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1 Introduction

Picard operators that are most commonly utilized and play a crucial role in nonlinear anal-
ysis are a specific type of mapping referred to as Picard—Banach contractions. This class
of mappings was first introduced by Banach in [2] and has since been widely recognized in
the literature as a valuable tool in the study of nonlinear problems. The fundamental idea
behind the Banach contraction principle (BCP) is that, within a complete metric space
(X, ), any mapping @ : X — X that satisfies the condition of being a contraction, that is,
there exists 8 € [0,1) such that Q(®(§), (o)) < BR(E,0) V &, 0 € X, will have a unique
fixed point.

Over the past 100 years, an extensive body of literature has emerged following the in-
troduction of the Picard—Banach fixed-point theorem. This includes several monographs,
as well as numerous references, such as [6, 7, 20]. The theorem, along with its various
extensions, has proven to be a valuable and adaptable tool for solving a variety of non-
linear problems, including differential equations, integral equations, integrodifferential
equations, optimization problems, and variational inequalities. This is evidenced by the
vast amount of literature cited in [4, 9, 18, 19].

In [11, pp. 400] the following definition was considered.
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Definition 1.1 The mapping ® : D C R” — R” is said to be an iterated contraction on the
set Dy C D if there exists a 8 < 1 such that

[®(&)) - @E)| <B|2E) -

whenever & and ®(&) are in Dy.

Although iterated contractions do not necessarily possess the properties of continuity
or unique fixed points, they prove to be highly valuable in analyzing specific iterative pro-
cedures. Nonetheless, if an iterated contraction is continuous, the conventional proof of
Banach’s theorem remains applicable, enabling us to establish the presence of a fixed point.

Theorem 1.2 ([16] [11, Chap. 12]) Let X be a complete metric space, ® : X — X be a
continuous mapping. Suppose there exists p € [0,1) such that

Q(P%(E), (§)) < BQUE, P(E)) forall§ € X.
Then, for each & € X, the sequence {®"(£)} converges to a fixed point of ®.

Recently, Petrusel and Petrusel [13] considered the class of convex orbital 8-Lipschitz
mappings (see Definition 3.1) in the setting of Hilbert spaces. They showed that many im-
portant contraction mappings were properly contained in this class (see Remark 3.2). They
obtained fixed-point results that are closely related to the admissible perturbations ap-
proach. Popescu [14] generalized the convex orbital 8-Lipschitz mapping and considered
the class of convex orbital (o, 8)-Lipschitz mappings. He generalized and complemented
the results in [13] for convex orbital («, 8)-Lipschitz mappings in Hilbert spaces.

In this paper, we extend the class of convex orbital (¢, 8)-contraction mappings in the
setting of geodesic spaces. We present an example to illustrate that this class of mappings
is a natural extension of the class of iterated contraction mappings. We obtain some fixed-
point theorems with and without continuous assumptions. Further, we consider the class
of monotone convex orbital («, 8)-contraction mappings and obtain a fixed-point theo-
rem.

2 Preliminaries
Let & and o be a pair of points in metric space (X, ). A path ¢ : [0,1] — X joins & and g if

¢(0)=§ and ¢(1)=o.

A path ¢ is considered to be a geodesic if the following holds for all s, ¢ € [0, 1]

Q(2(s),2(8) = (¢ (0), £ (1))Is — ¢

If every two points &, 0 € X are connected by a geodesic, then the metric space (X, 2) is
called a geodesic space. If the geodesics in a geodesic space are unique, then the space is
classified as a Busemann space, as per [3]. Some well-known spaces, such as all normed
spaces, the CAT(0)-spaces, Hadamard manifolds, and the Hilbert open unit ball equipped
with the hyperbolic metric, are special cases of these spaces (cf. [1, 8]). Kohlenbach [8]
introduced a precise formulation of hyperbolic spaces, which is presented below.
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Definition 2.1 If a function W : X x X x [0,1] — X exists such that (X, ) is a metric
space and (X, 2, W) satisfies the following conditions, then it is referred to as a hyperbolic
metric space:
(i) QzW(E,0,0)) =(1-0)Q(z,§) + 0z, 0);

(i) QW 0,0),W(, 0,0)) =10 -0, 0);

(iii) W(§,0,0) = W(0,&,1-0);

(iv) Q(W(,2,0), W(o,¢,0)) = (1-0)Q(,0) + 09z, 0),
forall £,0,2z,¢ € X and 6,6 € [0,1].

Remark?2.2 If W(&,0,0) = (1-0)§ +0p forall&,p € X, 6 € [0, 1], then these spaces include

all normed linear spaces.

For &,0 € X,

[£,0]={(1-6)5 ®60:6 [0,1]}

denotes geodesic segments.

A mapx: [a,b] — X is an affinely reparametrized geodesic if there exist an interval [c, d]
and a geodesic &’ : [¢c,d] — X such that x = x¥'0y, where V¥ : [a,b] — [c,d] is the unique
affine homeomorphism between the intervals [a,b] and [c¢,d] or x is a constant path. A
geodesic space (X, 2) is a Busemann space if for any two affinely reparametrized geodesics
x:la,b] > X and &' : [c,d] — X, the map D, v : [a,b] x [c,d] — R is defined as

Dy (s, ) = Q(x(s), 8/ (2))

and is convex, see [3].

There exists a unique convexity mapping W such that (X, 2, W) is a uniquely geodesic
W -hyperbolic space if (X, 2) is a Busemann space. This means that for any &£ # 0 € X and
any 6 € [0, 1], there is a unique element ¢ € X (which is ¢ = W(§, 0,0)) such that

Q(§,¢0)=092(,0) and QA0 ¢)=(1-0)2(E,0).

3 Convex orbital (¢, 8)-contraction mapping
Petrusel and Petrusel [13] considered the following class of mappings.

Definition 3.1 Let X be a normed space and Y a convex subset of X such that Y # . Let
®: Y — Y be a mapping and « € (0,1]. The mapping ® is a convex orbital 8-Lipschitz
mapping if 8 > 0 and

[@(Q - ) +a @) - 2E)| <ep|é - 2@
forall¢é €Y.
Remark 3.2 Tt is shown in [13] that this class of mappings includes the following class of
mappings:

(i) Banach contraction mappings;
(ii) Kannan contraction mappings;
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(iii) Ciri¢—Reich—Rus contraction mappings;
(iv) Berinde contraction mappings;

(v) nonexpansive mappings;

(vi) enriched (8,0)-contraction mappings;
(vii) Lipschitz mappings.

Popescu [14] generalized the convex orbital B-Lipschitz mapping and considered the
following class of mappings:

Definition 3.3 Let X and Y be the same as in Definition 3.1. Let & : Y — Y be a mapping.

The mapping @ is said to be a convex orbital (¢, 8)-Lipschitz mapping if there exist « €
(0,1] and B > 0 such that

[@((1-0)t +a®())) - @) <ap|é - @)
forallé €Y.
Thus, if T: Y — Y is a convex orbital 8-Lipschitz mapping then T is a convex orbital
(o, B)-Lipschitz mapping. Now, we extend Definition 3.3 in the setting of geodesic spaces

as follows:

Definition 3.4 Let (X, 2, W) be a W-hyperbolic space, and ® : X — X be a mapping. The

mapping & is called a convex orbital (o, 8)-contraction if there exist «, 8 € (0, 1) such that

Q@) ®(W (£, ©(6),@))) < apQ(s, D))
forall & € X.
If we consider « = 1, then convex orbital (&, 8)-contraction is an iterated contraction
mapping. Thus, we take « € (0, 1). In the following example we show that a convex orbital

(o, B)-contraction is a natural extension of an iterated contraction mapping.

Example 3.5 Let Y = [0,3] C R with the usual metric. Define ¥ : Y — Y by

0 if§#3,6+#2andé #13,

w- {0 T
1 ife=2,
B ife=3.

99

First, we show that W is a convex orbital (¢, 8)-contraction mapping for « = % and B = 155+

We consider the following cases:
(1) Ife # %, & #2 and £ # 3, then the condition is trivially satisfied.

(2) If& = 12, then

10 12 10 _ /12 12
|©((1- ) +a®(§)) - )| = ‘@((1— ﬁ) Xt ECD(H)) —<I>(H>’

Page 4 of 13
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IR

1 10791 10 99 |12 1‘

= — < = — X —|— —
10 12100 11 10011 10
=af|E - ©(§)].

(3) If &€ =2, then

|W((1-a)E +aW(E)-W(E)| = ‘w<(1 - E) X 2+ %\v(z)) —\v(z)‘

11
12 9 10 99
:h<_)_4:_:——x——p~mm
11 10 11 100
—aple -0 (&),

(3) If & =3, then

|W((1- )& +aW(E)-w(E) = ‘\I’((l - 1—?) x 3+ (1 - %)\11(30 - qz(3)‘

22\ 19 19
() -2 = v - =
11 10 10

9 99 10 99

=— < —=— X —
10 100 11 100
=aplE - W ()|

3-3(3)]

On the other hand, W is not an iterated contraction mapping. Indeed, at £ =3

|W2(E) - W(E)| = |¥2(3) - w(3)]

19 11 19
:‘O—E >IBE:/3‘3—E
= Ble —w(®)|

for any 8 € (0,1).

Motivated by the condition (E) (see [5]) and condition considered in [12], the following
definition can be considered:

Definition 3.6 Let X be a metric space. A mapping ® : X — X is said to be a (E-u,s)-
contraction mapping on X if there exist 4 > 1 and s € (0, 1) such that for all ,0 € X,

Q(E,D(0)) < uQ(&, @) +5QE, 0).

Theorem 3.7 Let X be a complete Busemann space, and ® : X — X be a convex orbital
(o0, B)-contraction and a (E-p, s)-contraction. Then, ® has a unique fixed point in X.

Proof Let &y € X and define the following sequence

Eni1 = W (&, P(Ey), ) forallme NU{0}. (3.1)
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From the condition on space, we have

Q($n7§n+1) :O(Q(ém q>('§n)) (32)

From the definition of mapping &

Q(CD(E,,), CD(EVHI)) = Q((&,), q)(W(";:m (&), Ol)) = aﬁg(gm CD(EVI))
= ﬂQ(Smgml)' (3.3)

Again, from Definition 2.1,

QEnr2,Eni1) = Q(W(gnﬂ; D (&), Ol), W(sm (&), a))
< (1 =o)QEn &) + aQ((D(EVHI)r CD(EVI))

From (3.3), we obtain

Q(S}HZ)S}HI) = (1 - a)Q(Sn:SnH) + (XIBQ(SH) Ewrl)
= (1 -+ aﬂ)Q(ganrHl)'

Using the successive approximation method,
Q(Ens156n) = (1 - + af)"Q(E1, 50). (3.4)
Take ¢ = (1 -« +ap) < 1. Let m, n € N with n < m. From (3.4) and by the triangle inequality,

Q(€m¢éjn) = Q(sm:%-m—l) + Q(sm—lrém—Z) +--t Q(érﬁl:éﬂ)

(Cm71 1™ 2 4 c")Q(sl,fo)

IA

IA

cn(Cm_n_l n Cm—n—2 4t 1)9(51;50)

C}’l

<
“1l-c¢

Q(&1,&0).

Since lim,,_, o ¢” = 0 and (&1, &) is fixed. It follows that {§,} is a Cauchy sequence in X.
Since X is complete, there exists £ € X such that £, — £ as n — co. We show that this
limit point &7 is a fixed point of ®. Since &, — &, lim,_, oo Q(£441,&,) = 0. From (3.2), we
have

Tim (&, (&) = 0. (3.5)
From the condition on mapping ®,
Q& @(67)) = nQ(8En (E) + 526w £7)

and from (3.5) lim,_, oo (&, ®(£7)) = 0. Therefore, &7 is a fixed point of ®. To prove the
uniqueness, let g be the other fixed point of ®. Then,

0<Q(t%,q) = Q" @(q)) < uQ(£", @(67)) +s2(£7,9)
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= SQ(ET,q) < Q(“;‘T,q),
which is a contradiction unless £ = g. Hence, ® admits a unique fixed point. 0

Theorem 3.8 Let X be a complete Busemann space, and ® : X — X be a convex orbital
(o, B)-contraction mapping. If ® is continuous, then ® has a fixed point in X.

Proof Following the same proof techniques as in Theorem 3.7, one can show that {§,} is
a Cauchy sequence in X, there exists £” € X such that £, — &' and

lim Q(&,, ®(§,)) =0. (3.6)

n—00

Since &, — &' as n — oo, the continuity of ® yields

-
I

JE;QOb@MAD@))zo. (3.7)

Now,

Q5 @(£7)) = Q6w D) + (D), 2(87))-
From (3.6) and (3.7) &, — ®(£") as n — oo and £ is a fixed point of ®. O

As demonstrated by the following example, the absence of continuity can result in a
deficiency of fixed points, regardless of the domain’s compactness. In fact, we drop an
additional condition on mapping, that is, a (E-, s)-contraction condition, then a convex
orbital («, 8)-contraction mapping yields a lack of a fixed point.

Example 3.9 Let Y = [0,3] C R with the usual metric. Define ¥ : T — T by

if& =0,
if& € (0,3].

()=

Ny NW

We shall show that @ is a convex orbital (%, %)—contraction mapping.
Case 1. If £ =0, then

|@((1 - )t +a®(§)) - ()| =

3| |9 3| 15
207116 2| 16

Case 2. 1f &£ € (0,3] then

O((1 - )t + () - 0(E)] = ’cb(—s . —<1><s)> - <1>(s)‘
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3 5 3
_—5——’ —5_—5_1X5"§—5‘
=apls - @(§)|.

Now, we show that ® is not a (E-p, s)-contraction mapping. Indeed, let &, = % and 0, =0
for all n € N\{1}. Then,

1€, — P(0,)] — 51&1 — 04l _|%_%|_S|%_O|

&0 — D(E) I_I

n

=3n-2(1+s) —> +00.

Hence, ® is not a (E-u,s)-contraction mapping. The mapping is not continuous and is
fixed point free.

This example illustrates that there exists a mapping W that does not satisfy the con-
traction condition, yet a specific iterate of the same mapping can satisfy the contraction

condition.

Example 3.10 ([17, Example 1.3.1]) Suppose X =R and & : X — X is defined by

0 ifée(-00,2],

-1 if& €(2,+00).

()=
Although @ is discontinuous and therefore not a contraction, ®* can be considered a
contraction.

If we encounter a situation where the classical Picard—Banach contraction mapping
principle cannot be applied, we may find the following fixed-point theorem to be a useful

alternative. This theorem is discussed in various sources.

Theorem 3.11 ([17, Theorem 1.3.2]) Let X be a complete metric space and ® : X — X a
mapping. If there exists a N € N such that ®N is a contraction, then F(®) = {£*}, where
F(®) is the fixed-point set of .

Theorem 3.12 Let X be a complete Busemann space, G : X — X be a mapping and there
exists a N € N such that GN is a convex orbital («, B)-contraction and GN is a (E-ii,s)-
contraction mapping. For given &, € X, define a sequence

Sni1 = W(Sm GN(En)r Ot), n=0. (3.8)

Then, the sequence {£,} converges to a unique fixed point of G.

Proof Suppose that ® = GN then the sequence (3.8) becomes

%-Vl*'l = W(%-n: CD(EVI)’ O[).
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We use Theorem 3.7, then {£,} converges to a unique fixed point of GV, say p, and F(®) =
F(GN) = {p}. We have

GV (G(p) =GN (p) = G(GV () = G(p),

hence, it follows that G(p) is a fixed point of GV. However, F(GN) = {p}; thus, G(p) = p and
hence p € F(G). O

4 Monotone convex orbital («, 8)-contraction mapping
Ran and Reurings [15] extended BCP in partially ordered metric spaces and employed BCP
to obtain a positive solution of matrix equations. The main fixed-point theorem of [15] was
expanded by Nieto and Rodriguez-Lépez [10], who utilized it to discover solutions for a
selection of differential equations. In this section, we extend the convex orbital («, 8)-
contraction in partially ordered Busemann spaces.

Let X be a partially ordered Busemann space. A subset K of X is said to be convex if
[€,0] C K whenever &, o € K. In this section, we denote the order intervals in X by

£,—>):={z€eX:E<2z} and (—,0]:={z€X:2=<0},

we also assume the following hypothesis in the framework of partially ordered Busemann

spaces:
(H): Foranyé& € X, the order interval [§,—) is a closed and convex subset of X.

Definition 4.1 Let X be the same as above and K a convex subset of X. A mapping P :
K — K is said to be monotone if

& <o implies (&) < P(p), forall&,0 € K.
Definition 4.2 Let X and K be the same as in Definition 4.1. The mapping ® : K — K

is called a monotone convex orbital (&, 8)-contraction if ® is monotone and there exist
o, B € (0,1) such that

Q@E), 2(W(& P(E)a))) < apQ(&, @)
forall £ € K with & < ®(&).
Definition 4.3 Let X and K be the same as in Definition 4.1. A mapping ® : K — K is

said to be a monotone (E-u, s)-contraction on K if ® is monotone and there exist u > 1
and s € (0,1) such that

Q(&, @(0)) < uQ(&, 2(8)) +sQ(E,0)

forall £,0 € K with & < 0.
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Theorem 4.4 Let X be a complete Busemann space, K a convex closed subset of X, and
® : K — K be a monotone convex orbital («, B)-contraction and a monotone (E-,s)-
contraction mapping. Suppose that &y € K such that & < ®(&). Then, ® has a fixed point
inK.
Proof Let & € X and define the following sequence

&1 = W(S,,, CD(?;‘,,),OA) for all» € NU {0}. (4.1)

From the condition on space, we have

Q(Sn:§n+l) ZQQ(gn: cb(gn)) (42)
Now, we show that
S}’l = €n+1 = cb(gn) forallme NU {0} (43)

We shall use induction to prove the above claim. Since & < ® (&), in view of the convexity

of order interval, we obtain

& < & X D(&).

Since @ is monotone, (&) < ®(&;) and

& < P(&) < D&).

By the convexity of order interval

£ <& X D(&).

Thus, (4.3) is true for # = 1. Suppose it is true for a fixed k € N, that is, & < &1 < D(&).
Again ® is monotone, ®(£;) <X ®(&k,1) and by convexity

Sk+1 = $k+2 = d)(Ek+1)«

This proves the claim. From the definition of mapping @,

Q(P(En), P(Eni1)) = Q(PED), (W (Er D(En) ))) < aBR(Es P(E))
= ﬂQ(En)€n+l)~ (4.4)

Again, by Definition 2.1,

Q($n+2:$n+1) = Q(W($n+17 CD(E;HI):O[)? W(én: CD(E,,,),O[))

= (1 - a)Q(‘i:n: §n+1) + aQ(q)(ErHl): CI)(&H))
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From (4.4), we obtain

Q2 En1) < (1 —a)Q(Eny Enr1) + aBREN Enir)
=< (1 -+ 01,3)9(&:5")4)'

Using the successive approximation method,

Q(Eni1,60) < (1 —a +ap)"Q(E1,&0). (4.5)
Take ¢ = (1 — @ + aB) < 1. Following largely from the proof of Theorem 3.7, one can show

that {£,} is a Cauchy sequence, since K is closed, the sequence &, — &7 € K as n — oo
with &, < €7 for all # € N and lim,,_, o0 2(£,141,&,) = 0. From (4.2), we have

nliﬂgo Q& ®(£) = 0. (4.6)
From the condition on mapping ®,

Q(&, (£7)) < (&, () + k(8 ET)
and from (4.6) lim,,_, o (&, ®(£7)) = 0. Therefore, &' is a fixed point of ®. a

Theorem 4.5 Let X, K, and ® be the same as in Theorem 4.4. Then, the fixed point of ®

is unique, if
forall&,0 € K, there exists w € Ksuch that w < ®(w), & <wand o < w.

Proof Let u and v be two fixed points of ® such that # # v. In view of the assumption, there
exists w € K such that # < wand v < w. Let wy = w € K and define the following sequence

Wit = W(wy, ®(wy,),a) foralln e NU {0} (4.7)
and

QWi Wii1) = aQ(Wy, P (W) (4.8)
Following largely the proof of Theorem 4.4 one can show that

Tim Q(wy, ®(w,)) =0. (4.9)

Since v < w = wy and wy < ®(wy), one can see that v < w, and u < w,, for all » € N.
Case 1. If v = wy,, for some ny > 0, then v = &(v) = &(w,,) and

WVl0+l = (1 - a)wno + aq)(wl’lo)

=(l-a)v+av=v.

Thus, w, = v for all n > ny.
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Case 2. If v < w, and v # w,, for all n > 0, then

Qv, @(wy)) < uQ(v, ®()) +sQUv, wy)

= sQ(V, d>(w,,)) +sQ(w,, ©(w,)).
Thus, from (4.9)
(1-5)Q(v, (wy)) < sQ(wy, (W)

and Q(v, ®(w,,)) — 0as n — oco. Inview of (4.9), w,, — v. Similarly w,, — u, by the unique-
ness of the limit, it follows that u# = v. Hence, ® has a unique fixed point. d
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