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Abstract
We present enriched Kannan and enriched Bianchini mappings in the framework of
unique geodesic spaces. For such mappings, we establish the existence and
uniqueness of a fixed point in the setting of CAT(0) spaces and show that an
appropriate Krasnoselskij scheme converges with certain rate to the fixed point. We
proved some inclusion relations between enriched Kannan mapping and some
applicable mappings such as strongly demicontractive mapping. Finally, we give an
example in a nonlinear CAT(0) space and perform numerical experiments to support
the theoretical results.
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1 Introduction
Let (H, d) be a metric space, and let D be a nonempty subset of H. Given a mapping T :
D →H, a point p ∈ D is called a fixed point of T if Tp = p. The set of all fixed points of T
is denoted by Fix(T), that is,

Fix(T) = {u ∈ D : Tu = u}.

If T sends D to itself, that is, T : D → D, then T is called a self-mapping. For several years,
real-world phenomena are transformed into problems that require finding fixed point(s)
of certain mapping(s). These problems have been extensively studied (see, for example, the
monographs [6, 15, 28, 38] and references therein). Recall that the mapping, T is called a
contraction if there exists k ∈ [0, 1) such that

d(Tu, Tw) ≤ kd(u, w) for all u, w ∈ D. (1.1)

An important fact is that any contraction self-mapping on a complete metric space (H, d)
has a unique fixed point and the sequence {un} defined by un+1 = Tun(u1 ∈ H) converges
to the fixed point. This substantial result is known as the Banach contraction mapping
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principle, which can be traced to [4], and the sequence {un} is known as a Picard iter-
ation. Following the Banach contraction mapping principle, scholars introduced various
contraction-type mappings with certain fixed point properties among which a Kannan
mapping is introduced in [24, 25]. A mapping T : D → H is called a Kannan mapping if
there exists h ∈ [0, 1/2) such that

d(Tu, Tv) ≤ h
(
d(u, Tu) + d(v, Tv)

)
for all u, v ∈ D. (1.2)

The Kannan mapping in (1.2) and the contraction mapping in (1.1) may have a simi-
lar structure but are independent in the sense that there are contraction mappings (resp.,
Kannan mappings) that are not Kannan mappings (resp., contraction mappings). More-
over, it has been observed that the class of contraction mappings on a given space does not
characterize the completeness of the space. In fact, an example of a noncomplete metric
space in which every contraction self-mapping has a fixed point is given in [16]. However,
it has been established in [36] that a metric space (H, d) is complete if and only if every
Kannan mapping on H has a fixed point. Further details about contraction and Kannan
mappings can be found in [1, 2, 26, 35, 37].

Berinde [7] introduced a superclass of contraction mappings in a normed linear space
(H ,‖ · ‖), which is referred to as the class of enriched contraction mappings. A mapping
T : H → H is said to be an enriched contraction (or (α,β)-enriched contraction) if there
exist α ∈ [0, +∞) and β ∈ [0,α + 1) such that

∥
∥α(u – w) + Tu – Tw

∥
∥ ≤ β‖u – w‖ ∀u, w ∈ H . (1.3)

Thereafter, the same author, together with an associate, introduced in [8] the enriched
Kannan mappings as a generalization of the Kannan mappings in linear spaces.

Definition 1.1 Let (H ,‖·‖) be a normed linear space, and let D be a nonempty subset of H .
A mapping T : D → H is said to be an enriched Kannan mapping if there exist η ∈ [0, 1/2)
and γ ∈ [0, +∞) such that

∥
∥γ (u – v) + Tu – Tv

∥
∥ ≤ η

(‖u – Tu‖ + ‖v – Tv‖) ∀u, v ∈ D. (1.4)

To specify the nonnegative numbers involved, T is called a (γ ,η)-enriched Kannan map-
ping. We now state the main result for enriched Kannan mapping in [8].

Theorem 1.2 Let (H ,‖ · ‖) be a complete normed linear space, and let T : H → H be a
(γ ,η)-enriched Kannan mapping. Then

(i) Fix(T) = {p};
(ii) there exists δ ∈ (0, 1] such that the sequence {un} defined iteratively by

⎧
⎨

⎩
u1 ∈ H ,

un+1 = (1 – δ)un + δTun, n ≥ 0,

converges to p;
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(iii) for q ∈ [0, 1), we have the following estimate:

‖un+j–1 – p‖ ≤ qj

1 – q
‖un – un–1‖, n ≥ 0, j ≥ 1, (1.5)

where q = γ

1–γ
.

Theorem 1.2 is applicable in solving split feasibility problems, variational inequality
problems, and many other problems (see [8] and the references therein). In the same pa-
per the authors introduced and analyzed the class of enriched Bianchini mappings as a
superclass of enriched Kannan mappings. It is important to note that the class of enriched
Bianchini mappings is a superclass of Bianchini mappings introduced in [9] and further
studied in [10, 22, 23].

Definition 1.3 Let (H ,‖ · ‖) be a normed linear space, and let D be a nonempty subset
of H . Then a mapping T : D → H is said to be an enriched Bianchini mapping if there
exist α∗ ∈ [0, 1) and γ ∗ ∈ [0, +∞) such that

∥∥γ ∗(u – v) + Tu – Tv
∥∥ ≤ α∗ max

{‖u – Tu‖,‖v – Tv‖} ∀u, v ∈ D. (1.6)

The authors obtained similar results as in the Theorem 1.2 for the enriched Bianchini
mappings.

Although the Banach contraction mapping principle and the Kannan and Bianchini
mapping theorems are established for complete metric spaces, which need not have a
linear structure, the enriched classes of Kannan and Bianchini mappings have been intro-
duced in the setting of linear spaces. All these classes of mappings are immensely substan-
tial in nonlinear convex analysis and optimizations as many optimization problems can
be reduced to finding fixed point(s) of such mappings. Moreover, most of the real-world
problems, which usually resulted in optimization problems, have some nonlinear struc-
ture with constraints that are not necessarily convex or smooth. Recently, many scholars
argued that the setting of CAT(0) spaces allows the transformation from nonsmooth non-
convex constrained optimization problems into smooth and convex unconstrained prob-
lems. These, among other reasons, resulted in recent significant extensions of fixed point
theory from linear spaces to CAT(0) spaces (see, for example, [3, 11, 12, 17, 19, 28, 30] and
the references therein). To our knowledge, Kirk is one of the first scholars to study fixed
point theory in the setting of CAT(0) spaces (see [27, 29]). The author analyzed the class
of nonexpansive mappings. Thereafter, fixed points of enriched contraction and enriched
nonexpansive mappings are analysed in CAT(0) spaces [34].

Having the results in [8] and considering the notion of enriched contraction mappings
in [34], the purpose of this work is twofold. The first is to introduce and analyze two classes
of mappings in the setting of unique geodesic spaces, namely, the classes of enriched Kan-
nan mappings and Bianchini mappings. The second is to establish an inclusion relation
between enriched Kannan mappings with strongly demicontractive mappings and quasi-
expansive mappings. The results complement the results in [8, 24, 31] and extend sev-
eral further results in the literature. This contributes to a unified understanding of con-
traction mappings and their generalizations, especially Kannan-type and Bianchini-type
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mappings, in metric spaces. The results are applicable to all R-trees, Hadamard mani-
folds, and all CAT(κ) spaces with κ ≤ 0. Moreover, this opens new avenues for applying
metric convexity to expand several classes of contraction mappings, particularly when the
metric is endowed with certain convex structures. Furthermore, this technique can be ef-
fectively applied to address other nonlinear problems, such as equilibrium problems, split
problems, split variational inequality problems, and common null point problems.

To this end, in this paper, we discuss some basic concepts in CAT(0) spaces attributed
to [11] and state some known results that will be used to analyze our results.

2 CAT(0) spaces
Let (H, d) be a metric space. A geodesic path from u to v is a map τ : [0, 1] →H such that

τ (0) = u, τ (1) = v, and d
(
τ (s), τ (t)

)
= |s – t|d(u, v) ∀s, t ∈ [0, 1].

In the literature, the image of τ is often called a geodesic segment connecting u and v.
If such a segment is unique, then we write [u, v] to mean τ ([0, 1]). The space in which
every two points are connected by a geodesic segment (resp., unique geodesic segment) is
called a geodesic space (resp., unique geodesic space). For u, v ∈H having unique geodesic
segment and for any δ ∈ [0, 1], there exists a unique point w ∈ [u, v] such that

d(u, w) = δd(u, v) and d(w, v) = (1 – δ)d(u, v). (2.1)

We will henceforth denote such a point w by (1 –δ)u⊕δv. Also, for x, y ∈H, d2(x, y) means
[d(x, y)]2.

A geodesic space is called a CAT(0) space if the CN-inequality of Bruhat and Tits [13]
holds. This inequality states that for u, v ∈H,

d2
(

1
2

u ⊕ 1
2

v, y
)

≤ 1
2

d2(v, y) +
1
2

d2(v, y) –
1
4

d2(u, v) (2.2)

for every y ∈ H. A complete CAT(0) space is called a Hadamard space. For a precise def-
inition and detailed discussion on CAT(0) spaces, see, for example, [11, 14]. It is known
that Hadamard manifolds, Hilbert spaces, classical hyperbolic spaces, R-trees, complex
Hilbert balls, and Euclidean buildings are all examples of CAT(0) spaces [12, 20, 28, 33].
It is worth mentioning that CAT(0) spaces are unique geodesic spaces (see, for example,
[11]).

Let u, v be in a CAT(0) space (H, d). For every w ∈ H, we have the following important
facts (see [18]):

d
(
(1 – t)u ⊕ tv, w

) ≤ (1 – t)d(u, w) + td(v, w) (2.3)

and

d2((1 – t)u ⊕ tv, w
) ≤ (1 – t)d2(u, w) + td2(v, w) – t(1 – t)d2(u, v) (2.4)
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for all t ∈ [0, 1]. Berg and Nikolaev [5] denoted (u, w) ∈H×H by −→uw and defined a quasi-
linearization map 〈·, ·〉 : (H×H) × (H×H) →R by

〈−→uw,−→vz 〉 =
1
2
(
d2(u, z) + d2(w, v) – d2(u, v) – d2(w, z)

)
(2.5)

for all points u, v, w, z ∈ H. Thereafter, this concept of quasi-linearization is used in [34]
to analyze enriched contraction mappings.

Definition 2.1 For a nonempty subset D of a CAT(0) space (H, d), a mapping T : D →H
is called an enriched contraction if there exist α ∈ [0, +∞) and β ∈ [0,α + 1) such that

d2(Tu, Tw) + α2d2(u, w) + 2α〈−→uw,
−−−→
TuTw〉 ≤ β2d2(u, w) ∀u, w ∈H. (2.6)

The following lemma is substantial in obtaining the main results of [34].

Lemma 2.2 ([34, Lemma 3.5]) Let (H, d) be a Hadamard space, and let T : H → H be a
mapping. Then for any σ ∈ (0, 1],

(i) u = Tu ⇐⇒ u = (1 – σ )u ⊕ σTu;

(ii) d2((1 – σ )u ⊕ σTu, (1 – σ )w ⊕ σTw
) ≤ σ 2d2(Tu, Tw)2 + (1 – σ )d2(u, w)

+ 2σ (1 – σ )〈−→uw,
−−−→
TuTw〉.

3 Enriched Kannan mappings
Following the definition of an enriched Kannan mapping, we observe that (1.4) can be
rewritten as follows:

∥∥
∥∥

γ

γ + 1
(u – v) +

1
γ + 1

(Tu – Tv)
∥∥
∥∥ ≤ η

γ + 1
(‖u – Tu‖ + ‖v – Tv‖) ∀u, v ∈ D,

which is equivalent to

‖Tγ u – Tγ v‖ ≤ η
(‖u – Tγ u‖ + ‖v – Tγ v‖) ∀u, v ∈ D,

where Tγ x := γ

γ +1 x + 1
γ +1 Tx. Thus we can have the following definition in the setting of a

unique geodesic space.

Definition 3.1 Let (H, d) be a unique geodesic space, and let D be a nonempty set of H.
A mapping T : D →H is said to be an enriched Kannan mapping if there exist η ∈ [0, 1/2)
and γ ∈ [0, +∞) such that for all u, v ∈ D, we have

d(Tγ u, Tγ v) ≤ η
(
d(u, Tγ u) + d(v, Tγ v)

)
, (3.1)

where Tγ x := γ

γ +1 x ⊕ 1
γ +1 Tx for x ∈ D.
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We further call T a (γ ,η)-enriched Kannan mapping to indicate the nonnegative num-
bers involved.

Example 1 Every Kannan mapping T : D → H is (γ ,η)-enriched Kannan with γ = 0. In-
deed, for γ = 0, Tγ ≡ T , and, consequently, (3.1) reduces to (1.4).

Example 2 Every (α,β)-enriched contraction mapping T : D → H with β < α+1
3 is (γ ,η)-

enriched Kannan with γ = α and η = β

α+1–β
. Indeed, it follows from Lemma 2.2(ii) that

(
1 –

β

α + 1

)
d(Tαu, Tαv)

=
[
d2(Tαu, Tαv)

]1/2 –
(

β

α + 1

)
d(Tαu, Tαv)

≤
[

1
(α + 1)2 d(Tu, Tv)2 +

α2

(α + 1)2 d(u, v)2

+
2α

(α + 1)2 〈−→uv,
−−→
TuTv〉

]1/2

–
(

β

α + 1

)
d(Tαu, Tαv)

≤
[

β2

(α + 1)2 d(u, v)2
]1/2

–
(

β

α + 1

)
d(Tαu, Tαv)

=
β

α + 1
d(u, v) –

(
β

α + 1

)
d(Tαu, Tαv)

≤ β

α + 1
[
d(u, Tαu) + d(v, Tαv)

]
.

Consequently, we have

d(Tαu, Tαv) ≤ β

α + 1 – β

[
d(u, Tαu) + d(v, Tαv)

]
.

Since every contraction mapping with constant κ is a (0,κ)-enriched contraction, an
immediate example follows.

Example 3 Every contraction mapping T : D → H with constant k < 1
3 is (γ ,η)-enriched

Kannan with γ = 0 and η = k
1–k .

We now state the main theorem of this section.

Theorem 3.2 Let (H, d) be a Hadamard space, and let T : H → H be a (γ ,η)-enriched
Kannan mapping. Then there exists p ∈H such that

(i) Fix(T) = {p};
(ii) there exists δ ∈ (0, 1] such that the sequence {un} defined iteratively by

⎧
⎨

⎩
u1 ∈H,

un+1 = (1 – δ)un ⊕ δTun, n ≥ 1,
(3.2)

converges to p;
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(iii) for q ∈ [0, 1), we have the following estimate:

d(un+j–1, p) ≤ qj

1 – q
d(un, un–1), n > 1, j ≥ 1. (3.3)

Proof Let Tγ x := γ

γ +1 x ⊕ 1
γ +1 Tx and take δ = 1

γ +1 ∈ (0, 1]. Then {un} defined in (3.2) corre-
sponds to the Picard iteration of the mapping Tγ , that is,

u1 ∈H, un+1 = Tγ un, n ≥ 1.

Let n > 1, u = un, and v = un–1. Then (3.1) implies that

d(un+1, un) ≤ η
(
d(un, un+1) + d(un, un–1)

)
.

Consequently, we have

d(un+1, un) ≤ η

1 – η
d(un, un–1).

Let q = η

1–η
. Then q < 1, and the sequence {un} satisfies

d(un+1, un) ≤ qd(un, un–1) for all n ≥ 2. (3.4)

Inductively, we obtain

d(un+1, un) ≤ qn–1d(u2, u1), n ≥ 1. (3.5)

Thus, for all m, n ≥ 1, we have

d(un+m, un) ≤ d(un, un+1) + d(un+1, un+2) + · · · + d(un+m–1, un+m)

≤ qn–1d(u2, u1) + qnd(u2, u1) + · · · + qn+m–2d(u2, u1)

= qn–1[1 + q + · · · + qm–1]d(u2, u1)

≤ qn–1d(u2, u1)
+∞∑

j=1

qj

≤ qn–1

1 – q
d(u2, u1).

Therefore {un} is a Cauchy sequence. Since H is a complete CAT(0) space, there exists
p ∈H such that {un} converges to p, that is,

lim
n→∞ un = p. (3.6)

By Definition 3.1 we get

d(p, Tγ p) ≤ d(p, un+1) + d(un+1, Tγ p)
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= d(un+1, p) + d(Tγ un, Tγ p)

≤ d(un+1, p) + η
(
d(un, Tγ un) + d(p, Tγ p)

)
.

Thus

d(p, Tγ p) ≤ 1
1 – η

d(un+1, p) + qd(un+1, un). (3.7)

Consequently, letting n → ∞, we get p = Tγ p.
Suppose that Tγ has a fixed point u′ different from p. Then it follows from (3.1) that

0 < d
(
u′, p

) ≤ η(0) = 0,

which is a contradiction. Hence p is the unique fixed point of Tγ . Consequently,
Lemma 2.2(i) implies that

Fix(T) = Fix(Tγ ) = {p}.

Therefore we have (i), and (ii) follows from (3.6).
To prove (iii), we estimate using (3.4) as follows:

d(un+m, un) ≤ d(un, un+1) + d(un+1, un+2) + · · · + d(un+m–1, un+m)

≤ qd(un, un–1) + q2d(un, un–1) + · · · + qmd(un, un–1)

=

( m∑

j=1

qj

)

d(un, un–1)

≤ q
1 – qm

1 – q
d(un, un–1)

≤ q
1 – q

d(un, un–1), n > 1, m ≥ 1.

Hence we have

d(un+m, un) ≤ q
1 – q

d(un, un–1).

Moreover, letting m → ∞, we get

d(p, un) ≤ q
1 – q

d(un, un–1). (3.8)

This and (3.4) imply

d(un+j–1, p) ≤ q
1 – q

d(un+j–1, un+j–2)

≤ q2

1 – k
d(un+j–2, un+j–3)

...
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≤ qj

1 – q
d(un, un–1), n > 1, j ≥ 1,

as desired. �

4 Enriched Bianchini mappings
Following the definition of enriched Bianchini mappings, we can rewrite (1.6) as follows:

∥
∥∥
∥





 + 1
(u – v) +

1

 + 1

(Tu – Tv)
∥
∥∥
∥ ≤ h


 + 1
max

{‖u – Tu‖,‖v – Tv‖} ∀u, v ∈ D,

which is equivalent to

‖T
u – T
v‖ ≤ h max
{‖u – T
u‖,‖v – T
v‖} ∀u, v ∈ D,

where T
x := 


+1 x + 1


+1 Tx for x ∈ D. This leads to the following definition in the setting of
a unique geodesic space.

Definition 4.1 Let (H, d) be a unique geodesic space, and let D be a nonempty subset
of H. A mapping T : D → H is said to be an enriched Bianchini mapping if there exist
h ∈ [0, 1) and 
 ∈ [0, +∞) such that for all u, v ∈ D,

d(T
u, T
v) ≤ h max
{

d(u, T
u), d(v, T
v)
}

, (4.1)

where T
x := 


+1 x ⊕ 1


+1 Tx for x ∈H.

We henceforth refer T , using the numbers involved, as (
, h)-enriched Bianchini map-
ping.

Example 4 Every Bianchini mapping T : D → H is (
, h)-enriched Bianchini with 
 = 0.
Indeed, for 
 = 0, T
 ≡ T , and, consequently, (4.1) reduces to

d(Tu, Tv) ≤ h max
{

d(u, Tu), d(v, Tv)
}

for all u, v ∈ D.

Example 5 Every (γ ,η)-enriched Kannan mapping T : D →H is an (
, h)-enriched Bian-
chini mapping with 
 = γ and h = 2η. Indeed, for all u, v ∈ D,

d(Tγ u, Tγ v) ≤ η
(
d(u, Tγ u) + d(v, Tγ v)

)

≤ 2η max
{

d(u, Tγ u), d(v, Tγ v)
}

.

We now state the main theorem of this section.

Theorem 4.2 Let (H, d) be a Hadamard space, and let T : H → H be an (
, h)-enriched
Bianchini mapping. Then

(i) T has a unique fixed point;
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(ii) there exists δ ∈ (0, 1] such that the sequence {un} defined iteratively by

⎧
⎨

⎩
u1 ∈H,

un+1 = (1 – δ)un ⊕ δTun, n ≥ 1,
(4.2)

converges strongly to the fixed point of T ;
(iii) there exists k ∈ [0, 1) such that for a fixed point p,

d(un+j–1, p) ≤ kj

1 – k
d(un, un–1), n > 1, j ≥ 1. (4.3)

Proof Let T
x := 


+1 x ⊕ 1


+1 Tx and take δ = 1

+1 ∈ (0, 1]. Then {un} defined in (4.2) corre-

sponds to

u1 ∈H, un+1 = T
un, n ≥ 1.

Now let n ≥ 2, u = un, and v = un–1. Then (4.1) implies that

d(un+1, un) ≤ h max
{

d(un, un+1), d(un, un–1)
}

, (4.4)

Suppose that max{d(un, un+1), d(un, un–1)} = d(un, un+1). Then (4.4) implies that d(un,
un+1) < d(un, un+1), which is a contradiction. Therefore

d(un+1, un) ≤ h max
{

d(un, un+1), d(un, un–1)
}

= hd(un, un–1) for all n > 1. (4.5)

Inductively, we obtain

d(un+1, un) ≤ hn–1d(u2, u1), n ≥ 1. (4.6)

Thus for all m, n ≥ 1, we have

d(un+m, un) ≤ d(un, un+1) + d(un+1, un+2) + · · · + d(un+m–1, un+m)

≤ hn–1d(u2, u1) + hnd(u2, u1) + · · · + hn+m–2d(u2, u1)

= hn–1[1 + q + · · · + hm–1]d(u2, u1)

≤ hn–1d(u2, u1)
+∞∑

j=1

hj

≤ hn–1

1 – h
d(u2, u1).

Therefore {un} is a Cauchy sequence. Since H is a complete CAT(0) space, there exists
p ∈H such that {un} converges to p, that is,

lim
n→∞ un = p. (4.7)
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Let n ≥ 1. If max{d(un, un+1), d(p, T
p)} = d(p, T
p), then

d(p, T
p) ≤ d(p, un+1) + d(un+1, T
p)

= d(un+1, p) + d(T
un, T
p)

≤ d(un+1, p) + h max
{

d(un, un+1), d(p, T
p)
}

≤ d(un+1, p) + hd(p, T
p),

which implies

d(p, T
p) ≤ 1
1 – h

d(un+1, p). (4.8)

Also, if max{d(un, un+1), d(p, T
p)} = d(un, un+1), then we obtain from (4.6) that

d(p, T
p) ≤ d(p, un+1) + d(un+1, T
p)

= d(un+1, p) + d(T
un, T
p)

≤ d(un+1, p) + h max
{

d(un, un+1), d(p, T
p)
}

≤ d(un+1, p) + hd(un, un+1)

≤ d(un+1, p) + hn–1d(u2, u1).

This and (4.8) imply that, in any case, p ∈ Fix(T
). Suppose that T
 has a fixed point u′ that
is different from p. Then it follows from (4.1) that

0 < d
(
u′, p

) ≤ h · 0,

which is a contradiction. Hence p is the unique fixed point of T
. Finally, Lemma 2.2(i)
implies that

Fix(T) = Fix(T
) = {p}.

Therefore we have (i), and (ii) follows from (4.7).
Part (iii) follows similarly to the proof of Theorem 3.2. �

5 Stongly demicontractive mapping as enriched Kannan
Hicks and Kubicek [21] introduced demicontractive mappings in the setting of a linear
space (H ,‖ · ‖) as a mapping T : H → H with Fix(T) �= ∅ and

‖Tu – p‖2 ≤ ‖u – p‖2 + k‖u – Tu‖2 ∀u ∈ H , p ∈ Fix(T), (5.1)

where k ∈ [0, 1). In [31] a strongly demicontractive mapping is introduced by strengthen-
ing inequality (5.1) in the following sense:

‖Tu – p‖2 ≤ α‖u – p‖2 + k‖u – Tu‖2 ∀u ∈ H , p ∈ Fix(T), (5.2)
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where α ∈ (0, 1) and k ≥ 0. It is worth noting that if T is strongly demicontractive, then T
has a unique fixed point. We now show some relationship between strongly demicontrac-
tive mappings and enriched Kannan mappings.

Given a metric space (H, d) with a nonempty set D, a mapping T : D → H is called
strongly demicontractive if for p ∈ Fix(T),

d2(Tu, p) ≤ αd2(u, p) + kd2(u, Tu) ∀u ∈ D, (5.3)

where α ∈ (0, 1) and k ≥ 0. In the sequel, we consider (H, d) as a CAT(0) space.
It is worth mentioning that the fixed point of a strongly demicontractive mapping T is

unique. Indeed, if there exist two distinct fixed points of T , say p and q, then (5.3) yields

d2(q, p) ≤ αd2(q, p), (5.4)

which is a contradiction. Demicontractive mappings can also be defined using quasi-
linearization as in the following proposition.

Proposition 5.1 For any α, k ∈R, u ∈ D, p ∈H, and T : D →H, the following inequalities
are equivalent:

(i) d2(Tu, p) ≤ αd2(u, p) + kd2(u, Tu);
(ii) (1 – α)d2(u, p) + (1 – k)d2(u, Tu) ≤ 2〈−→

uTu,−→up〉.

Proof The proof follows from the definition of quasi-linearization in (2.5). �

It is worth noting from Proposition 5.1 that T : D →H is demicontractive if and only if
the following inequality holds for p ∈ Fix(T):

(1 – k)
2

d2(u, Tu) ≤ 〈−→
uTu,−→up〉 ∀u ∈ D.

Theorem 5.2 For λ ∈ ( 8
9 , 1], let T : D → H be a strongly demicontractive mapping with

constants α and κ . If

α <
1

9λ
and κ <

9
4

(1 – α)λ2 – 2λ,

then T is (γ ,η)-enriched Kannan mapping with γ = 1
λ

– 1 and

η =
1 + αλ – λ +

√
1 + (1 – α)(k – λ)

λ(1 – α)
.

Proof Let u ∈ D and p ∈ Fix(T). From (2.4), (2.1), and the assumption that T is strongly
demicontractive mapping, we have

d2(Tγ u, p) ≤ γ

γ + 1
d2(u, p) +

1
γ + 1

d2(Tu, p)

≤ γ

γ + 1
d2(u, p) +

α

γ + 1
d2(u, p) +

κ

γ + 1
d2(Tu, u)
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=
γ + α

γ + 1
d2(u, p) + κ(γ + 1)d2(Tγ u, u)

≤ γ + α

γ + 1
[
d(u, Tγ u) + d(Tγ u, p)

]2 + κ(α + 1)d2(Tγ u, u)

=
(

γ + α

γ + 1
+ κ(γ + 1)

)
d2(u, Tγ u) +

γ + α

γ + 1
d2(Tγ u, p)

+ 2
γ + α

γ + 1
d(Tγ u, u)d(Tγ u, p).

This means

1 – α

γ + 1
d2(Tγ u, p) ≤

(
γ + α

γ + 1
+ κ(γ + 1)

)
d2(u, Tγ u) + 2

γ + α

γ + 1
d(Tγ u, u)d(Tγ u, p).

Thus by simple calculations we get

(
1 – α

γ + 1

)2[
d(Tγ u, p) –

(
γ + 1
1 – α

– 1
)

d(u, Tγ u)
]2

≤
[

1 + (1 – α)
(

k –
1

γ + 1

)]
d2(u, Tγ u).

So,

1 – α

γ + 1

∣
∣∣∣d(Tγ u, p) –

(
γ + 1
1 – α

– 1
)

d(u, Tγ u)
∣
∣∣∣ ≤

√

1 + (1 – α)
(

k –
1

γ + 1

)
d(u, Tγ u).

Consequently, we have

d(Tγ u, p) ≤
γ + α + (γ + 1)

√
1 + (1 – α)(k – 1

γ +1 )

1 – α
d(u, Tγ u). (5.5)

For λ ∈ ( 8
9 , 1], observe that if γ = 1

λ
– 1, then (5.5) reduces to

d(Tγ u, p) ≤ 1 + αλ – λ +
√

1 + (1 – α)(k – λ)
λ(1 – α)

d(u, Tγ u). (5.6)

Now for this λ, let

η :=
1 + αλ – λ +

√
1 + (1 – α)(k – λ)

λ(1 – α)
.

Then

d(Tγ u, Tγ w) ≤ d(Tγ u, p) + d(p, Tγ w)

≤ η
[
d(u, Tγ u) + d(w, Tγ w)

]
.

We now show that η ∈ (0, 1/2). Note that for any α ∈ (0, 1),

1 + αλ – λ +
√

1 + (1 – α)(k – λ)
λ(1 – α)

<
1
2
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if and only if

√
1 + (1 – α)(k – λ) <

3
2
λ(1 – α) – 1. (5.7)

This is equivalent to

k <
9
4

(1 – α)λ2 – 2λ. (5.8)�

The class of strongly demicontractive mappings contains several other important classes
of mappings. For instance, every contraction mapping with constant c is a strongly demi-
contractive mapping with constants α = c and k = 0. We now recall an important class of
mappings and discuss its inclusion with regards to enriched Kannan mapping.

Following [31, 32], a mapping T : H → H is called a quasi-(L, m)-contraction if there
exist L ≥ 0 and m ∈ [0, 1) such that Fix(T) �= ∅ and

d(Tu, Tw) ≤ Ld(u, Tu) + md(u, w) ∀u, w ∈ H . (5.9)

Theorem 5.3 The class of quasi-(L, m)-contractions coincides with the class of strongly
demicontractive mappings.

Proof Let T be a quasi-(L, m)-contraction. It follows from (5.9) that for any α ∈ (m2, 1),

d2(u, p) ≤ (
md(u, p) + Ld(u, Tu)

)2

= m2d2(u, p) + L2d2(u, Tu) + 2mLd(u, p)d(u, Tu)

= αd2(u, p) +
(

m2L2

α – m2 + L2
)

d2(u, Tu)

–
(√

α – m2d(u, p) –
mL√
α – m2

d2(u, Tu)
)2

≤ αd2(u, p) +
(

m2L2

α – m2 + L2
)

d2(u, Tu).

Now let T be a strongly demicontractive mapping. It follows from (5.2) that

d2(Tu, p) ≤ αd2(u, p) + κd2(u, Tu)

=
(√

αd(u, p) +
√

κd(u, Tu)
)2 – 2

√
ακd(u, p)d(u, Tu)

≤ (√
αd(u, p) +

√
κd(u, Tu)

)2. �

According to [31], a mapping T : H → H having a unique fixed point p ∈ H is called
quasi-expansive if there exists a closed convex subset D ⊂H containing p such that

d(u, p) ≤ βd(u, Tu), u ∈ D,

where β > 0. The next theorem connects strongly demicontractive and quasi-expansive
mappings with enriched Kannan mapping. The proof of the theorem is based on the fact
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(see [31, p. 179]) that for α,κ ∈ [ 1
10 , 1) and β = 5(1–κ)

9 , there exists λ ∈ (0, 1) such that

(1 – λ + αλ)β2 + λ2 – λ + λκ

λ2 <
1
4

. (5.10)

Theorem 5.4 Suppose that T : H →H is strongly demicontractive with α,κ ∈ [ 1
10 , 1) and

quasi-expansive with β = 5(1–κ)
9 on some closed convex subset D ⊂H. Then T restricted to

D is an enriched Kannan mapping.

Proof Let u ∈ D and p ∈ Fix(T). It follows from (2.4) that

d2(Tγ u, p) ≤ γ

γ + 1
d2(u, p) +

1
γ + 1

d2(Tu, p) –
γ

(γ + 1)2 d2(u, Tu)

≤ γ

γ + 1
d2(u, p) +

α

γ + 1
d2(u, p) +

κ

γ + 1
d2(Tu, u) –

γ

(γ + 1)2 d2(u, Tu)

=
γ + α

γ + 1
d2(u, p) +

κ(γ + 1) – γ

(γ + 1)2 d2(Tu, u).

Taking into account that

d(u, p) ≤ βd(u, Tu) and d(u, Tu) = (1 + γ )d(u, Tγ u),

we obtain

d2(Tγ u, p) ≤
(

γ + α

γ + 1
β2 +

κ(γ + 1) – γ

(γ + 1)2

)
d2(Tu, u)

=
(
(γ + α)(γ + 1)β2 + κ(γ + 1) – γ

)
d2(Tγ u, u). (5.11)

If γ = 1
λ

– 1, then (5.11) is equivalent to

d2(Tγ u, p) ≤ (1 – λ + αλ)β2 + λ2 – λ + λκ

λ2 d2(Tγ u, u).

This implies that

d(Tγ u, p) ≤
√

(1 – λ + αλ)β2 + λ2 – λ + λκ

λ
d(Tγ u, u).

Consequently, we get

d(Tγ u, Tγ w) ≤ d(Tγ u, p) + d(Tγ w, p)

≤
√

(1 – λ + αλ)β2 + λ2 – λ + λκ

λ

(
d(Tγ u, u) + d(Tγ w, w)

)
.

This and (5.10) complete the proof. �

Remark 1 Note that a quasi-expansive mapping does not contradict a strongly demicon-
tractive mapping. For examples of mappings that are both quasi-expansive and strongly
demicontractive, see [31].
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6 Numerical experiment
Example 6 Let H = R

2 be endowed with the following distance metric:

d(u, v) :=
√

(u1 – v1)2 +
(
u2

1 – u2 – v2
1 + v2

)2 ∀u = (u1, u2), v = (v1, v2) ∈H.

For w = (w1, w2) and z = (z1, z2), the map τ : t �→ (1 – t)w ⊕ tz of the explicit form

(
(1 – t)w1 + tz1,

(
(1 – t)w1 + tz1

)2 – (1 – t)
(
w2

1 – w2
)

– t
(
z2

1 – z2
))

defines a geodesic path in (H, d). Moreover, it is easy to see that with this path, the CN-
inequlity (2.2) is satisfied. Indeed, for any u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈H, we have

1
2

u ⊕ 1
2

v =
(

u1 + v1

2
,
(

u1 + v1

2

)2

–
u2

1 – u2

2
–

v2
1 – v2

2

)
.

Thus

d2
(

1
2

u ⊕ 1
2

v, w
)

=
[

u1 – v1

2
– w1

]2

+
[(

u1 + v1

2

)2

–
((

u1 + v1

2

)2

–
u2

1 – u2

2

–
v2

1 – v2

2

)
– w2

1 + w2

]2

=
[

u1 – w1

2

]2

+
[

w1 – v1

2

]2

+
[

u2
1 – u2 – w2

1 + w2

2
–

w2
1 – w2 – v2

1 + v2

2

]2

=
(u1 – w1)2

2
–

(w1 – v1)2

2
–

(u1 – v1)2

4
+

(u2
1 – u2 – w2

1 + w2)2

2

+
(w2

1 – w2 – v2
1 + v2)2

2
–

(u2
1 – u2 – v2

1 + v2)2

4

=
1
2
[
(u1 – w1)2 +

(
u2

1 – u2 – w2
1 + w2

)2] +
1
2
[
(w1 – v1)2

+
(
w2

1 – w2 – v2
1 + v2

)2] –
1
4
[
(u1 – v1)2 +

(
u2

1 – u2 – v2
1 + v2

)2]

≤ 1
2

d2(u, w) +
1
2

d2(v, w) –
1
4

d2(u, v).

This metric allows the transformations from nonconvex functions (in the usual distance)
to convex functions, (see for example, [19, Example 5.2]).

Consider T : H →H defined by

T(x1, x2) =
(
1 – x1, x2

1 – 2x1 + 1
)
.

Then T is not a Kannan mapping, for if it were, then there would exist h ∈ [0, 1
2 ) such that

d(Tx, Ty) = h
(
d(x, Tx) + d(y, Ty)

)
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for all x, y ∈H, would imply that

|x1 – y1| ≤ h
[√

|2x1 – 1|2 +
∣
∣x2

1 – x2
∣
∣2 +

√
|2y1 – 1|2 +

∣
∣y2

1 – y2
∣
∣2

]
. (6.1)

This is a contradiction, since for x = ( 1
2 , 1

4 ) and y = (1, 1), (6.1) gives 1
2 ≤ h.

However, T is an enriched Kannan mapping. To see this, we take λ = 1
γ +1 and x =

(x1, x2) ∈H. Then we have

Tγ x = (1 – λ)x ⊕ λTx =
(
(1 – 2λ)x1 + λ,

(
(1 – 2λ)x1 + λ

)2 – (1 – λ)
(
x2

1 – x2
))

,

and for all y = (y1, y2) ∈H, we get

d(Tγ x, Tγ y)

=
(

(1 – 2λ)2
[

1
2

(2x1 – 1) +
1
2

(1 – 2y1)
]2

+ (1 – λ)2
[

1
2
(
2
(
x2

1 – x2
))

+
1
2
(
2
(
y2 – y2

1
))]2)1/2

≤
(

(1 – 2λ)2
[

1
2

(2x1 – 1)2 +
1
2

(1 – 2y1)2
]

+ (1 – λ)2
[

1
2
(
2
(
x2

1 – x2
))2 +

1
2
(
2
(
y2 – y2

1
))2

])1/2

≤
(

(1 – 2λ)2

2
|2x1 – 1|2 + 2(1 – λ)2∣∣x2

1 – x2
∣∣2

+
(1 – 2λ)2

2
|2y1 – 1|2 + 2(1 – λ)2∣∣y2

1 – y2
∣
∣2

)1/2

≤
√

(1 – 2λ)2

2
|2x1 – 1|2 + 2(1 – λ)2

∣∣x2
1 – x2

∣∣2

+
√

(1 – 2λ)2

2
|2y1 – 1|2 + 2(1 – λ)2

∣∣y2
1 – y2

∣∣2

≤ max

{ |1 – 2λ|√
2

,
√

2|1 – λ|
}[√

|2x1 – 1|2 +
∣∣x2

1 – x2
∣∣2

+
√

|2y1 – 1|2 +
∣
∣y2

1 – y2
∣
∣2

]

≤ max

{ |1 – 2λ|√
2

,
√

2|1 – λ|
}
[
d(x, Tx) + d(y, Ty)

]

≤ max

{ |1 – 2λ|√
2

,
√

2|1 – λ|
}
[
d(x, Tγ x) + d(y, Tγ y)

]
.

This implies that T is an (γ ,η)-enriched Kannan mapping with γ = 1
λ

– 1 = 1
4 and η =

max{ |1–2λ|√
2 ,

√
2|1 – λ|} = 3

5
√

2 ∈ [0, 1
2 ).
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Table 1 Few values of the sequence {d(un ,p)} for Example 6

n d(un ,p)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

1 7527.497011 114.6832595 4506.49068 2440.522536 250,500.498 5814.503268
2 1506.294384 24.00187493 902.0828399 488.9397611 50,100.8964 1163.705568
3 302.6860849 6.406527921 181.8229391 99.27876107 10,021.6134 234.1849807
4 63.04806509 2.849867365 38.80441727 22.36101214 2006.902261 49.35999109
5 16.45331986 1.630236106 11.23633173 7.620736384 405.9941947 13.59521876
6 7.144497966 0.972684322 5.368313326 4.003752637 89.07445314 6.232792607
7 4.064393128 0.583245636 3.115997596 2.361297334 28.28661806 3.588527534
8 2.423362363 0.349923042 1.86246768 1.414021758 14.34572362 2.142803073
9 1.452995616 0.209952203 1.117004205 0.84822908 8.414154905 1.284992441
10 0.871729223 0.125971214 0.670170755 0.508925181 5.035442799 0.770949491
...

...
...

...
...

...
...

40 1.93E-07 2.78E-08 1.48E-07 1.13E-07 1.11E-06 1.70E-07
41 1.16E-07 1.67E-08 8.89E-08 6.75E-08 6.68E-07 1.02E-07
42 6.94E-08 1.00E-08 5.33E-08 4.05E-08 4.01E-07 6.14E-08
43 4.16E-08 6.02E-09 3.20E-08 2.43E-08 2.40E-07 3.68E-08
44 2.50E-08 3.61E-09 1.92E-08 1.46E-08 1.44E-07 2.21E-08
45 1.50E-08 2.17E-09 1.15E-08 8.75E-09 8.65E-08 1.33E-08
46 8.99E-09 1.30E-09 6.91E-09 5.25E-09 5.19E-08 7.95E-09
47 5.39E-09 7.80E-10 4.15E-09 3.15E-09 3.12E-08 4.77E-09
48 3.24E-09 4.68E-10 2.49E-09 1.89E-09 1.87E-08 2.86E-09
49 1.94E-09 2.81E-10 1.49E-09 1.13E-09 1.12E-08 1.72E-09
50 1.17E-09 1.68E-10 8.96E-10 6.80E-10 6.73E-09 1.03E-09

For δ = 4
5 , (3.2) reduces to

⎧
⎨

⎩
u1 ∈H,

un+1 = 1
5 un ⊕ 4

5 Tun, n ≥ 1,
(6.2)

which yields the results in Table 1 and Fig. 1. The results are obtained for six different start-
ing points of {un}: Case 1 for u1 = (87, 42), Case 2 for u1 = (13, 55), Case 3 for u1 = (67, –17),
Case 4 for u1 = (–50, 60), Case 5 for u1 = (500, –500), and Case 6 for u1 = (–76, –38).

7 Conclusions
In a unique geodesic space, we introduced the classes of enriched Kannan and Bianchini
mappings. The existence and uniqueness of the fixed point of such a mapping were estab-
lished in the setting of a complete CAT(0) space. Also, a Krasnoselskij scheme is shown
to converge with a certain rate to the fixed point. Furthermore, conditions that guarantee
the inclusions of the class of strongly demicontractive mappings and the class of quasi-
expansive mappings to the class of enriched Kannan mappings were derived. Finally, an
example of na enriched Kannan mapping that is not Kannan was given in a nonlinear
CAT(0) space. The result herein extended several results in the literature. In particular,
we can observe the following:

1. Theorem 3.2 complements the results of [8, Theorem 2.1] from linear setting to
CAT(0) spaces and the results in [24, 25] from Kannan mappings to enriched Kannan
mappings.

2. Theorem 4.2 extends Theorem 3.1 of [8] from linear spaces to CAT(0) spaces and the
results in [9] to the class of enriched Kannan mapping.
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Figure 1 Report of numerical experiment for Example 6

3. Theorem 5.2 generalizes [31, Theorem 2.2] from linear setting to CAT(0) setting and
from Kannan mapping to enriched Kannan mapping.

4. Theorem 5.3 complements Theorem 2.1 of [31] to CAT(0) spaces.
5. Theorem 5.4 generalizes Theorem 3.4 of [31] to CAT(0) spaces.
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