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Abstract
Let A and B be two nonempty subsets of a normed space X , and let T : A∪ B → A∪ B
be a cyclic (resp., noncyclic) mapping. The objective of this paper is to establish weak
conditions on T that ensure its relative nonexpansiveness.
The idea is to recover the results mentioned in two papers by Matkowski (Banach J.

Math. Anal. 2:237–244, 2007; J. Fixed Point Theory Appl. 24:70, 2022), by replacing the
nonexpansive mapping f : C → C with a cyclic (resp., noncyclic) relatively
nonexpansive mapping to obtain the best proximity pair. Additionally, we provide an
application to a functional equation.
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1 Introduction and preliminaries
Let A and B be two nonempty subsets of a normed space (X,‖ · ‖). A self-mapping T :
A ∪ B → A ∪ B is said to be cyclic (resp., noncyclic) if T(A) ⊆ B and T(B) ⊆ A (resp.,
T(A) ⊆ A and T(B) ⊆ B). For such a mapping, we can consider the minimization problem
of finding a best proximity pair of the mapping T , that is, a pair (p, q) ∈ A × B such that

∥
∥p – T(p)

∥
∥ =

∥
∥q – T(q)

∥
∥ = dist(A, B)

(

resp., T(p) = p, T(q) = q, and ‖p – q‖ = dist(A, B)
)

,

where dist(A, B) = inf{d(x, y) : (x, y) ∈ A × B}.
A cyclic (resp., noncyclic) mapping T : A ∪ B → A ∪ B is said to be relatively nonexpan-

sive if ‖T(x) – T(y)‖ ≤ ‖x – y‖ for all x ∈ A and y ∈ B (notice that in general a relatively
nonexpansive mapping need not be continuous).

Recall that a real normed vector space (X,‖ · ‖) is called uniformly convex (see Clarkson
[4]) if for every ε ∈ (0, 2], there is δ > 0 such that for any two vectors x, y ∈ X with ‖x‖ =
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‖y‖ = 1, the condition ‖x – y‖ ≥ ε implies that

∥
∥
∥
∥

x + y
2

∥
∥
∥
∥

≤ 1 – δ.

The existence of a best proximity pair was first considered and studied in 2005 by Eldred
et al. [5]:

– if (A, B) is a nonempty closed bounded convex pair of a uniformly convex Banach
space X , then every cyclic relatively nonexpansive mapping defined on A ∪ B has a
best proximity pair.

– if (A, B) is a nonempty closed bounded convex pair of a uniformly convex Banach
space X , then every noncyclic relatively nonexpansive mapping defined on A ∪ B
has a best proximity pair.

The relevance of best proximity points is that they provide optimal solutions for the prob-
lem of best approximation between two sets. Some references concerning best proximity
points are given in [3, 6, 8, 11–14].

Let us recall the definitions of the lower and upper bounds of a function f : [0, +∞) →
[0, +∞) at a point t0:

lim inf
t→t+

0
f (t) = sup

η>0

(

inf
t0<t<t0+η

f (t)
)

and lim sup
t→t+

0

f (t) = inf
η>0

(

sup
t0<t<t0+η

f (t)
)

.

Remark 1 If lim inft→0+
f (t+a)

t+a = � with a,� ∈ [0, +∞), then for all ε > 0 and η > 0, there
exists tε ∈]0,η[ such that

f (tε + a) < (� + ε)(tε + a) and lim
ε→0+

tε = 0.

For the reader’s convenience, we recall the main results in [10].

Theorem 1 ([10], Theorem 1) Let X be a uniformly convex Banach space, let C be a
nonempty bounded convex closed subset of X, and let T be a self-mapping of C. If there
is a function β : [0, +∞) → [0, +∞) such that

∥
∥T(x) – T(y)

∥
∥ ≤ β

(‖x – y‖), x, y ∈ C, x 
= y, (1)

lim sup
t→0+

β(t)
t

< +∞, and lim inf
t→0+

β(t)
t

= 1, (2)

then T has a fixed point in C.

Proposition 2 ([10], Proposition 1) Let X be a uniformly convex Banach space, and let C
be a nonempty bounded convex closed subset of X. Suppose that T : C → C is continuous. If
there exist two positive sequences (tn)n≥0 and (cn)n≥0, limn→+∞ tn = 0, limn→+∞ cn = 1, such
that for every n ∈ N and for all x, y ∈ C,

‖x – y‖ = tn ⇒ ∥
∥T(x) – T(y)

∥
∥ ≤ cntn, (3)

then T has a fixed point.
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The idea of this paper is to present weak conditions under which a cyclic (resp., non-
cyclic) mapping T : A ∪ B → A ∪ B, where A and B are two subsets of a normed space X, is
relatively nonexpansive. As a result, we establish the existence of the best proximity pair
for this mapping.

On the other hand, Let BL,d be the family consisting of functions β : [0, +∞) → [0, +∞)
that satisfy the following conditions:

(i) β increases on [0, +∞),
(ii) β(kt) ≤ kβ(t) for all t ∈ [d, +∞) and k ∈N \ {0},
(iii) lim inft→0+

β(t+d)
t+d = L.

Then we establish the following result: Any cyclic (resp., noncyclic) mapping T : A∪B →
A ∪ B such that

∥
∥T(u) – T(v)

∥
∥ ≤ β

(‖u – v‖) (4)

for all (u, v) ∈ A × B is relatively (L, d)-mapping (see Sect. 2.2.), where d ∈ ]0, +∞) and
L ≥ 1

2 .
Note that the set BL,d is not empty. For example, the function β defined as β(t) = 2t

t+1 for
t ∈ [0, +∞) satisfies all three conditions (i), (ii), and (iii) with L = d = 1.

We denote by BL,0 (d = 0) the family of functions β : [0, +∞) → [0, +∞) that satisfy
conditions (i) and (iii).

The paper is organized as follows. Our main results are presented in Sect. 2. The-
orem 3 is a modification of Theorem 1 by Matkowski [10], in which the hypothesis
lim supt→0+

β(t)
t < +∞ is replaced with β ∈ B1,0. In Lemma 4, we show that any cyclic (resp.,

noncyclic) mapping T : A ∪ B → A ∪ B satisfying

∥
∥T ◦ g(u) – T ◦ h(v)

∥
∥ ≤ cn

(

tn + ‖u – v‖) (5)

for all (u, v) ∈ (cov(A ∪ B))2 such that d ≤ ‖u – v‖ ≤ 3d, where d = dist(A, B) > 0, and
cov(A ∪ B) is the convex hull of two parts A and B, is relatively nonexpansive. Using this
lemma, under certain conditions on the parts A and B of a uniformly convex space X, we
present Theorem 5 on the existence of the best proximity pair. Corollary 6 describes two
cases d = 0 and d > 0 for a mapping T : A ∪ B → A ∪ B satisfying

(

d ≤ ‖u – v‖ ≤ tn + 3d ⇒ ∥
∥T ◦ g(u) – T ◦ h(v)

∥
∥ ≤ cn(tn + d)

)

, (6)

(u, v) ∈ (cov(A ∪ B))2, where d = dist(A, B).
Proposition 7 in Sect. 2.2 says that any cyclic (resp., noncyclic) mapping T : A ∪ B →

A ∪ B that satisfies the condition

∥
∥T(u) – T(v)

∥
∥ ≤ β

(‖u – v‖) (7)

for all (u, v) ∈ A × B is relatively (L, d)-mapping on A ∪ B (see Definition 2).
In Sect. 2.3, we use Proposition 7 to get a result on the existence of the best proximity

pair of a functional equation in L2(U ), where U is a nonempty open subset of Rm.
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2 Mains results
The following result is a useful reformulation of Theorem 1 in [10].

Theorem 3 Let A be a nonempty bounded closed convex subset in a uniformly convex
Banach space X. Let β ∈ B1,0, and let T : A → A be a mapping satisfying the inequality

∥
∥T(x) – T(y)

∥
∥ ≤ β

(‖x – y‖) (8)

for all (x, y) ∈ A2 such that x 
= y. Then there exists x∗ ∈ A such that Tx∗ = x∗.

Proof Take (x, y) ∈ A such that x 
= y. For ε > 0, as lim inft→0+
β(t)

t = 1, there exists tε > 0
such that

β(tε) < (1 + ε)tε (9)

and lim
ε→0+

tε = 0. (10)

Let nε ∈N be such that

nεtε ≤ ‖x – y‖ < (nε + 1)tε , (11)

Put

zk =
(

1 –
k

nε + 1

)

· x +
k

nε + 1
· y for k = 0, 1, . . . , nε + 1.

By the convexity of C, zk ∈ C for all k ∈ {0, 1, . . . , nε}; moreover,

‖zk – zk+1‖ =
‖x – y‖
nε + 1

< tε . (12)

Applying the triangle inequality, condition (8), inequalities (9), (11), and (12), and the
monotony of β , we get

∥
∥T(x) – T(y)

∥
∥ ≤

nε∑

j=0

∥
∥T(zj) – T(zj+1)

∥
∥

≤
nε∑

j=0

β
(‖zj – zj+1‖

)

≤
nε∑

j=0

β(tε)

≤ (nε + 1)(1 + ε)tε

≤ (

tε + ‖x – y‖)(1 + ε).

Letting ε tend to 0+ and using (10), we obtain

‖Tx – Ty‖ ≤ ‖x – y‖.
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The mapping T is relatively nonexpansive in a bounded closed convex nonempty subset
of the uniformly convex Banach space X; so the result follows from the original version of
the Browder–Göhde–Kirk theorem (Browder [1], Göhde [7], Kirk [8]). �

2.1 Some auxiliary results on relatively nonexpansive and best proximity pairs
We denote by cov(A ∪ B) the convex hull of two parts A and B of a normed vector space
and d = dist(A, B).

Lemma 4 Let (A, B) be a nonempty pair in a normed space (X,‖ ·‖). Let g : cov(A∪B) → A
and h : cov(A ∪ B) → B be two mappings such that g|A = IdA and h|B = IdB. Let T : A ∪ B →
A∪B be a cyclic (resp., noncyclic) mapping, and let (tn)n and (cn)n be two positive sequences,
limn→+∞ tn = 0, limn→+∞ cn = 1, such that for every n ∈ N and for all (u, v) ∈ (cov(A ∪ B))2

such that d ≤ ‖u – v‖ ≤ 3d, where d = dist(A, B) > 0,

∥
∥T ◦ g(u) – T ◦ h(v)

∥
∥ ≤ cn

(

tn + ‖u – v‖). (13)

Then, for all (x, y) ∈ A × B,

∥
∥T(x) – T(y)

∥
∥ ≤ ‖x – y‖.

Proof Let (u, v) ∈ (cov(A ∪ B))2 be such that d ≤ ‖u – v‖ ≤ 3d. Then for all n ∈ N,

∥
∥T ◦ g(u) – T ◦ h(v)

∥
∥ ≤ cn

(

tn + ‖u – v‖).

Taking the limit as n goes to +∞, we have

∥
∥T ◦ g(u) – T ◦ h(v)

∥
∥ ≤ ‖u – v‖; (14)

in particular, if (x, y) ∈ A × B and ‖x – y‖ ≤ 3d, then we have

∥
∥T(x) – T(y)

∥
∥ ≤ ‖x – y‖.

Now let (x, y) ∈ A × B be such that ‖x – y‖ > 3d; in this case, diam(A, B) > d. There is p ∈N

such that

2p + 1 <
‖x – y‖

3d
≤ 2p + 3.

For k = 0, 1, . . . , 2p + 3, let xk = x + k
2p+3 (y – x). We have x0 = x, x2p+3 = y, xk ∈ cov(A ∪ B) for

every k in {0, 1, . . . , 2p + 2}, and

‖xk+1 – xk‖ =
‖x – y‖
2p + 3

∈ ]d, 3d].

Applying the triangle inequality and (14), we have

∥
∥T(x) – T(y)

∥
∥ ≤

p
∑

k=0

∥
∥T ◦ g(x2k) – T ◦ h(x2k+1)

∥
∥

+
p

∑

k=0

∥
∥T ◦ h(x2k+1) – T ◦ g(x2k+2)

∥
∥
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+
∥
∥T ◦ g(x2p+2) – T ◦ h(x2p+3)

∥
∥

≤
p

∑

k=0

(‖x2k – x2k+1‖ + ‖x2k+1 – x2k+2‖
)

+ ‖x2p+2 – x2p+3‖

= ‖x – y‖.

This finishes the proof. �

Theorem 5 Let (A, B) be a nonempty closed bounded convex pair in a uniformly convex
Banach space X. Let g : cov(A ∪ B) → A and h : cov(A ∪ B) → B be mappings such that
g|A = IdA and h|B = IdB. Let T : A ∪ B → A ∪ B be a cyclic (resp., noncyclic) mapping, and
let (tn)n and (cn)n be positive sequences, limn→+∞ tn = 0, limn→+∞ cn = 1, such that for every
n ∈N and for all (u, v) ∈ (cov(A ∪ B))2 such that d ≤ ‖u – v‖ ≤ 3d, where d = dist(A, B) > 0,

∥
∥T ◦ g(u) – T ◦ h(v)

∥
∥ ≤ cn

(

tn + ‖u – v‖).

Then there exists (x∗, y∗) ∈ A × B such that

∥
∥x∗ – Tx∗∥∥ = dist(A, B) =

∥
∥y∗ – Ty∗∥∥ (15)

(

resp., Tx∗ = x∗, Ty∗ = y∗, and
∥
∥x∗ – y∗∥∥ = dist(A, B)

)

. (16)

Proof According to Lemma 4, the mapping T is cyclic (resp., noncyclic) relatively nonex-
pansive in A ∪ B, where (A, B) is a nonempty closed bounded convex pair of the uniformly
convex Banach space X; so the result follows from the paper of Eldred et al. [5]. �

Corollary 6 Let (A, B) be a nonempty closed bounded convex pair in a uniformly convex
Banach space X. Let g : cov(A ∪ B) → A and h : cov(A ∪ B) → B be mappings such that
g|A = IdA and h|B = IdB. Let T : A ∪ B → A ∪ B be a cyclic (resp., noncyclic) mapping, and
let (tn)n and (cn)n be strictly positive sequences, limn→+∞ tn = 0, limn→+∞ cn = 1, such that
for every n ∈N and for all (u, v) ∈ (cov(A ∪ B))2,

(

d ≤ ‖u – v‖ ≤ tn + 3d ⇒ ∥
∥T ◦ g(u) – T ◦ h(v)

∥
∥ ≤ cn(tn + d)

)

, (17)

where d = dist(A, B). Then there exists (x∗, y∗) ∈ A × B such that

∥
∥x∗ – Tx∗∥∥ = dist(A, B) =

∥
∥y∗ – Ty∗∥∥

(

resp., Tx∗ = x∗, Ty∗ = y∗, and
∥
∥x∗ – y∗∥∥ = dist(A, B)

)

.

Proof We distinguish two cases d > 0 and d = 0.
Case 1: d > 0.
Let (u, v) ∈ (cov(A ∪ B))2 be such that d ≤ ‖u – v‖ ≤ 3d, so for each n ∈N, d ≤ ‖u – v‖ ≤

tn + 3d, and according to implication (17), we get

∥
∥T ◦ g(u) – T ◦ h(v)

∥
∥ ≤ cn(tn + d) for all n ∈N.

We thus obtain the result according to Theorem 5.
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Case 2: d = 0.
In this case, we claim that A ∩ B 
= ∅. Indeed, since dist(A, B) = 0, there exists a sequence

((xm, ym))m≥0 in A × B such that limm→+∞ d(xm, ym) = 0. Since the space X is a uniformly
convex Banach space, it is therefore reflexive, and since A and B are closed and bounded,
the sequence ((xm, ym))m≥0 admits a subsequence ((xφ(m), yφ(m)))m≥0 that converges weakly
to (a, b) ∈ A × B. By the weak lower semicontinuity of the norm ‖ · ‖ we have

‖a – b‖ ≤ lim
m→+∞‖xφ(m) – yφ(m)‖ = 0.

Thus a = b, which shows that A ∩ B 
= ∅.
Take x, y ∈ A ∩ B such that x 
= y and n ∈ N. There is a unique pn ∈N such that

pn ≤ ‖x – y‖
tn

< pn + 1. (18)

Put

zk =
(

1 –
k

pn + 1

)

· x +
k

pn + 1
· y for k = 0, 1, . . . , pn + 1.

Then zk ∈ A ∩ B for all k ∈ {0, 1, . . . , pn + 1}, because A ∩ B is convex; moreover,

‖zk – zk+1‖ =
‖x – y‖
pn + 1

< tn for all k ∈ {0, 1, . . . , pn}. (19)

Applying implication (17) and inequalities (18) and (19), we obtain

‖Tx – Ty‖ ≤
pn∑

j=0

∥
∥T(zk) – T(zk+1)

∥
∥

≤
pn∑

j=0

cntn

≤ (pn + 1)cntn

≤ cn‖x – y‖ + cntn.

Letting n tend to +∞ in the previous inequality, since limn→+∞ cn = 1 and limn→+∞ tn = 0,
we obtain

‖Tx – Ty‖ ≤ ‖x – y‖.

In this case, A∩B 
= ∅, the restriction of T to A∩B is nonexpansive, and the result follows
from the Browder–Göhde–Kirk result. �

Remark 2 Under the hypotheses of the corollary, if we take A = B, then cov(A ∪ A) = A,
d = dist(A, A) = 0, and h = g = IdA, and there is a fixed point of T . The difference between
this corollary (for the case d = 0) and Proposition 1 in [10] is that the corollary uses the
implication

(‖u – v‖ ≤ tn ⇒ ∥
∥T(u) – T(v)

∥
∥ ≤ cntn

)

, (20)

whereas Matkowski’s proposition uses (3) and the continuity of T .
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We will provide an example of Corollary 6, which justifies that for elements u and v in
cov(A ∪ B), where |u – v| > 3d, we can infer the following:

(|u – v| ≤ tn + 3d ⇒ ∣
∣T ◦ g(u) – T ◦ h(v)

∣
∣ ≤ cn(tn + d)

)

. (21)

Furthermore, we can obtain the result of this example using Theorem 5 in a straightfor-
ward manner.

Example 1 Let A = [–6, –1] and B = [0, 1] be two parts of R. We denote by prA and prB the
projections on A and B, respectively. Let T be the mapping defined on A ∪ B by

T(x) =

⎧

⎪⎪⎨

⎪⎪⎩

1
n if x ∈] 1

n+1 , 1
n ] and n ∈N \ {0},

0 if x = 0,

–1 if x ∈ A.

It is clear that (A, B) is a nonempty bounded closed convex pair in a uniformly convex
Banach space R, cov(A ∪ B) = [–6, 1], d = dist(A, B) = 1, diam(A, B) = 7, and TA ⊂ A, TB ⊂
B. Consider the sequences (tn)≥1 and (cn)≥1 defined by tn = 1

n and cn = 1 + 1
n for n ∈N\ {0}.

Let (u, v) ∈ (cov(A ∪ B))2 and n ∈ N \ {0} be such that 1 ≤ |u – v| ≤ tn + 3 (we can have
elements u and v such that 3d = 3 < |u – v| ≤ tn + 3; for example, x = tn and y = –3). We
have

∣
∣T ◦ prA(u) – T ◦ prB(v)

∣
∣ =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|T(u) – T(0)| if (u, v) ∈ A × (cov(A ∪ B) \ B),

|T(u) – T(v)| if (u, v) ∈ A × B or (u, v) ∈ B × A,

|T(–1) – T(0)| if u ∈ (cov(A ∪ B) \ A)

and v ∈ (cov(A ∪ B) \ B),

|T(–1) – T(v)| if u ∈ (cov(A ∪ B) \ A)

and v ∈ B.

In the case where v ∈ B \ {0} = ]0, 1] and u ∈ A, there exists m ∈ N \ {0} such that v ∈
]tm+1, tm],

1 ≤ v – u ≤ tn + 3 if and only if 0 < v ≤ tn + 3 + u.

We must have –3 ≤ u ≤ –1. In particular, for the element u = –3, since 1 ≤ v – u ≤ tn + 3,
we have v ≤ tn, so tm ≤ tn, and, consequently,

∣
∣T ◦ prA(u) – T ◦ prB(v)

∣
∣ = tm + 1 ≤ tn + 1 ≤ cn(tn + 1).

This inequality is also true for the other cases,

∣
∣T ◦ prA(u) – T ◦ prB(v)

∣
∣ = 1 < tn + 1 ≤ cn(tn + 1).

Hence

(

1 ≤ |u – v| ≤ tn + 3 ⇒ ∣
∣T ◦ prA(u) – T ◦ prB(v)

∣
∣ ≤ cn(tn + 1)

)

.
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Since limn→+∞ tn = 0 and limn→+∞ cn = 1, by Corollary 6 there exists a pair (x∗, y∗) in A×B
such that

Tx∗ = x∗, Ty∗ = y∗, and
∣
∣x∗ – y∗∣∣ = dist(A, B)

with x∗ = –1 and y∗ = 0.

2.2 Some auxiliary results on relatively (L, d)-mappings
Definition 1 Let (A, B) be a nonempty pair in a normed space (X,‖ ·‖), d := dist(A, B), and
L ≥ 1

2 . A mapping T : A ∪ B → A ∪ B is said to be a relatively (L, d)-mapping on A ∪ B if
for all (x, y) ∈ A × B,

∥
∥T(x) – T(y)

∥
∥ ≤ L

(‖x – y‖ + d
)

. (22)

Proposition 7 Let (A, B) be a nonempty pair in a normed space X. Let β ∈ BL,d with
d = dist(A, B) > 0 and L ≥ 1

2 . Let T : A ∪ B → A ∪ B be a cyclic (resp., noncyclic) mapping
satisfying the following condition:

∥
∥T(u) – T(v)

∥
∥ ≤ β

(‖u – v‖) (23)

for all (u, v) ∈ A × B. Then T is a relatively (L, d)-mapping on A ∪ B.

Proof
– As lim inft→0+

β(t+d)
t+d = L, for every ε > 0, there exists tε > 0 such that

β(tε + d) < (L + ε)(tε + d) (24)

and lim
ε→0+

tε = 0. (25)

By the monotony of β and inequalities(24) and (25) we have

β(d) ≤ lim inf
ε→0+

β(tε + d) ≤ lim
ε→0+

(L + ε)(tε + d) = Ld.

Thus β(d) ≤ Ld. Moreover, by (ii), β(nd) ≤ ndL for all n ∈N \ {0}.
– Let t ∈ [d, +∞[ . Then there is an integer n ≥ 1 such that

nd ≤ t < (n + 1)d ≤ t + d,

and then

β(t) ≤ β
(

(n + 1)d
) ≤ (n + 1)β(d) ≤ (n + 1)Ld ≤ L(t + d). (26)

– Let (u, v) ∈ A × B. Then ‖u – v‖ ≥ d, and from (26) we have

∥
∥T(u) – T(v)

∥
∥ ≤ β

(‖u – v‖) ≤ L
(‖u – v‖ + d

)

.

This finishes the proof. �
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We give the following simple example of a relatively (L, d)-mapping T that is not rela-
tively nonexpansive.

Example 2 Consider the space �p(R), 1 ≤ p < ∞, endowed with the norm ‖ · ‖ := ‖ · ‖p.
Let

A =

{

x = λ.e1 + μ.e2 +
+∞
∑

n=3

1
2n .en ∈ �p(R) : 0 ≤ λ ≤ 2 and 1 ≤ μ ≤ 2

}

and

B =

{

y = λ′.e1 + μ′.e2 +
+∞
∑

n=3

1
2n .en ∈ �p(R) : 0 ≤ λ′ ≤ 2 and – 2 ≤ μ′ ≤ –1

}

,

where en the sequence consisting of 1s at the nth place and 0s elsewhere.
For all (x, y) ∈ A × B,

‖x – y‖p =
((

λ – λ′)p +
(

μ – μ′)p) 1
p ≥ 2,

where 2 = ‖a – b‖p with a = e2 +
∑+∞

n=3
1

2n · en ∈ A and b = –e2 +
∑+∞

n=3
1

2n · en ∈ B. Hence d =
dist(A, B) = 2.

Consider the mapping T : A ∪ B → A ∪ B defined by

T(x) = 2.e1 +
μ + 1

2
· e2 +

+∞
∑

n=3

1
2n · en if x ∈ A,

T(y) =
μ′ – 1

2
· e2 +

+∞
∑

n=3

1
2n · en if y ∈ B.

We have T(A) ⊂ A and T(B) ⊂ B.
– Letting x ∈ A and y ∈ B,

∥
∥T(x) – T(y)

∥
∥

p =
(

2p +
(

μ – μ′

2
+ 1

)p) 1
p

≤ (

2p +
(

μ – μ′)p) 1
p

≤ (

2p + ‖x – y‖p) 1
p .

Hence

∥
∥T(x) – T(y)

∥
∥

p ≤ β
(‖x – y‖p

)

with β(t) = (2p + tp)
1
p for t ∈ [0, +∞[ . We have

lim inf
t→0+

β(t + 2)
t + 2

= lim
t→0+

(2p + (t + 2)p)
1
p

t + 2
= 2

1
p >

1
2

.

Moreover, β satisfies conditions (i) and (ii), and so β ∈ B
2

1
p ,2

.
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By Proposition 7, for all (x, y) ∈ A × B,

∥
∥T(x) – T(y)

∥
∥

p ≤ 2
1
p
(‖x – y‖p + dist(A, B)

)

.

Then T is a noncyclic relatively (2
1
p , 2)-mapping on A ∪ B.

– The mapping T from the previous example is not relatively nonexpansive on A ∪ B/
For example, taking x = e1 + e2 +

∑+∞
n=3

1
2n · en and y = –e2 +

∑+∞
n=3

1
2n · en, we get

2 = dist(A, B) < ‖x – y‖p =
(

1 + 2p) 1
p

<
∥
∥T(x) – T(y)

∥
∥

p =
(

2p + 2p) 1
p = 21+ 1

p .

2.3 An application to functional equations
Let U be a nonempty open subset of Rm such that μ(U ) = 1, where m ∈ N \ {0}, and μ

is the Lebesgue measure on R
m. We denote by L2(U ) the space of measurable functions

f : U →R for which |f |2 is integrable with respect to μ. We equip L2(U ) with the norm

‖f ‖2 =
(∫

U
|f |2 dμ

) 1
2

.

It is known that (L2(U ),‖ · ‖2) is a uniformly convex Banach space (see Clarkson [4]).
We assume the following conditions:
(H1) Let M : U → U be a locally Lipschitzian homeomorphic mapping, and let γ : U ×

U → [0, +∞) be a measurable Lebesgue function such that

(

γ
(

x,M(x)
))2 =

∣
∣JM(x)

∣
∣ a.e. in U and μ

(

M(U )
)

= 1, (27)

where for M = (M1, . . . ,Mm) and x = (x1, . . . , xm).

JM(x) :=
∂(M1, . . . ,Mm)

∂(x1, . . . , xm)

is the Jacobian of M.
(H2) h, k : U ×R →R are functions such that for all y ∈R, the functions x �→ h(x, y) and

x �→ k(x, y) are Lebesgue measurable on U , and for almost all x ∈ U (with respect to
μ), the functions y �→ h(x, y) and y �→ k(x, y) are continuous on R,

(H3) Let g1, g2 ∈ L2(U ) be such that 0 < g1 ≤ g2 a.e. in U and for all (x, y) ∈ U ×R, we have
the following implications:

g1
(

M(x)
) ≤ y ≤ g2

(

M(x)
) ⇒

⎧

⎨

⎩

g1(x) ≤ γ (x,M(x))h(x, y) ≤ g2(x),

g1(x) ≤ γ (x,M(x))k(x, y) ≤ g2(x),
(28)

h1
(

M(x)
) ≤ y ≤ h2

(

M(x)
) ⇒

⎧

⎨

⎩

h1(x) ≤ γ (x,M(x))h(x, y) ≤ h2(x),

h1(x) ≤ γ (x,M(x))k(x, y) ≤ h2(x),
(29)

where h1 = –g2 and h2 = –g1
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We set

A =
{

φ ∈ L2(U ) : g1 ≤ φ ≤ g2a.e. in U
}

and B =
{

φ ∈ L2(U ) : h1 ≤ φ ≤ h2a.e. in U
}

.

We have d = dist(A, B) = ‖g1 – h2‖2 > 0 and A ∩ B = ∅.
We define the maps T and S on A ∪ B by

⎧

⎨

⎩

T(φ)(x) = γ (x,M(x))h(x,φ(M(x))),

S(φ)(x) = γ (x,M(x))k(x,φ(M(x))),
φ ∈ A ∪ B and x ∈ U . (30)

Theorem 8 Assume that hypotheses (H1)–(H3) hold. Suppose

√
2
(∣
∣k(x, y1) – k(x, y2)

∣
∣ + d

) ≤ ∣
∣h(x, y1) – h(x, y2)

∣
∣ ≤ β

(|y1 – y2|
)

(31)

for all x ∈ U and y1, y2 ∈ R, where β ∈ B1,d , and t �→ [β(t 1
2 )]2 is concave on [0, +∞). Then

there exists (φ0,ψ0) ∈ A × B such that

S(φ0) = φ0, S(ψ0) = ψ0 and dist(A, B) = ‖ψ0 – ψ0)‖2.

Proof First, we verify without difficulty that (A, B) is nonempty bounded closed and con-
vex in the Hilbert space (L2(U ),‖ · ‖2) equipped with the real scalar product

〈φ,ψ〉 =
∫

U
φ(x)ψ(x) dx for φ,ψ ∈ L2(U ).

Take an arbitrary φ ∈ A ∪ B. Then, in view of the Carathéodory theorem [2], conditions
(H1) and (H2) imply that the functions T(φ) and S(φ) are Lebesgue measurable.

Note that T(A) ⊆ A. Indeed, for φ ∈ A, we have g1 ≤ φ ≤ g2 a.e. in U , so from implication
(28) we have

g1
(

M(x)
) ≤ φ

(

M(x)
) ≤ g2

(

M(x)
)

a.e. in �,

and thus, in view of condition (H3),

g1(x) ≤ γ
(

x,M(x)
)

h
(

x,φ
(

M(x)
)) ≤ g2(x) a.e. in U ,

that is, T(φ) ∈ A.
Similarly, we justify that T(B) ⊆ B, S(A) ⊆ A, and S(B) ⊆ B using condition (H3) and

implications (28) and (29).
Step 1: Let (φ,ψ) ∈ A × B. Using the assumptions μ(M(U )) = 1,

(γ (x,M(x)))2 = |JM(x)| a.e. in U (27), and β ∈ B1,d , we obtain the following
inequalities:

∥
∥T(φ) – T(ψ)

∥
∥

2
2 =

∫

U

∣
∣T(φ)(x) – T(ψ)(x)

∣
∣
2 dx

=
∫

U

(

γ
(

x,M(x)
))2∣

∣h(x,φ
(

M(x)
)

– h
(

x,ψ
(

M(x)
))∣

∣
2 dx
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=
∫

U

(

γ (x),M(x)
)2(β

(

φ
(

M(x)
)

– ψ
(

M(x)|))2 dx

=
∫

U

∣
∣JM(x)

∣
∣(β

(∣
∣φ

(

M(x)
)

– ψ
(

M(x)
∣
∣
))2 dx

=
∫

M(U )

(

β
(∣
∣φ(x) – ψ(x)

∣
∣
))2 dx

≤
∫

U

(

β
(∣
∣φ(x) – ψ(x)

∣
∣
))2 dx.

Since the function t �→ [β(t 1
2 )]2 is concave on [0, +∞), we have

∥
∥T(φ) – T(ψ)

∥
∥

2 ≤
(∫

U

[

β
(∣
∣φ(x) – ψ(x)

∣
∣
)]2 dx

) 1
2

=
(∫

U

[

β
((∣

∣φ(x) – ψ(x)
∣
∣
2) 1

2
)]2 dx

) 1
2

≤
[(

β

(∫

U

∣
∣φ(x) – ψ(x)

∣
∣
2 dx

) 1
2
)2] 1

2

≤ β
(‖φ – ψ‖2

)

,

Thus all the assumptions of Proposition 7 are satisfied. Consequently, for
(φ,ψ) ∈ A × B,

∥
∥T(φ) – T(ψ)

∥
∥

2 ≤ ‖φ – ψ‖2 + d. (32)

Step 2: Let (φ,ψ) ∈ A × B. By inequality (31), for each x ∈ U , we have

2
(∣
∣k(x,φ

(

M(x)
)

– k
(

x,ψ
(

M(x)
)∣
∣ + d

)2 ≤ ∣
∣h(x,φ

(

M(x)
)

– h
(

x,ψ
(

M(x)
))∣

∣
2,

so that

2
(

γ
(

x,M(x)
))2(

∣
∣k(x,φ

(

M(x)
)

– k
(

x,ψ
(

M(x)
)∣
∣
2 + d2)

≤ (

γ
(

x,M(x)
))2(

∣
∣h

(

x,φ
(

M(x)
)

– h
(

x,ψ
(

M(x)
))∣

∣
2).

Integrating both sides, we get

2
∫

U

(

γ
(

x,M(x)
))2(

∣
∣k(x,φ

(

M(x)
)

– k
(

x,ψ
(

M(x)
)∣
∣
2 + d2)dx

≤
∫

U

(

γ
(

x,M(x)
))2(

∣
∣h

(

x,φ
(

M(x)
)

– h
(

x,ψ
(

M(x)
))∣

∣
2)dx,

whence

2
(∫

U

∣
∣S(φ)(x) – S(ψ)(x)

∣
∣
2 dx + d2

)

≤
∫

U

∣
∣T(φ)(x) – T(ψ)(x)

∣
∣
2 dx,

√
2

√
∫

U

∣
∣S(φ)(x) – S(ψ)(x)

∣
∣
2 dx + d2 ≤

√
∫

U

∣
∣T(φ)(x) – T(ψ)(x)

∣
∣
2 dx.
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Since
√

∫

U

∣
∣S(φ)(x) – S(ψ)(x)

∣
∣
2 dx + d ≤ √

2

√
∫

U

∣
∣S(φ)(x) – S(ψ)(x)

∣
∣
2 dx + d2,

we have

∥
∥S(φ) – S(ψ)

∥
∥

2 + d ≤ ∥
∥T(φ) – T(ψ)

∥
∥

2

and, according to inequality (32),

∥
∥S(φ) – S(ψ)

∥
∥

2 + d ≤ ∥
∥T(φ) – T(ψ)

∥
∥

2 ≤ ‖φ – ψ‖2 + d.

Hence, for all (φ,ψ) ∈ A × B,

∥
∥S(φ) – S(ψ)

∥
∥

2 ≤ ‖φ – ψ‖2.

Thus S is relatively nonexpansive on A ∪ B. The hypotheses of the result of Eldred et al.
[5] for a noncyclic mapping hold for S, so there exists (φ0,ψ0) ∈ A × B such that

S(φ0) = φ0, S(ψ0) = ψ0, and dist(A, B) = ‖φ0 – ψ0)‖2,

and necessarily φ0 = g1 and ψ0 = h2. �
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