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Abstract
The motivation of the present paper is to introduce and establish some new fixed
point results for monotone multivalued functions in partially ordered complete
D∗-metric spaces, where the partial ordered set (X ,≤) is obtained via a pair of
functions (ϒ ,�). Moreover, several existence and uniqueness coupled fixed point
theorems of mappings satisfying contractive conditions have been investigated and
verified in the setting of partially ordered complete D∗-metric spaces by using the
concept of integral type contractions with respect to partially ordered D∗-metric
space. Furthermore, we present appropriate examples as an application for our main
results. Our results generalize the work of Ghasab, Majani, and Rad on the study of
integral type contraction and coupled fixed point theorems in the ordered G-metric
spaces.
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1 Introduction and preliminaries
The fixed point theorems in partially ordered metric spaces play a major role in verify-
ing the existence and uniqueness of solutions for some differential and integral equations.
The theory of multivalued mappings is a branch of mathematics that has received great
attention in the last decades and has various applications in convex optimization, optimal
control theory, and differential inclusions. Let (X, d) be a complete metric space. A map-
ping T : X → X is a contraction mapping if there exists a constant q ∈ (0, 1) such that
d(T(x), T(y)) ≤ qd(x, y) for all x, y ∈ X. Then the Banach fixed point theorem states that
T always has a unique fixed point in X. After witnessing the application of Banach fixed
point theorem in giving the existence and uniqueness solutions for many integral and dif-
ferential equations, various generalizations or extensions of Banach fixed point theorem
were carried out. By considering subsequences in the sequence of iterates, Edelstein [1]
weakened the condition in the Banach fixed point theorem, and later people knew this as
Edelstein’s fixed point theorem. Meanwhile, Boyd and Wong [2] introduced a continuous

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13663-023-00748-9
https://crossmark.crossref.org/dialog/?doi=10.1186/s13663-023-00748-9&domain=pdf
mailto:aimanalhity@gmail.com
http://creativecommons.org/licenses/by/4.0/


Majid et al. Fixed Point Theory Algorithms Sci Eng         (2023) 2023:11 Page 2 of 14

function ϒ : [0,∞) → [0,∞) to replace qd(x, y) with ψ(d(x, y)) and hence generalized Ba-
nach fixed point theorem. In 1976, Caristi [3] proved some general fixed point theorems
using the characterization of weakly inward mappings. An analogue version of Banach
fixed point theorem in the setting of partially ordered sets was proved in [4] and is also
known as the Ran–Reurings fixed point theorem.

However, there is also a failed attempt on generalizing Banach fixed point theorem by
Dhage et al. [5] who introduced the D-metric space topology, see [6–8] for details. As a
correction to the topology introduced by Dhage et al., in 2007, Sedghi et al. [9] established
the meaning of D∗-metric spaces, which is a probable modification of D-metric spaces
proved by the author in [5]. Afterwards, many authors [10, 11] proved several fixed point
theorems in these spaces.

Some coupled fixed point results for a mixed monotone mapping in ordered metric
spaces have been established (see [12, 13]); for more details on coupled fixed point and
n tuples fixed point theorems, we refer the reader to paper [14] and the references therein.
Fixed point problems have further considered the concept of partially ordered complete
generalized D∗-metric spaces. Al. Jumaili in [15] used the meaning of D∗-metric spaces
and presented some coincidence fixed point theorems for functions satisfying contractive
conditions concerning nondecreasing ϕ-mappings in partially ordered complete general-
ized D∗-metric spaces.

Recently, Ghasab et al. [16] applied the idea of integral kind contractions and proved
some coupled fixed point theorems for such contractions in ordered G-metric spaces. Our
objective in this article is to introduce and investigate several new fixed point theorems for
monotone multivalued functions in partially ordered complete D∗-metric spaces, wher-
ever the partial ordered set (X,≤) is obtained via a pair of functions (ϒ ,�). Furthermore,
we study and establish some existence and uniqueness coupled fixed point theorems for
mappings satisfying contractive conditions in the setting of partially ordered complete D∗-
metric spaces by using the concept of integral type contractions. In addition, we provide
suitable examples as an application for our main results. In our research, in the beginning,
we explain several definitions and fundamental conclusion under the concept of D∗-metric
spaces, because we think these explanations give readers the opportunity to understand
more easily in subsequent parts.

Definition 1.1 ([9, Definition 1.1]) Let X be a nonempty set. Let D∗ : X × X × X → [0,∞)
be a function that satisfies the following conditions for all x, y, z, b ∈ X:

(i) D∗(x, y, z) ≥ 0;
(ii) D∗(x, y, z) = 0 if and only if x = y = z;

(iii) D∗(x, y, z) = D∗(P{x, y, z}), where P is a permutation function;
(iv) D∗(x, y, z) ≤ D∗(x, y, b) + D∗(b, z, z).

Then the function D∗ is called a D∗-metric on X, and the pair (X, D∗) is called a D∗-metric
space.

It was remarked in [9, Remark 1.2] that the equality D∗(x, x, y) = D∗(x, y, y) holds true for
all x, y ∈ X. Also, some examples of D∗ metric have been presented in the same reference.
We need the following definition to study the D∗-metric spaces.

Definition 1.2 ([9, Definition 1.4]) Suppose that (X, D∗) is a D∗-metric space. Then we
say that:
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(i) A sequence {xs} in X converges to a point x ∈ X if and only if D∗(xs, xs, x) =
D∗(x, x, xs) → 0 as s → ∞. That is, for each ε > 0, there exists a positive integer so

such that for all s ≥ so ⇒ D∗(x, x, xs) < ε. This is equivalent to: for each ε > 0, there
exists a positive integer so such that D∗(x, xs, xr) < ε for all s, r ≥ so.

(ii) A sequence {xs} in X is a Cauchy sequence if for given ε > 0 there exists a positive
integer so such that, for each s, r ≥ so, D∗(xs, xs, xr) < ε.

(iii) A space (X, D∗) is a complete D∗-metric if every Cauchy sequence in (X, D∗) is
convergent in (X, D∗).

Lemma 1.1 ([17, Lemma 1.9]) Let (X, D∗) be a D∗-metric space. If a sequence {xs} is con-
vergent to x ∈ X, then it is a Cauchy sequence.

Lemma 1.2 ([9, Lemma 1.7]) Let (X, D∗) be a D∗-metric space. Then D∗ is a continuous
function on X3, that is,

lim
s→∞ D∗(xs, ys, zs) = D∗(x, y, z),

whenever a sequence {(xs, ys, zs)} in X3 converges to a point (x, y, z) ∈ X3.

Definition 1.3 ([3]) Let (X, d) be a metric space and � : X → [0,∞) be a functional. De-
fine the relation ≤ on X by x ≤ y if and only if d(x, y) ≤ �(x) – �(y). Then ≤ is a partial
order relation on X induced by � and (X,≤) is called an ordered metric space introduced
by �.

Definition 1.4 ([3]) The following two classes of mappings � and � are defined as � =
(ϒ |ϒ : [0,∞) → [0,∞) is continuous and nondecreasing with ϒ(τ ) = 0 iff τ = 0} and � =
{�|� : [0,∞) → [0,∞) is lower semicontinuous, �(τ ) > 0 for all τ > 0 and �(0) = 0}.

Definition 1.5 ([18, Definition 1.2]) An element (a, b) ∈ X2 is said to be a coupled fixed
point of the mapping F : X2 → X if F(a, b) = a and F(b, a) = b.

Definition 1.6 ([18, Definition 1.1]) Suppose that (X,≤) is an ordered partial metric
space. If relation 	 is defined on X2 by (a, b) 	 (u, v) iff a ≤ u and b ≤ y, then (X2,	)
is an ordered partial metric space.

Definition 1.7 ([18, Definition 1.1]) Suppose that (X,≤) is a partially ordered set. The
mapping F : X2 → X is said to have the mixed monotone property if F is monotone non-
decreasing in its first argument and is monotone nonincreasing in its second argument;
i.e., for all x1, x2 ∈ X, x1 ≤ x2 ⇒ F(x1, y) ≤ F(x2, y) for all y ∈ x, and for all y1, y2 ∈ X, y1 ≤
y2 ⇒ F(x, y2) ≤ F(x, y1) for all x ∈ X.

Definition 1.8 ([19, definition 2.1]) A function f : X →R is called lower semi-continuous
if for any {xn} ⊂ X and x ∈ X

xn → x �⇒ f (x) ≤ lim
n→∞ f (xn).

.
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2 Multivalued functions and D∗-metric spaces
This section is devoted to introducing and studying several new fixed point theorems for
monotone multivalued functions in partially ordered complete D∗-metric spaces by using
the setting of D∗-metric spaces. Throughout this article, we assume that the function ϒ :
[0,∞) −→ [0,∞) has the following properties:

(i) ϒ is nondecreasing and continuous;
(ii) ϒ–1({0}) = {0};

(iii) ϒ(a + b) ≤ ϒ(a) + ϒ(b) for all a, b ∈ [0, +∞).

Definition 2.1 Let (X, D∗,≤) be a D∗-metric space, and let ϒ : [0,∞) −→ [0,∞) be a real-
valued mapping, and � : X → [0,∞) be a functional. We define a relation ≤ as follows:
x ≤ y if and only if

ϒ
(
D∗(x, x, y)

) ≤ �(x) – �(y)

for all x, y ∈ X.

Proposition 2.1 Let (X, D∗) be a D∗-metric space, then ≤ is a partial order on X and (X,≤)
is a partially ordered set.

Proof First, we prove that ≤ is reflexive. Since ϒ(D∗(x, x, x)) = �(x) – �(x) for all x ∈
X, it follows that ≤ is reflexive. Secondly, we prove ≤ is antisymmetric. If x, y ∈ X
such that x ≤ y and y ≤ x, then ϒ(D∗(x, x, y)) ≤ �(x) – �(y) and ϒ(D∗(y, y, x)) ≤ �(y) –
�(x). Hence ϒ(D∗(x, x, y)) + ϒ(D∗(y, y, x)) = 0. Thus, ϒ(D∗(x, x, y)) = ϒ(D∗(y, y, x)) = 0. So
ϒ(D∗(x, x, y)) = 0, and so x = y, which shows that ≤ is antisymmetric. In addition, ≤ is
transitive because if x, y, z ∈ X such that x ≤ y and y ≤ z, hence

ϒ
(
D∗(x, x, y)

) ≤ �(x) – �(y)

and

ϒ
(
D∗(y, y, z)

) ≤ �(y) – �(z).

Hence, ϒ(D∗(x, x, y)) + ϒ(D∗(y, y, z)) ≤ �(x) – �(z). Utilizing part (iii) of the definition
of D∗-metric space and property (iii) of the function ϒ , we obtain

ϒ
(
D∗(x, x, z)

) ≤ ϒ
{

D∗(x, x, y) + D∗(y, z, z)
}

≤ ϒ
(
D∗(x, x, y)

)
+ ϒ

(
D∗(y, y, z)

)
(symmetric) ≤ �(x) – �(z).

Thus, we get x ≤ z. �

Remark 2.1 From the proof of Proposition 2.1, we see that (X,ϒ ◦D∗) is again a D∗-metric
space.

In the next work we suppose that (X, D∗,≤) is an ordered D∗-metric space induced via
(ϒ ,�).
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Definition 2.2 Suppose that (X, D∗,≤) is an ordered D∗-metric space induced via (ϒ ,�),
the ordered intervals in X are defined as follows:

(i) [x, y] = {z ∈ X : x ≤ z ≤ y};
(ii) [x,∞) = {z ∈ X : x ≤ z};

(iii) (–∞, x] = {z ∈ X : z ≤ x}.

Definition 2.3 ([19, Definition 2.3]) Suppose that F : X → 2X is a multivalued mapping.
We say that F is upper semicontinuous if whenever {xs} ∈ X and {ys} ∈ F(xs) with xs →
p ∈ X and ys → ω ∈ X, then ω ∈ F(p).

Definition 2.4 ([19, Definition 2.4]) An element x ∈ X is said to be a fixed point of a
multivalued mapping F : X → 2X if x ∈ F(x).

We illustrate our first result in the following theorem.

Theorem 2.1 Assume that (X, D∗,≤) is a partially ordered complete D∗-metric space
induced via (ϒ ,�), where � : X → [0,∞) is a mapping which is bounded below. Let
F : X → 2X be a multivalued mapping and M = {x ∈ X : F(x) ∩ [x,∞) �= ∅}. Assume that

(i) F is upper semicontinuous;
(ii) If x ∈ M, then y ∈ M for all y ∈ F(x) ∩ [x,∞);

(iii) F(p) ∩ [p,∞) �= ∅ for some p ∈ X .
Then there exists a sequence {xs} such that xs–1 ≤ xs ∈ F(xs–1) for all s ∈ N, and F has a

fixed point xo such that xs → xo. In addition, if � is lower semicontinuous, then xs ≤ x0 for
all s.

Proof By(iii), there exists p ∈ X such that p ∈ M. Thus choose q ∈ F(p) ∩ [p, +∞), and
we have p ≤ q. By(ii), we have q ∈ M. Choose τ ∈ F(q) ∩ [q, +∞), and we have q ≤ τ .
Continuing in this manner, we obtain a sequence {xs} in X such that xs–1 ≤ xs ∈ F(xs–1) for
all s ∈N.

Now, since (X, D∗,≤) is a partially ordered D∗-metric space induced via (ϒ ,�), we obtain
that

ϒ
(
D∗(xs–1, xs–1, xs)

) ≤ �(xs–1) – �(xs).

Since ϒ is a nonnegative mapping, we have that �(xs–1)–�(xs) ≥ 0 for all s ∈N. Therefore,
�(xs–1) ≥ �(xs) for all s ∈ N. Since � is a mapping that is bounded below, we get �(xs) is
a decreasing sequence that is bounded below. So, via the completeness property of R, we
obtain lims→+∞ �(xs) = inf{xs : s ∈N}. Thus,

lim
s,r→+∞ϒ

(
D∗(xs, xs, xr)

) ≤ lim
s→+∞�(xs) – lim

r→+∞�(xr).

Therefore, lims,r→+∞ ϒ(D∗(xs, xs, xr)) = 0.
Now, utilizing the continuity of the mapping ϒ and the property that ϒ–1({0}) = {0},

we obtain that lims,r→+∞ D∗(xs, xs, xr) = 0. Therefore, {xs} is a Cauchy sequence in x. Since
X is complete, there exists x0 ∈ X such that {xs} is D∗-convergent to xo. Since xs–1 ∈ X,
xs ∈ F(xs–1), xs–1 → xo, and xs → xo, via the definition of upper semicontinuity of F , we
have xo ∈ F(xo).
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Now, assume that � is lower semicontinuous, then for all s ∈N, we have

ϒ
(
D∗(xs, xs, xo)

)
= lim

r→+∞ϒ
(
D∗(xs, xs, xr)

) ≤ lim inf
r→+∞ �(xs) – �(xr)

= �(xs) – lim inf
r→+∞ �(xr) ≤ �(xs) – �(xo).

Thus, xs ≤ xo for all s ∈ N. �

The next result shows that assumption (ii) can be replaced with a new assumption on F .

Corollary 2.1 Suppose that (X, D∗,≤) is a partially ordered complete D∗-metric space
induced via (ϒ ,�), where � : X → [0,∞) is a mapping that is bounded below, and let
F : X → 2X be a multivalued mapping where

(i) F is upper semicontinuous;
(ii) F satisfies the condition of monotonic sequence: for all x, y ∈ X with x ≤ y and every

α ∈ F(x), there exists β ∈ F(y) such that α ≤ β ;
(iii) There exists p ∈ X such that F(p) ∩ [p, +∞) �= ∅.

Then there exists a sequence {xs} in X with xs–1 ≤ xs ∈ F(xs–1) for all s ∈ N, and F has a
fixed point xo such that xs → x0. Furthermore, if � is lower semicontinuous, then xs ≤ x0

for all s.

Proof By(ii), we have p ∈ M. Let y ∈ F(p) ∩ [p, +∞). Then the—condition of F implies that
there exists z ∈ F(y) such that y ≤ z. In other words, z ∈ F(y) ∩ [y, +∞) �= ∅. Hence y ∈ M
and the proof is complete by applying Theorem 2.1. �

Corollary 2.2 Suppose that (X, D∗,≤) is a partially ordered complete D∗-metric space in-
duced via (ϒ ,�) such that � : X → [0,∞) is a mapping which is bounded below, and let
f : X → X be a mapping. Assume the following:

(i) f is continuous;
(ii) f satisfies the condition of monotonic increasing sequence: for any α ∈ f (x), there

exists β ∈ f (y) such that α ≤ β ;
(iii) There exists p ∈ X such that p ≤ f (p).

Then there exists a sequence {xs} in X with xs–1 ≤ xs ∈ f (xs–1) for all s ∈N, and f has a fixed
point xo such that xs → xo. As well, if � is lower semicontinuous, then xs ≤ xo for all s.

Proof Define a multivalued mapping, F : X → 2X via F(x) = {f (x)} for all x ∈ X, then F and
X satisfy all the assumption of Theorem 2.1. So, we obtain the result from Theorem 2.1. �

The following results are an analogous version of the previous results by replacing the
condition of bounded below with the condition of bounded above. The proofs are similar
and hence omitted.

Theorem 2.2 Let (X, D∗,≤) be a partially ordered complete D∗-metric space induced via
(ϒ ,�), where � : X → R is a mapping that is bounded above. Suppose that F : X → 2X is
a multivalued mapping and M = {x ∈ X : F(x) ∩ (–∞, x] �= ∅}. Assume that

(i) F is upper semicontinuous;
(ii) For all x ∈ M, F(x) ∩ M ∩ (–∞, x] �= ∅.
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Then there exists a sequence {xs} such that xs–1 ≥ xs ∈ F(xs–1) for all s ∈ N, and F has a
fixed point xo such that xs → xo. Also, if � is lower semicontinuous, then xs ≥ xo for all s.

Corollary 2.3 Suppose that (X, D∗,≤) is a partially ordered complete D∗-metric space in-
duced via (ϒ ,�), where � : X → R is a mapping that is bounded above, and let F : X → 2X

be a multivalued mapping, where
(i) F is upper semicontinuous;

(ii) F satisfies the condition of monotonic sequence: for all x, y ∈ X with x ≥ y and every
α ∈ F(x), there exists β ∈ F(y) such that α ≥ β ;

(iii) There exists p ∈ X such that F(p) ∩ (–∞, p] �= ∅.
Then there exists a sequence {xs} in X with xs–1 ≥ xs ∈ F(xs–1) for all s ∈ N, and F has a
fixed point xo such that xs → xo. Furthermore, if � is lower semicontinuous, then xs ≥ xo

for all s.

Corollary 2.4 Suppose that (X, D∗,≤) is a partially ordered complete D∗-metric space in-
duced via (ϒ ,�) such that � : X → [0, +∞) is a mapping that is bounded below, and let f :
X → X be a mapping where

(i) f is continuous;
(ii) f satisfies the condition of monotonic increasing sequence. α ∈ f (x), there exists

β ∈ f (y) such that α ≤ β ;
(iii) There exists p ∈ X such that p ≥ f (p).

Then there exists a sequence {xs} in X with xs–1 ≥ xs ∈ f (xs–1) for all s ∈N, and f has a fixed
point x◦ such that xs → xo. As well, if � is lower semicontinuous, then xs ≥ xo for all s.

3 Coupled fixed point theorems in D∗-metric spaces
This section is devoted to introducing and studying several results of coupled fixed point
satisfying contractive conditions in the setting of partially ordered complete D∗-metric
spaces by using the idea of integral type contractions. For convenience, we explain the
following properties of mappings �,� : [0,∞) → [0,∞):

(i) � is nondecreasing on [0,∞);
(ii) �(t) ≤ t for all t > 0;

(iii) � is an additive mapping;
(iv)

∑∞
s=1 s�s(t) < ∞ for all t > 0.

Also,
(i) � is nonincreasing on [0,∞);

(ii) � is Lebesgue integrable;
(iii) For every ε > 0,

∫ ε

0 �(t)dt > 0;
(iv) � is a continuous mapping.

Now, we introduce the main theorem in our manuscript.

Theorem 3.1 Suppose that (X, D∗,≤) is a partially ordered complete D∗-metric space, and
let F : X2 → X be a continuous mapping with the mixed monotone property on X such that

∫ D∗(F(x,y),F(p,q),F(d,z))

0
�(t) dt ≤ �

(∫ D∗(x,p,d)+D∗(y,q,z)

0
�(t) dt

)
, (3.1)

where x, y, z, p, q, d ∈ X and � : [0,∞) → [0,∞) is a Lebesgue-integrable mapping that is
summable (i.e., with finite integral) with d ≤ p ≤ x and y ≤ q ≤ z, where either p �= d or
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q �= z. If there exist y0, x0 ∈ X such that x0 ≤ F(x0, y0) and F(y0, x0) ≤ y0, then F has a coupled
fixed point in X.

Proof By assumption, there exist xo, yo ∈ X such that xo ≤ F(xo, yo) and F(xo, yo) ≤ yo.
Define x1, y1 ∈ X as follows: x1 = x◦ ≤ F(xo, yo) and y1 = F(yo, xo) ≤ yo. Suppose that
x2 = F(x1, y1) and y2 = F(y1, x1). Therefore we get

x2 = F(x1, y1) = F
(
F(xo, yo), F(yo, xo)

)
= F2(xo, yo),

y2 = F(y1, x1) = F
(
F(yo, xo), F(xo, yo)

)
= F2(yo, xo).

By utilizing the property of mixed monotonicity for the mapping F , we obtain:

x2 = F2(xo, yo) = F(x1, y1) ≥ F(xo, yo) = x1 ≥ xo,

y2 = F2(yo, xo) = F(y1, x1) ≤ F(yo, xo) = y1 ≤ yo.

If we continue the above proceedings for each s ≥ 0, we obtain the following:

xo ≤ x1 ≤ x2 ≤ · · · ≤ xs+1 ≤ · · · , yo ≥ y1 ≥ y2 ≥ · · · ≥ ys+1 ≥ · · ·

such that

xs+1 = Fs+1(xo, yo) = F
(
Fs(xo, yo), Fs(yo, xo)

)
,

ys+1 = Fs+1(yo, xo) = F
(
Fs(yo, xo), Fs(xo, yo)

)
.

Notice that if (xs+1, ys+1) = (xs, ys), then F has a coupled fixed point. Now, suppose that
(xs+1, ys+1) �= (xs, ys) for all s ≥ 0, that is, let either (xs+1 = F(xs, ys) �= xs or ys+1 = F(ys, xs) �= ys.
By (3.1), we obtain

∫ D∗(xs ,xs ,xs+1)

0
�(t) dt =

∫ D∗(F(xs–1,ys–1),F(xs ,ys),F(xs ,ys))

0
�(t) dt

≤ �

(∫ D∗(xs–1,xs–1,xs)+D∗(ys–1,ys–1,ys)

0
�(t) dt

)
.

(3.2)

In the same way we get

∫ D∗(ys ,ys ,ys+1)

0
�(t) dt =

∫ D∗(F(ys–1,xs–1),F(ys ,xs),F(ys ,xs))

0
�(t) dt

≤ �

(∫ D∗(xs–1,xs–1,xs)+D∗(ys–1,ys–1,ys)

0
�(t) dt

)
.

(3.3)

Since the mapping � is nonincreasing, for every a, b ≥ 0, we get

∫ a+b

0
�(t) dt ≤

∫ a

0
�(t) dt +

∫ b

0
�(t) dt. (3.4)
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Also, since � is linear and nondecreasing, it follows from (3.1), (3.2), and (3.4) that for all
s ≥ 0

∫ D∗(xs ,xs ,xs+1)

0
�(t) dt =

∫ D∗(F(xs–1,ys–1),F(xs,ys),F(xs,ys))

0
�(t) dt

≤ �

(∫ D∗(xs–1,xs–1,xs)+D∗(ys–1,ys–1,ys)

0
�(t) dt

)

≤ �

(∫ D∗(xs–1,xs–1,xs)

0
�(t) dt

)
+ �

(∫ D∗(ys–1,ys–1,ys)

0
�(t) dt

)

≤ �2
(∫ D∗(xs–2,xs–2,xs–1)

0
�(t) dt

)
+ �2

(∫ D∗(ys–2,ys–2,ys–1)

0
�(t) dt

)

≤ 2�2
(∫ D∗(xs–2,xs–2,xs–1)+D∗(ys–2,ys–2,ys–1)

0
�(t) dt

)

...

≤ s�s
(∫ D∗(xo ,xo ,x1)+D∗(yo ,yo ,y1)

0
�(t) dt

)
. (3.5)

In a similar manner, we get

∫ D∗(ys ,ys ,ys+1)

0
�(t) dt =

∫ D∗(F(ys–1,xs–1),F(ys ,xs),F(ys ,xs))

0
�(t) dt

≤ �

(∫ D∗(ys–1,ys–1,ys)+D∗(xs–1,xs–1,xs)

0
�(t) dt

)

≤ �

(∫ D∗(ys–1,ys–1,ys)

0
�(t) dt

)
+ ψ

(∫ D∗(xs–1,xs–1,xs)

0
�(t) dt

)

≤ 2�2
(∫ D∗(ys–2,ys–2,ys–1)+D∗(xs–2 ,xs–2 ,xs–1)

0
�(t) dt

)

...

≤ s�s
(∫ D∗(yo ,yo ,y1)+D∗(xo ,xo ,x1)

0
�(t) dt

)
. (3.6)

Assume that r, s ∈N such that r > s. It then follows from Definition 1.1 that

∫ D∗(xs ,xs ,xr)

0
�(t) dt ≤

∫ D∗(xs ,xs ,xs+1)

0
�(t) dt

+
∫ D∗(xs+1,xs+1,xs+2)

0
�(t) dt + · · · +

∫ D∗(xr–1,xr–1,xr)

0
�(t) dt.

Consequently, it follows from (3.5) that

∫ D∗(xs ,xs ,xr)

0
�(t) dt ≤

r–1∑

i=s

i� i
(∫ D∗(xo ,xo ,x1)+D∗(yo ,yo ,y1)

0
�(t) dt

)
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≤
∞∑

i=s

i� i
(∫ D∗(xo ,xo ,x1)+D∗(yo ,yo ,y1)

0
�(t) dt

)
.

Since
∑∞

i=s i� i(t) < ∞ for all t ∈ [0, +∞), it follows that lims,r→∞ D∗(xs, xs, xr) = 0 and the
sequence {xs} is a Cauchy sequence in X. Similarly, we can deduce that {ys} is a Cauchy
sequence in X. Since X is a complete D∗-metric space, there exist x, y ∈ X such that
lims→∞ xs = x and lims→∞ ys = y. Since F is continuous, it follows that F(x, y) = x and
F(y, x) = y; that is, (x, y) is a coupled fixed point of the mapping F . �

Theorem 3.2 Assume that (X, D∗,≤) is a partially ordered complete D∗-metric space sat-
isfying the following conditions:

(i) If {xs} is a nondecreasing convergent sequence to x ∈ X , then xs ≤ x for all s;
(ii) If {ys} is a nonincreasing convergent sequence to y ∈ X , then ys ≥ y for all s, and let

F : X2 → X be a mapping having the mixed monotone property on X such that

∫ D∗(F(x,y),F(p,q),F(d,z))

0
�(t) dt ≤ �

(∫ D∗(x,p,d)+D∗(y,q,z)

0
�(t) dt

)
,

where x, y, z, p, q, d ∈ X and � : [0,∞) → [0,∞) is a Lebesgue-integrable mapping that is
summable (i.e., with finite integral) with d ≤ p ≤ x and y ≤ q ≤ z, where either p �= d or
q �= z; if there exist xo, yo ∈ X such that xo ≤ F(xo, yo) and F(yo, xo) ≤ yo, then F has a coupled
fixed point in X.

Proof By using a similar approach as that in proving Theorem 3.1, we obtain two Cauchy
sequences {xs} and {ys} ∈ X. It then follows from conditions (i) and (ii) that there exist x
and y ∈ X such that xs ≤ x and ys ≤ y for all s ≥ 0. If xs = x and ys = y for some s, then,
as shown in the proof of Theorem 3.1, we obtain xs+1 = x and ys+1 = y; that is, (x, y) is a
coupled fixed point. So, without loss of generality, we assume that either xs �= x or ys �= y.
Therefore, by using 3.1, we obtain

∫ D∗(F(x,y),F(x,y),x)

0
�(t) dt

≤
∫ D∗(F(x,y),F(x,y),F(xs,ys))+D∗(F(xs ,ys),F(xs,ys),x)

0
�(t) dt

≤
∫ D∗(F(x,y),F(x,y),F(xs,ys))

0
�(t) dt +

∫ D∗(F(xs ,ys),F(xs ,ys),x)

0
�(t) dt

≤ �

(∫ D∗(x,x,xs)+D∗(y,y,ys)

0
�(t) dt

)
+

∫ D∗(xs+1,xs+1,x)

0
�(t) dt. (3.7)

Hence, via (3.7) with as s → ∞, we get D∗(F(x, y), F(x, y), x) = 0, which gives that F(x, y) = x.
In the same way, we can illustrate that D∗(F(y, x), F(y, x), y) = 0 and thus F(y, x) = y. There-
fore, the proof of the theorem is completed. �

We illustrate in the following theorem that the coupled fixed point of F can be unique.

Theorem 3.3 Let (X, D∗,≤) be a partially ordered complete D∗-metric space satisfying the
following conditions:
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(i) If {xs} ia a nondecreasing convergent sequence to x ∈ X , then xs ≤ x for all s;
(ii) If {ys} is a nonincreasing convergent sequence to y ∈ X , then ys ≥ y for all s;

(iii) For all (x, y), (x1, y1) ∈ X2, there exists (z1, z2) ∈ X2 such that is comparable with
(x, y) and (x1, y1).

And let F : X2 → X be a continuous mapping having the mixed monotone property on X
such that

∫ D∗(F(x,y),F(p,q),F(d,z))

0
�(t) dt ≤ �

(∫ D∗(x,p,d)+D∗(y,q,z)

0
�(t) dt

)
,

where x, y, z, p, q, d ∈ X and � : [0,∞) → [0,∞) is a Lebesgue-integrable mapping that is
summable (i.e., with finite integral) with d ≤ p ≤ x and y ≤ q ≤ z, where either p �= d or
q �= z, if there exist xo, yo ∈ X such that x◦ ≤ F(xo, yo) and F(yo, xo) ≤ yo, then F has a unique
coupled fixed point in (X, D∗).

Proof Suppose that (x1, y1) is another fixed point of F . Now we discuss the following cases.
Case one. Assume that (x, y) and (x1, y1) are comparable with respect to the partial order-
ing 	 in X2 as introduced in Definition 1.6. We assume that x ≤ x1 and y ≤ y1 without
restriction of generality. Now, by using the conditions of Theorem 3.1, we obtain

∫ D∗(Fs(x,y),Fs(x1,y1),Fs(x1,y1))

0
�(t) dt ≤

∞∑

0

s�s
(∫ D∗(x,x1,x1)+D∗(y,y1,y1)

0
�(t) dt

)
. (3.8)

Suppose that s → ∞, therefore via (3.8) we get x = x1. By using same method, we can
verify that y = y1. Case two. Let (x, y) be not comparable with (x1, y1). So, by condition
(iii) there exists (z1, z2) ∈ X2, which is comparable to (x, y) and (x1, y1). We can assume that
z1 ≤ x, z2 ≤ y, z1 ≤ x1, and z2 ≤ y1 without restriction of generality. By using the conditions
of Theorem 3.1, we get

∫ D∗(Fs(x,y),Fs(z1,z2),Fs(z1,z2))

0
�(t) dt ≤

∞∑

0

s�s
(∫ D∗(x,z1,z1)+D∗(y,z2,z2)

0
�(t) dt

)
. (3.9)

Assume that s → ∞, then by (3.9) we obtain D∗(Fs(x, y), Fs(z1, z2), Fs(z1, z2)) = 0. Thus,
lims→∞ Fs(x, y) = lims→∞ Fs(z1, z2) = x. By means of above, we get lims→∞ Fs(x1, y1) =
lims→∞ Fs(z1, z2) = x1. Thus, x = x1. In the same way, we obtain y = y1. Then, in all cases,
we have (x, y) = (x1, y1), that is, a mapping F has a unique coupled fixed point. �

Theorem 3.4 Let (X, D∗,≤) be a partially ordered complete D∗-metric space satisfying the
following conditions:

(i) If {xs} is a nondecreasing convergent sequence to x ∈ X , then xs ≤ x for all s;
(ii) If {ys} is a nonincreasing convergent sequence to y ∈ X , then ys ≥ y for all s;

(iii) Every pair of element of X has an upper and a lower bound in X .
Also, let F : X2 → X be a continuous mapping having the mixed monotone property on X
such that:

∫ D∗(F(x,y),F(p,q),F(d,z))

0
�(t) dt ≤ �

(∫ D∗(x,p,d)+D∗(y,q,z)

0
�(t) dt

)
,
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where x, y, z, p, q, d ∈ X and � : [0,∞) → [0,∞) is a Lebesgue-integrable mapping that is
summable (i.e., with finite integral) with d ≤ p ≤ x and y ≤ q ≤ z, where either p �= d or
q �= z. If there exist xo, yo ∈ X such that x◦ ≤ F(xo, yo) and F(yo, xo) ≤ yo, then x = y.

Proof We first assume that x and y are comparable with respect to the partial ordering �
in X. We can assume that x ≤ y and y ≤ y without restriction of generality. So, by the same
method of Theorem 3.3, we obtain x = y. Now, suppose that x and y are not comparable.
Then there exists an upper bound or a lower bound of x and y; that is, there exists z ∈ X
comparable with x and y. This means that we can assume that x ≤ z and y ≤ z. By applying
Theorem 3.3, we obtain (x, y) = (z, z). Thus, we have x = y. �

Example 3.1 Let X = [0, 1] and D∗ : X ×X ×X → R
+ be a mapping defined by D∗(a, b, c) =

|a – b| + |a – c| + |b – c| for all a, b, c ∈ X. Therefore (X, D∗) is a complete D∗-metric space.
Now, assume that �(t) = 1

2 t for all t ∈ [0,∞), and let F : X × X → X be a mapping defined
by F(a, b) = a+b

16 . Since |a + b – (m + n)| ≤ |a – m| + |b – n| holds for all a, b, m, n ∈ X, it
follows that the conditions of Theorem 3.1 hold. In fact, we have

∫ D∗(F(a,b),F(m,n),F(c,�))

0
�(t) dt

=
∫ |F(a,b)–F(m,n)|+|F(a,b)–F(c,�)|+|F(m,n)–F(c,�)|

0
�(t) dt

=
∫ | a+b

16 – m+n
16 |+| a+b

16 – c+�
16 |+| m+n

16 – c+�
16 |

0
�(t) dt

=
∫ 1

16 (|a–m|+|b–n|+|a–c|+|b–�|+|m–c|+|n–�|)

0
�(t) dt

≤ 1
16

∫ |a–m|+|b–n|+|a–c|+|b–�|+|m–c|+|n–�|

0
�(t) dt ≤ �

(∫ D∗(a,m,c)+D∗(b,n,�)

0
�(t) dt

)
,

where a, b, c, m, n,� ∈ X. It is obvious that the mapping F satisfies all the conditions of
Theorem 3.1. Hence, F has a coupled fixed point.

4 Conclusion
The fixed point results in partially ordered metric spaces play an essential role in con-
structing methods in mathematics to solve several problems in the pure and applied math-
ematical sciences. On the other hand, the study of partially ordered metric spaces plays
the most important role in many fields both in pure and applied science such as biol-
ogy, medicine, physics, and computer science (see [20, 21]). Therefore, we introduced and
investigated some of new fixed point theorems for monotone multivalued functions in
partially ordered complete generalized D∗-metric spaces. In addition, we presented and
verified some of coupled fixed point theorems for mappings satisfying integral type condi-
tions in partially ordered D∗-metric spaces. We hope that our results will be useful for the
future studies on generalized metric spaces to carry out general framework for the prac-
tical applications and to solve the complicated problems containing uncertainties in envi-
ronment, medical, engineering, economics, and in dynamical systems of various types.
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