
space E, where 0 < p ≤ 1, B ⊂ E is bounded closed p-convex such that 0 ∈ int B. Let
F : [0, 1] × B → 2E be a semiclosed 1-set contractive and quasi upper semicontinuous set-
valued mapping with nonempty p-convex values, with a closed graph, and such that the set
F([0, 1] × B) is relatively compact in E. If the following assumptions are satisfied:

(1) x /∈ F(t, x) for all x /∈ ∂B and t ∈ [0, 1];
(2) F({0} × ∂B) ⊂ B,

then there is an element x∗ ∈ B such that x∗ ∈ F(1, x∗).

Proof For any n ∈ N , we consider the mapping

Fn(x) =

⎧
⎨

⎩

F( 1–PB(x)
εn

, x
PB(x) ) if 1 – ε ≤ PB(x) ≤ 1,

F(1, X
1–εn

) if PB(x) < 1 – εn,
(1)

where PB is the Minkowski p-functional of B and {εn}n∈N is a sequence of real numbers
such that limn→∞ εn = 0 and 0 < εn < 1

2 for any n ∈ N . We observe that for each n ∈ N , the
mapping Fn is 1-set contractive upper semicontinuous with nonempty closed p-convex
values on B. From assumption (2), we have that Fn(∂B) ⊂ B, and the assumptions of The-
orem 7.5 are satisfied, then for each n ∈ N , there exists an element un ∈ B such that
un ∈ Fn(un).
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We first prove the following statement: “It is impossible to have an infinite number of
the elements un satisfying the following inequality: 1 – εn ≤ PB(un) ≤ 1.”

If not, we assume to have an infinite number of elements un satisfying the following
inequality:

1 – εn ≤ PB(un) ≤ 1.

As Fn(B) is relatively compact and by the definition of mappings Fn, we have that {un}n∈N

is contained in a compact set in E. Without loss of generality (indeed, each compact set is
also countably compact), we define the sequence {tn}n∈N by tn := 1–PB(un)

ε
for each n ∈ N .

Then we have that {tn}n∈N ⊂ [0, 1], and we may assume that limn→∞ tn = t ∈ [0, 1]. The
corresponding subsequence of {un}n∈N is denoted again by {un}n∈N , and it also satisfies
the inequality 1 – εn ≤ PB(un) ≤ 1, which implies that limn→∞ PB(un) = 1.

Now let u∗ be an accumulation point of {un}n∈N , thus have limn→∞(tn, un
PB(un) , un) =

(t, u∗, u∗). By the fact that F is compact, we assume that un ∈ F(tn, un
PB(un) ) for each n ∈ N ,

it follows that u∗ ∈ F(t, u∗), this contradicts assumption (1) as we have limn→∞ PB(un) = 1
(which means that u∗ ∈ ∂B, this is impossible).

Thus it is impossible “to have an infinite number of elements un satisfying the inequality
1–εn ≤ PB(un) ≤ 1”, which means that there is only a finite number of elements of sequence
{un}n∈N satisfying the inequality 1 – εn ≤ PB(un) ≤ 1. Now, without loss of generality, for
n ∈ N , we have the following inequality:

PB(un) < 1 – εn.

By the fact that limn→(1 –εn) = 1, un ∈ F(1, un
1–ε

) for all n ∈ N and assuming that limn→ un =
u∗, the upper semicontinuity of F with nonempty closed values implies that the graph of
F is closed, and by the fact un ∈ F(1, un

1–ε
), it implies that u∗ ∈ F(1, u∗). This completes the

proof. �

As a special case of Theorem 7.6, we have the following principle for the implicit form of
Leray–Schauder type alternative for set-valued mappings in p-vector spaces for 0 < p ≤ 1.

Corollary 7.1 (The implicit Leray–Schauder alternative) Let E be a locally p-convex space
E, where 0 < p ≤ 1, B ⊂ E be bounded closed p-convex such that 0 ∈ int B. Let F : [0, 1] ×
B → 2E be semiclosed 1-set contractive and quasi upper semicontinuous with nonempty
p-convex values and with a closed graph, and let the set F([0, 1] × B) be relatively compact
in E. If the following assumptions are satisfied:

(1) F({0} × ∂B) ⊂ B,
(2) x /∈ F(0, x) for all x ∈ ∂B,

then at least one of the following properties is satisfied:
(i) there exists x∗ ∈ B such that x∗ ∈ F(1, x∗); or

(ii) there exists (λ∗, x∗) ∈ (0, 1) × ∂B such that x∗ ∈ F(λ∗, x∗).

Proof The result is an immediate consequence of Theorem 7.6, this completes the
proof. �

We would like to point out that similar results on Rothe and Leray–Schauder alternative
have been developed by Furi and Pera [44], Granas and Dugundji [53], Górniewicz [51],
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Górniewicz et al. [52], Isac [60], Li et al. [78], Liu [81], Park [96], Potter [108], Shahzad
[120–122], Xu [139], Xu et al. [140] (see also the related references therein) as tools of non-
linear analysis in the Banach space setting and applications to the boundary value prob-
lems for ordinary differential equations in noncompact problems and a general class of
mappings for nonlinear alternative of Leray–Schauder type in normal topological spaces.
Some Birkhoff–Kellogg type theorems for general class mappings in topological vector
spaces have also been established by Agarwal et al. [1], Agarwal and O’Regan [2, 3], and
Park [98] (see the references therein for more details); and in particular, recently O’Regan
[91] used the Leray–Schauder type coincidence theory to establish some Birkhoff–Kellogg
problems, Furi–Pera type results for a general class of mappings.

Before closing this section, we would like to share that as the application of the best
approximation result for 1-set contractive mappings we can establish fixed point theo-
rems and the general principle of Leray–Schauder alternative for nonself mappings, which
would seen to play important roles for the nonlinear analysis under the framework of p-
seminorm spaces, as the achievement of nonlinear analysis for the underling being locally
convex spaces, normed spaces, or in Banach spaces.

8 Fixed points for nonself semiclosed 1-set contractive mappings with various
boundary conditions

In this section, based on the best approximation Theorem 6.2 established for the 1-set
contractive mappings in Sect. 6, we will show how it is used as a useful tool for us to de-
velop fixed point theorems for semiclosed 1-set contractive nonself upper semicontinuous
mappings in p-seminorm spaces, where p ∈ (0, 1], by including seminorm, norm spaces,
and uniformly convex Banach spaces as special cases.

By following Definitions 6.1 and 6.2 above, we first observe that if f is a continuous
demicompact mapping, then (I – f ) is closed, where I is the identity mapping on X. It
is also clear from definitions that every demicompact map is hemicompact in seminorm
spaces, but the converse is not true in general (e.g., see the example in p. 380 by Tan and
Yuan [129]). It is evident that if f is demicompact, then I – f is demiclosed. It is known
that for each condensing mapping f , when D or f (D) is bounded, then f is hemicompact;
and also f is demicompact in metric spaces by Lemma 2.1 and Lemma 2.2 of Tan and
Yuan [129], respectively. In addition, it is known that every nonexpansive map is a 1-set-
contractive map; and also if f is a hemicompact 1-set-contractive mapping, then f is a
1-set-contractive mapping satisfying the following “Condition (H1)” (the same as (H1),
and slightly different from condition (H) used in Sect. 5):

(H1) Condition: Let D be a nonempty bounded subset of a space E and assume that
F : D → 2E is a set-valued mapping. If {xn}n∈N is any sequence in D such that for each xn,
there exists yn ∈ F(xn) with limn→∞(xn – yn) = 0, then there exists a point x ∈ D such that
x ∈ F(x).

We first note that the “(H1) Condition” above is actually “Condition (C)” used by Theo-
rem 1 of Petryshyn [105]. Indeed, by following Goebel and Kirk [49] (see also Xu [137] and
the references therein), Browder [18] (see also [19], p. 103) proved that if K is a closed and
convex subset of a uniformly convex Banach space X, and if T : K → X is nonexpansive,
then the mapping f := I – T is demiclosed on X. This result, known as Browder’s demi-
closedness principle (Browder’s proof, which was inspired by the technique of Göhde in
[50]), is one of the fundamental results in the theory of nonexpansive mappings that sat-
isfies the “(H1) condition”.
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The following is Browder’s demiclosedness principle proved by Browder [18] that says
that a nonexpansive mapping in a uniformly convex Banach X enjoys condition (H1) as
shown below.

Lemma 8.1 Let D be a nonempty bonded convex subset of a uniformly convex Banach
space E. Assume that F : D → E is a nonexpansive single-valued mapping, then the map-
ping P := I – F defined by P(x) := (x – F(x)) for each x ∈ D is demiclosed, and in particular,
the “(H1) condition” holds.

Proof By following the argument given in p. 329 (see also the proof of Theorem 2.2 and
Corollary 2.1) by Petryshyn [105], by the Browder demiclosedness principle (see Goebel
and Kirk [49] or Xu [137]), P = (I – F) is closed at zero, thus there exists x0 ∈ U such
0 ∈ (I – F)x0), which means that x0 ∈ F(x0). The proof is complete. �

On the other hand, by following the notion called “Opial’s condition” given by Opial [90],
which says that a Banach space X is said to satisfy Opial’s condition if lim infn→∞ ‖wn –w‖ <
lim infn→∞ ‖wn – p‖ whenever (wn) is a sequence in X weakly convergent to w and p �= w,
we know that Opial’s condition plays an important role in the fixed point theory, e.g., see
Lami Dozo [75], Goebel and Kirk [49], Xu [137], and the references therein. Actually, the
following result shows that there exists a class of nonexpansive set-valued mappings in
Banach spaces with Opial’s condition (see Lami Dozo [75] satisfying the “(H1) Condition”.

Lemma 8.2 Let C be a nonempty convex weakly compact subset of a Banach space X that
satisfies Opial’s condition. Let T : C → K(C) be a nonexpansive set-valued mapping with
nonempty compact values. Then the graph of (I – T) is closed (X,σ (X, X∗) × (X,‖ · ‖)),
thus T satisfies the “(H1) condition”, where I denotes the identity on X, σ (X, X∗)is the weak
topology, and ‖ · ‖ is the norm (or strong) topology.

Proof By following Theorem 3.1 of Lami Dozo [75], it follows that the mapping T is demi-
closed, thus T satisfies the “(H1) condition”. The proof is complete. �

By Theorem 3.1 of Lami Dozo [75], indeed, we have the following statement, which is
another version by using the term of “distance convergence” for Lemma 8.2.

Lemma 8.3 Let C be a nonempty closed convex subset of a Banach space (X, d) that satis-
fies the Opial condition. Let T : C → K(C) be a multivalued nonexpansive mapping (with
fixed points). Let (yn)n∈N be a bounded sequence such that n→∞d(y,T(yn)) = 0, then the weak
cluster points of (yn), n ∈N is a fixed point of T .

Proof It is Theorem 3.1 of Lami Dozo [75] (see also Lemma 3.2 of Xu and Muglia
[138]). �

We note that another class of set-valued mappings, called “∗-nonexpansive mappings in
Banach spaces (introduced by Husain and Tarafdar [59], see also Husain and Latif [58]),
was proved to hold the demiclosedness principle in reflexive Banach spaces satisfying
Opial’s condition by Muglia and Marino (i.e., Lemma 3.4 in [85]), thus the demiclosed-
ness principle also holds in reflexive Banach spaces with duality mapping that is weakly
sequentially continuous since these satisfy Opial’s condition.
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Let E denote a Hausdorff locally convex topological vector space andF denote the family
of continuous seminorms generating the topology of E. Also C(E) will denote the family of
nonempty compact subsets of E. For each p ∈ F and A, B ∈ C(E), we can define δ(A, B) :=
sup{p(a – b) : a ∈ A, b ∈ B} and Dp(A, B) := max{supa∈A infb∈B P(a – b), supb∈B infa∈A P(a –
b)}. Though p is only a seminorm, Dp is a Hausdorff metric on C(E) (e.g., see Ko and Tsai
[71]).

Definition 8.1 Let K be a nonempty subset of E. A mapping T : K → C(E) is said to be
a multivalued contraction if there exists a constant kp ∈ (0, 1) such that Dp(T(x), T(y)) ≤
kpP(x–y). T is said to be nonexpansive if for any x, y ∈ K , we have Pp(T(x), T(y))) ≤ P(x–y).

By Chen and Singh [31], we now have the following definition of Opial’s condition in
locally convex spaces.

Definition 8.2 The locally convex space E is said to satisfy Opial’s condition if for each
x ∈ E and every net (xα) converging weakly to x, for each P ∈ F, we have lim inf P(xα – y) >
lim inf P(xα – x) for any y �= x.

Now we have the following demiclosedness principle for nonexpansive set-valued map-
pings in (Hausdorff) local convex spaces E, which is indeed Theorem 1 of Chen and Singh
[31].

Lemma 8.4 Let K be a nonempty, weakly, compact, and convex subset of E. Let T : K →
C(E) be nonexpansive. If E satisfies Opial’s condition, then the graph (I – G) is closed in
Ew × E, where Ew is E with its weak topology and I is the identity mapping.

Proof The conclusion follows by Theorem 1 of Chen and Singh [31]. �

Remark 8.1 When a p-vector space E is with a p-norm, then both (H1) and (H) condi-
tions for their convergence can be described by the convergence weakly and strongly by
the weak topology and strong topology induced by p-norm for p ∈ (0, 1]. Secondly, if a
given p-vector space E has a nonempty open p-convex subset U containing zero, then
any mapping satisfying the “(H) condition” is a hemicompact mapping (with respect PU

for a given bounded open p-convex subset U containing zero of p-vector space E), thus
satisfying the “(H) condition” used in Theorem 5.1.

By the fact that each semiclosed 1-set mapping satisfies the “(H1) condition”, we have the
existence of fixed points for the class of semiclosed 1-set mappings. First, as an application
of Theorem 8.2, we have the following result for nonself mappings in p-seminorm spaces
for p ∈ (0, 1].

Theorem 8.1 Let U be a bounded open p-convex subset of a p-seminorm space E (0 <
p ≤ 1) zero 0 ∈ U . Assume that F : U → 2E is a semiclosed 1-set contractive and quasi
upper semicontinuous mapping with nonempty p-convex values and with a closed graph.
In addition, for any x ∈ ∂U and y ∈ F(x), we have λx �= y for any λ > 1 (i.e., the “Leray–
Schauder boundary condition”). Then F has at least one fixed point.
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Proof By the proof of Theorem 6.2 with C = E, we actually have thaat either (I) or (II)
holds:

(I) F has a fixed point x0 ∈ U , i.e., PU (y0 – x0) = 0;

(II) There exist x0 ∈ ∂(U) and y0 ∈ F(x0) with PU (y0 – x0) = (P
1
p
U (y0) – 1)p > 0.

If F has no fixed point, then (II) above holds and x0 /∈ F(x0). By the proof of Theorem 6.2,
we have that x0 = f (y0) and y0 /∈ U . Thus PU (y0) > 1 and x0 = f (y0) = y0

(PU (y0))
1
p

, which means

y0 = (PU (y0))
1
p x0, where (PU (y0))

1
p > 1, this contradicts the assumption. Thus F must have

a fixed point. The proof is complete. �

By following the idea used and developed by Browder [18], Li [77], Li et al. [78], Goebel
and Kirk [48], Petryshyn [104, 105], Tan and Yuan [129], Xu [139], Xu et al. [140] and the
references therein, we have the following existence theorems for the principle of Leray–
Schauder type alternatives in p-seminorm spaces (E,‖ · ‖p) for p ∈ (0, 1].

Theorem 8.2 Let U be a bounded open p-convex subset of a p-seminorm space (E,‖ · ‖p)
(0 < p ≤ 1) zero 0 ∈ U . Assume that F : U → 2E is a semiclosed 1-set contractive and quasi
upper semicontinuous mapping with nonempty p-convex values and with a closed graph.
In addition, there exist α > 1, β ≥ 0 such that for each x ∈ ∂U , we have that for any y ∈ F(x),
‖y – x‖α/p

p ≥ ‖y‖(α+β)/p
p ‖x‖–β/p

p – ‖x‖α/p
p . Then F has at least one fixed point.

Proof By assuming F has no fixed point, we prove the conclusion by showing that the
Leray–Schauder boundary condition in Theorem 8.1 does not hold. If we assume that
F has no fixed point, by the boundary condition of Theorem 8.1, there exist x0 ∈ ∂U ,
y0 ∈ F(x0), and λ0 > 1 such that y0 = λ0x0.

Now, consider the function f defined by f (t) := (t – 1)α – tα+β + 1 for t ≥ 1. We ob-
serve that f is a strictly decreasing function for t ∈ [1,∞) as the derivative of f ′(t) =
α(t – 1)α–1 – (α + β)tα+β–1 < 0 by the differentiation, thus we have tα+β – 1 > (t – 1)α for t ∈
(1,∞). By combining the boundary condition, we have that ‖y0 – x0‖α/p

p = ‖λ0x0 – x0‖α/p
p =

(λ0 – 1)α‖x0‖α/p
p < (λα+β

0 – 1)‖x0‖(α+β)/p
p ‖x0‖–β/p

p = ‖y0‖(α+β)/p
p ‖x0‖–β/p

p – ‖x0‖α/p
p , which con-

tradicts the boundary condition given by Theorem 8.2. Thus, the conclusion follows. �

Theorem 8.3 Let U be a bounded open p-convex subset of a p-seminorm space (E,‖ · ‖p)
(0 < p ≤ 1) zero 0 ∈ U . Assume that F : U → 2E is a semiclosed 1-set contractive and quasi
upper semicontinuous mapping with nonempty p-convex values and with a closed graph.
In addition, there exist α > 1, β ≥ 0 such that for each x ∈ ∂U , we have that for any y ∈ F(x),
‖y + x‖(α+β)/p

p ≤ ‖y‖α/p
p ‖x‖β/p

p + ‖x‖(α+β)/p
p . Then F has at least one fixed point.

Proof We prove the conclusion by showing that the Leray–Schauder boundary condition
in Theorem 8.1 does not hold. If we assume that F has no fixed point, by the boundary
condition of Theorem 8.1, there exist x0 ∈ ∂U , y0 ∈ F(x0), and λ0 > 1 such that y0 = λ0x0.

Now, consider the function f defined by f (t) := (t + 1)α+β – tα – 1 for t ≥ 1. We then can
show that f is a strictly increasing function for t ∈ [1,∞), thus we have tα + 1 < (t + 1)α+β

for t ∈ (1,∞). By the boundary condition given in Theorem 8.3, we have that

‖y0 + x0‖(α+β)/p
p = (λ0 + 1)α+β‖x0‖(α+β)/p

p

>
(
λα

0 + 1
)‖x0‖(α+β)/p

p
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= ‖y0‖α/p
p ‖x0‖β/p

p + ‖x0‖α/p
p ,

which contradicts the boundary condition given by Theorem 8.3. Thus, the conclusion
follows and the proof is complete. �

Theorem 8.4 Let U be a bounded open p-convex subset of a p-seminorm space (E,‖ · ‖p)
(0 < p ≤ 1) zero 0 ∈ U . Assume that F : U → 2E is a semiclosed 1-set contractive and quasi
upper semicontinuous mapping with nonempty p-convex values and with a closed graph. In
addition, there exist α > 1, β ≥ 0 (or alternatively, α > 1, β ≥ 0) such that for each x ∈ ∂U ,
we have that for any y ∈ F(x), ‖y – x‖α/p

p ‖x‖β/p
p ≥ ‖y‖α/p

p ‖y + x‖β/p
p – ‖x‖(α+β)/p

p . Then F has
at least one fixed point.

Proof The same as above, we prove the conclusion by showing that the Leray–Schauder
boundary condition in Theorem 8.1 does not hold. If we assume that F has no fixed point,
by the boundary condition of Theorem 8.1, there exist x0 ∈ ∂U , y0 ∈ F(x0), and λ0 > 1 such
that y0 = λ0x0.

Now, consider the function f defined by f (t) := (t – 1)α – tα(t – 1)β + 1 for t ≥ 1. We
then can show that f is a strictly decreasing function for t ∈ [1,∞), thus we have (t – 1)α <
tα(t + 1)β – 1 for t ∈ (1,∞). By the boundary condition given in Theorem 8.4, we have that

‖y0 – x0‖α/p
p ‖x0‖β/p

p = (λ0 – 1)α‖x0‖(α+β)/p
p

<
(
λα

0 (λ0 + 1)β – 1
)‖x0‖(α+β)/p

p

= ‖y0‖α/p
p ‖y0 + x0‖β/p

p – ‖x0‖(α+β)/p
p ,

which contradicts the boundary condition given by Theorem 8.4. Thus, the conclusion
follows and the proof is complete. �

Theorem 8.5 Let U be a bounded open p-convex subset of a p-seminorm space (E,‖ · ‖p)
(0 < p ≤ 1) zero 0 ∈ U . Assume that F : U → 2E is a semiclosed 1-set contractive and quasi
upper semicontinuous mapping with nonempty p-convex values and with a closed graph.
In addition, there exist α > 1, β ≥ 0, we have that for any y ∈ F(x), ‖y + x‖(α+β)/p

p ≤ ‖y –
x‖α/p

p ‖x‖β/p
p + ‖y‖β/p

p ‖x‖α/p. Then F has at least one fixed point.

Proof The same as above, we prove the conclusion by showing that the Leray–Schauder
boundary condition in Theorem 8.1 does not hold. If we assume F has no fixed point, by
the boundary condition of Theorem 8.1, there exist x0 ∈ ∂U , y0 ∈ F(x0), and λ0 > 1 such
that y0 = λ0x0.

Now, consider the function f defined by f (t) := (t + 1)α+β – (t – 1)α – tβ for t ≥ 1. We then
can show that f is a strictly increasing function for t ∈ [1,∞), thus we have (t + 1)α+β >
(t – 1)α + tβ for t ∈ (1,∞).

By the boundary condition given in Theorem 8.5, we have that ‖y0 + x0‖(α+β)/p
p = (λ0 +

1)α+β‖x0‖(α+β)/p
p > ((λ0 – 1)α + λ

β
0 )‖x0‖(α+β)/p

p = ‖λ0x0 – x0‖α/p
p ‖x0‖β/p

p + ‖λ0x0‖β/p
p ‖x0‖α/p

p =
‖y0 – x0‖β/p

p ‖x0‖α/p
p + ‖y0‖β/p

p ‖x9‖α/p, which implies that

‖y0 + x0‖(α+β)/p
p > ‖y0 – x0‖β/p

p ‖x0‖α/p
p + ‖y0‖β/p

p ‖x9‖α/p,
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this contradicts the boundary condition given by Theorem 8.5. Thus, the conclusion fol-
lows and the proof is complete. �

As an application of Theorem 8.1, by testing the Leray–Schauder boundary condition,
we have the following conclusion for each special case, and thus we omit their proofs in
detail here.

Corollary 8.1 Let U be a bounded open p-convex subset of a p-seminorm space (E,‖ · ‖p)
(0 < p ≤ 1) zero 0 ∈ U . Assume that F : U → 2E is a semiclosed 1-set contractive and quasi
upper semicontinuous mapping with nonempty p-convex values and with a closed graph.
Then F has at least one fixed point if one of the following (strong) conditions holds for x ∈ ∂U
and y ∈ F(x):

(i) ‖y‖p ≤ ‖x‖p,
(ii) ‖y‖p ≤ ‖y – x‖p,

(iii) ‖y + x||p ≤ ‖y‖p,
(iv) ‖y + x‖p ≤ ‖x‖p,
(v) ‖y + x‖p ≤ ‖y – x‖p,

(vi) ‖y‖p · ‖y + x‖p ≤ ‖x‖2
p,

(vii) ‖y‖p · ‖y + x‖p ≤ ‖y – x‖p · ‖x‖p.

If the p-(semi)norm space E is a uniformly convex Banach space (E,‖ · ‖) (for p-norm
space with p = 1), then we have the following general existence result, which can apply to
general nonexpansive (single-valued) mappings, too.

Theorem 8.6 Let U be a bounded open convex subset of a uniformly convex Banach space
(E,‖ · ‖) (with p = 1) with zero 0 ∈ U . Assume that F : U → E is a semicontractive and
continuous (single-valued) mapping. In addition, for any x ∈ ∂U , we have λx �= F(x) for any
λ > 1 (i.e., the “Leray–Schauder boundary condition”). Then F has at least one fixed point.

Proof By Lemma 8.1, F is a semiclosed 1-set contractive mapping. Moreover, by the as-
sumption that E is a uniformly convex Banach, the mapping (I – F) is closed at zero, and
thus F is semiclosed at zero (see Browder [18] or Goebel and Kirk [48]). Thus all assump-
tions of Theorem 8.2 are satisfied. The conclusion follows by Theorem 8.2. The proof is
complete. �

Now we have the following results for nonexpansive set-valued mappings in a Banach
space X with Opial’s condition.

Theorem 8.7 Let C be a nonempty convex weakly compact subset of a Banach space X
that satisfies Opial’s condition and 0 ∈ int C. Let T : C → K(X) be a nonexpansive set-
valued mapping with nonempty compact convex values. In addition, for any x ∈ ∂C, we
have λx �= F(x) for any λ > 1 (i.e., the “Leray–Schauder boundary condition”). Then F has
at least one fixed point.

Proof As T is nonexpansive, it is 1-set contractive. By Lemma 8.2, it is then semicon-
tractive and continuous. Then all conditions of Theorem 8.1 are satisfied, the conclusion
follows by Theorem 8.1, and the proof is complete. �
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By using Lemma 8.4, we have the following result in local convex spaces for nonexpan-
sive set-valued mappings.

Theorem 8.8 Let C be a nonempty convex weakly compact subset of a local convex space
X that satisfies Opial’s condition and 0 ∈ int C. Let T : C → K(X) be a nonexpansive set-
valued mapping with nonempty compact convex values. In addition, for any x ∈ ∂C, we
have λx �= F(x) for any λ > 1 (i.e., the “Leray–Schauder boundary condition”). Then F has
at least one fixed point.

Proof As T is nonexpansive, it is 1-set contractive. By Lemma 8.4, it is then semicon-
tractive and continuous. Then all conditions of Theorem 8.1 are satisfied, the conclusion
follows by Theorem 10.1, and the proof is complete. �

By considering a p-seminorm space (E,‖ · ‖) with a seminorm for p = 1, the following
corollary is a special case of the corresponding results from Theorem 8.2 to Theorem 8.5,
and thus we omit its proof.

Corollary 8.2 Let U be a bounded open convex subset of a norm space (E,‖ · ‖). Assume
that F : U → 2E is a semiclosed 1-set contractive and quasi upper semicontinuous mapping
with nonempty p-convex values and with a closed graph. Then F has at least one fixed point
if there exist α > 1, β ≥ 0 such that any one of the following conditions is satisfied:

(i) For each x ∈ ∂U and any y ∈ F(x), ‖y – x‖α ≥ ‖y‖(α+β)‖x‖–β – ‖x‖α ;
(ii) For each x ∈ ∂U and any y ∈ F(x), ‖y + x‖(α+β) ≤ ‖y‖α‖x‖β + ‖x‖(α+β);

(iii) For each x ∈ ∂U and any y ∈ F(x), ‖y – x‖α‖x‖β ≥ ‖y‖α‖y + x‖β – ‖x‖(α+β);
(iv) For each x ∈ ∂U and any y ∈ F(x), ‖y + x‖(α+β) ≤ ‖y – x‖α‖x‖β + ‖y‖β‖x‖α .

Remark 8.2 As discussed by Lemma 8.1 and the proof of Theorem 8.6, when the p-vector
space is a uniformly convex Banach space, the semicontractive or nonexpansive mappings
automatically satisfy the conditions (see (H1)) required by Theorem 8.1, that is, the map-
pings are indeed semiclosed. Moreover, our results from Theorem 8.1 to Theorem 8.6,
Corollary 8.1 and Corollary 8.2 also improve or unify corresponding results given by Brow-
der [18], Li [77], Li et al. [78], Goebel and Kirk [48], Petryshyn [104, 105], Reich [110], Tan
and Yuan [129], Xu [136], Xu [139], Xu et al. [140], and the results from the references
therein by extending the nonself mappings to the classes of semiclosed 1-set contractive
set-valued mappings in p-seminorm spaces with p ∈ (0, 1], including the norm space or
Banach space when p = 1 for p-seminorm spaces.

Before the ending of this paper, we would like to share with readers that the main goal
of this paper was to develop new fixed point theorems and tools in nonlinear analysis for
1-set contractive upper semicontinuous set-valued mappings in locally p-convex spaces
for p ∈ (0, 1].

Actually, the corresponding theory in nonlinear functional analysis could be developed
by applying Theorem 4.3 as a tool in locally p-convex, p-vector and topological vector
spaces for singe-valued mappings for pin ∈ (0, 1], and we do not discuss them in detail
here due to the limited space.

In addition, we do expect that results established in this paper would become useful
tools for the study on optimization, nonlinear programming, variational inequality, com-
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plementarity, game theory, mathematical economics, and other related social science ar-
eas.

Finally, we would like to share that the results established in this paper do not only unify
or improve the corresponding results in the existing literature for nonlinear analysis, but
they can also be regarded as the continuation of (or) related work established recently by
Yuan [144, 145].
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