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Abstract
In this article, we prove the existence of the best proximity point for the class of
nonself generalized pseudo-contractive and Lipschitzian mappings. Also, we
approximate the best proximity point through the proposed Ishikawa’s iteration
process for the case of nonself-mappings. Finally, we provide an example to illustrate
our main result.
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1 Introduction
Assume that M and N are nonempty subsets of a metric space (X, d). If M ∩ N = ∅, then
the mapping f from M to N does not have a solution for the fixed-point equation f (η) = η.
When the fixed-point equation does not possess a solution, then it is attempted to de-
termine an approximate solution η such that the error d(η, f η) is minimum. In this situa-
tion, the best proximity-point theorems guarantee the existence and uniqueness of such
an optimization for the fixed-point equations. Naturally, the best proximity point for the
nonself-mappings is defined as follows:

Definition 1.1 Let M, N be two nonempty and disjoint subsets of a metric space (X, d).
A mapping � : M → N is said to have a best proximity point if there exist η∗ ∈ M such
that d(η∗,�η∗) = d(M, N).

Many researchers have proved the existence results on the best proximity points for
various kinds of contractions. For such results, one may refer to [2, 4, 6–8, 12, 13, 15–18].
Recently, researchers have shown an interest in approximating the best proximity points
through well-known iterative processes that may be seen in [1, 3, 9–11, 14, 19, 20].
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On the other hand, numerous research articles have been published on the conver-
gence of fixed points for the class of self- and nonself-contractive-type mappings in metric
spaces, Hilbert spaces, and several classes of Banach spaces. For further exploration of this
topic, we refer to the monograph [5] and the references cited therein.

A fundamental result in metric fixed-point theory is the following theorem, which uses
the Picard iteration method.

Theorem 1.2 [5] Let (X, d) be a complete metric space and � : X → X be a contraction,
that is an operator satisfying

d(�η,�ω) ≤ ad(η,ω), for any η,ω ∈ X,

with a ∈ [0, 1) fixed. Then, � has a unique fixed point.

One of the effective methods for approaching the fixed point of a mapping � : X → X is
the Ishikawa iteration scheme, starting with any η0 ∈ X and for n ≥ 0 defined by

ηn+1 = (1 – γn)ηn + γn�
(
(1 – δn)ηn + δn�ηn

)
,

where γn, δn ∈ [0, 1]. In this direction, we state the following theorem on the iterative ap-
proximation of a fixed point that was proved by Ishikawa [11], for Lipschitzian pseudo-
contractive mapping.

Theorem 1.3 [11] Let K be a convex and compact subset of a Hilbert space H and let
� : K → K be Lipschitzian pseudo-contractive and let η1 ∈ K . Then, the Ishikawa iteration
{ηn}, defined by

ηn+1 = (1 – γn)ηn + γn�
[
(1 – δn)ηn + δn�ηn

]
,

where {γn}, {δn} are sequences of positive numbers satisfying

(i) 0 ≤ γn ≤ δn ≤ 1, n ≥ 1; (ii) lim
n→∞ δn = 0; (iii)

∞∑

n=1

γnδn = ∞,

converges strongly to a fixed point of �.

The next result gives sufficient conditions to obtain a fixed point without assuming the
Lipschitzian condition.

Theorem 1.4 [5] Let K be a closed, bounded, and convex subset of a real uniformly convex
Banach space H . Let � : K → K a strongly pseudo-contractive that has at least a fixed point
η∗. Let η1 ∈ K , then the Ishikawa iteration {ηn}, defined by

ηn+1 = (1 – γn)ηn + γn�
[
(1 – δn)ηn + δn�ηn

]
,



Pragadeeswarar and Gopi Fixed Point Theory Algorithms Sci Eng         (2023) 2023:19 Page 3 of 8

where {γn}, {δn} are sequences of positive numbers satisfying

(i) 0 ≤ γn, δn < 1, n ≥ 1; (ii) lim
n→∞γn = 0, lim

n→∞ δn = 0;

(iii)
∞∑

n=1

γn = ∞,

converges strongly to a fixed point of �.

Motivated by Theorems 1.3 and 1.4, a natural question arises: how can one construct the
Ishikawa iteration for nonself-mappings that approximate the best proximity point of such
mappings? In this context, we will initiate the construction of the Ishikawa iteration pro-
cess for nonself-mappings and investigate the convergence results for the best proximity
point.

Before presenting the iterative approximation for the best proximity point, let us estab-
lish the existence of a best proximity point. To do so, we will recall some basic notions and
definitions:

Let M and N be two subsets of a Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖:

dist(M, N) = d(M, N) = inf
{‖η – ω‖ : η ∈ M,ω ∈ N

}
;

PM(η) =
{
ω ∈ M : ‖η – ω‖ = d(η, M)

}
;

M0 =
{
η ∈ M :

∥
∥η – ω′∥∥ = d(M, N) for some ω′ ∈ N

}
;

N0 =
{
ω ∈ N :

∥∥η′ – ω
∥∥ = d(M, N) for some η′ ∈ M

}
.

In [13], Kirk et al. proved the following lemma that guarantees the nonemptiness of M0

and N0.

Lemma 1.5 Let X be a reflexive Banach space and M be a nonempty, closed, bounded, and
convex subset of X, and N be a nonempty, closed, and convex subset of X. Then, M0 and N0

are nonempty and satisfy PN (M0) ⊆ N0, PM(N0) ⊆ M0.

Definition 1.6 Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. An op-
erator � : H → H is said to be Lipschitzian if there exists a constant s > 0 such that, for all
η, ω in H ,

‖�η – �ω‖ ≤ s‖η – ω‖.

Definition 1.7 Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. An op-
erator � : H → H is said to be a generalized pseudo-contraction if there exists a constant
r > 0 such that, for all η, ω in H ,

‖�η – �ω‖2 ≤ r2‖η – ω‖2 +
∥∥�η – �ω – r(η – ω)

∥∥2. (1)

Remark 1.8
1. The condition (1), is equivalent to 〈�η – �ω,η – ω〉 ≤ r‖η – ω‖2.
2. If r = 1, then a generalized pseudo-contraction reduces to a pseudo-contraction.
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Definition 1.9 Let H be a Banach space with norm ‖ · ‖. An operator � : H → H is said
to be strongly pseudo-contraction if there exists a constant t > 1 such that

‖η – ω‖ ≤ ∥∥(1 + c)(η – ω) – ct(�η – �ω)
∥∥

holds for all η, ω in H and c > 0.

In this work, we begin by providing a set of sufficient conditions for the existence of a
best proximity point for nonself-Lipschitzian, generalized pseudo-contractive mappings.
Subsequently, we construct the Ishikawa iteration for nonself-mappings and establish con-
vergence results for the best proximity point of Lipschitzian pseudo-contractive nonself-
mappings. To support our main result, we present an illustrative example.

Furthermore, we delve into the convergence of the best proximity point for strongly
pseudo-contractive mappings without imposing the Lipschitzian condition. This discus-
sion expands the scope of our findings and highlights the applicability of our results in a
broader class of mappings.

2 Main results
Let us prove the existence result of the best proximity point for nonself-generalized
pseudo-contractive and Lipschitzian mapping in the Hilbert space settings.

Theorem 2.1 Let M, N be two closed and convex subsets of a real Hilbert space H assume
M to be bounded. Let � : M → N be a generalized, pseudo-contractive, and Lipschitzian
mapping with corresponding constants r and s such that 0 < r < 1, s > 1. If �(M0) ⊆ N0,
then � has a unique best proximity point.

Proof Let λ ∈ (0, 1) satisfying, 0 < λ < 2(1–r)
(1–2r+s2) . We consider a projection operator on M0,

that is, PM0 : �(M0) → M0. Also, we define an averaged operator F : M0 → M0, associated
with PM0�,

F(η) = (1 – λ)η + λPM0�η, for η ∈ M0. (2)

Since � is generalized, pseudo-contractive, and Lipschitzian, we have

‖Fη – Fω‖2 =
∥
∥(1 – λ)η + λPM0�η – (1 – λ)ω – λPM0�ω

∥
∥2

=
∥
∥(1 – λ)(η – ω) + λ(PM0�η – PM0�ω)

∥
∥2

= (1 – λ)2‖η – ω‖2 + 2λ(1 – λ)〈PM0�η – PM0�ω,η – ω〉
+λ2‖PM0�η – PM0�ω‖2. (3)

Let us assume u = �η – PM0�η and v = �ω – PM0�ω. Now, we claim that u = v. Suppose
u �= v, then by the strict convexity of H , we have

∥∥
∥∥
�η + �ω

2
–

PM0�η + PM0�ω

2

∥∥
∥∥ =

∥∥
∥∥

u + v
2

∥∥
∥∥

< max
{‖u‖,‖v‖}
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= d(M, N),

which is a contradiction. Therefore, u = v. This implies that, �η – �ω = PM0�η – PM0�ω.
Therefore, from (3), we obtain

‖Fη – Fω‖2 = (1 – λ)2‖η – ω‖2 + 2λ(1 – λ)〈�η – �ω,η – ω〉 + λ2‖�η – �ω‖2

≤ (1 – λ)2‖η – ω‖2 + 2λ(1 – λ)r‖η – ω‖2 + λ2s2‖η – ω‖2

=
(
(1 – λ)2 + 2λ(1 – λ)r + λ2s2)‖η – ω‖2.

Then, ‖Fη – Fω‖ ≤ ((1 – λ)2 + 2λ(1 – λ)r + λ2s2)1/2‖η – ω‖.
Now, from 0 < λ < 2(1–r)

(1–2r+s2) , we obtain

λ2(1 – 2r + s2) < 2λ(1 – r) = 2λ(1 – r) + 1 – 1,

1 + λ2 – 2λ + 2λr – 2λ2r + λ2s2 < 1,
(
(1 – λ)2 + 2λ(1 – λ)r + λ2s2)1/2 < 1.

This implies that F is contraction. By Theorem 1.2, F has a unique fixed point p∗ ∈ M0.
Then, PM0�p∗ = p∗. This implies that d(p∗,�p∗) = d(M, N). �

Remark 2.2
1. If 0 < s < 1, then � is a contraction nonself-mapping and the result follows from [15].
2. If s = 1, then � is a nonexpansive nonself-mapping and the result follows from [18].

Now, we define a construction of Ishikawa iteration for the case of nonself-mapping:
Let M, N be two convex subsets of a Hilbert space H . Let us define � : M → N and

assume �(M0) ⊆ N0. Consider the projective operator PM0� : M0 → M0. Let η1 ∈ M0,
then the Ishikawa iteration {ηn}, is defined by

ηn+1 = (1 – γn)ηn + γnPM0�
[
(1 – δn)ηn + δnPM0�ηn

]
, n = 1, 2, 3, . . . , (4)

where γn, δn ∈ [0, 1].
Next, we extend the convergence result of Theorem 1.3, for the case of nonself-

mappings, by using the proposed Ishikawa iteration for nonself-mappings.

Theorem 2.3 Let M, N be two closed and convex subsets of a Hilbert space H and assume
M to be compact. Let � : M → N be a pseudo-contractive and Lipschitzian mapping with
�(M0) ⊆ N0. Let η1 ∈ M0, then the Ishikawa iteration {ηn}, defined in (4), with {γn}, {δn}
are sequences of positive numbers satisfying

(i) 0 ≤ γn ≤ δn ≤ 1, n ≥ 1; (ii) lim
n→∞ δn = 0; (iii)

∞∑

n=1

γnδn = ∞,

converges strongly to a best proximity point of �.
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Proof First, we prove that the mapping PM0� : M0 → M0 is pseudo-contractive. It is
enough to show that 〈PM0�η – PM0�ω,η – ω〉 ≤ ‖η – ω‖2, for all η,ω ∈ M0. Now, we as-
sume x = �η – PM0�η and y = �ω – PM0�ω. Now, we claim that x = y. Suppose x �= y, then
by the strict convexity of H , we have

∥
∥∥∥
�η + �ω

2
–

PM0�η + PM0�ω

2

∥
∥∥∥ =

∥
∥∥∥

x + y
2

∥
∥∥∥

< max
{‖x‖,‖y‖}

= d(M, N),

which is a contradiction. Therefore, x = y. This implies that, �η – �ω = PM0�η – PM0�ω.
Since � is pseudo-contractive, we obtain

〈PM0�η – PM0�ω,η – ω〉 = 〈�η – �ω,η – ω〉 ≤ ‖η – ω‖2.

Now, using that � is a Lipschitzian mapping, there exist s > 0, we obtain

‖PM0�η – PM0�ω‖ = ‖�η – �ω‖ ≤ s‖η – ω‖,

which implies that the mapping PM0� : M0 → M0 is a Lipschitzian operator. Moreover,
M0 satisfies all the requirements of Theorem 1.3. This implies that the sequence {ηn}
converges to a fixed point p∗ of PM0�. Then, PM0�p∗ = p∗. This implies that d(p∗,�p∗) =
d(M, N), that is, p∗ is a best proximity point of �. This completes the proof. �

The following example illustrates Theorem 2.2.

Example 2.4 Let H = R
2 be a Hilbert space with the Euclidean inner product and norm.

Assume M = {(0,η) : 1/2 ≤ η ≤ 2}, N = {(1,η) : 1/2 ≤ η ≤ 2}. Clearly, M0 = M, N0 = N .
Now, we define � : M → N by �(0,η) = (1, 1/η). Then, one can easily verify that � is
pseudo-contractive and Lipschitzian. Assume η0 = 0.5, γn = δn = 1√

n for all n ≥ 0. Then,

(0,ηn+1) = (1 – γn)(0,ηn) + γnPM0�
[
(1 – δn)(0,ηn) + δnPM0�(0,ηn)

]

=
(√

n – 1√
n

)
(0,ηn) +

1√
n

PM0�

[(√
n – 1√

n

)
(0,ηn) +

1√
n

PM0

(
1,

1
ηn

)]

=
(

0,
(√

n – 1√
n

)
ηn

)
+

1√
n

PM0�

[(
0,

(√
n – 1√

n

)
ηn

)
+

1√
n

(
0,

1
ηn

)]

=
(

0,
(√

n – 1√
n

)
ηn

)
+

1√
n

PM0�

[(
0,

(√
n – 1√

n

)
ηn +

1√
nηn

)]

=
(

0,
(√

n – 1√
n

)
ηn

)
+

1√
n

PM0�

[(
0,

(
√

n – 1)η2
n + 1√

nηn

)]

=
(

0,
(√

n – 1√
n

)
ηn

)
+

1√
n

PM0�

[(
0,

(
√

n – 1)η2
n + 1√

nηn

)]

=
(

0,
(√

n – 1√
n

)
ηn

)
+

1√
n

PM0

[(
1,

√
nηn

(
√

n – 1)η2
n + 1

)]
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=
(

0,
(√

n – 1√
n

)
ηn

)
+

(
0,

ηn

(
√

n – 1)η2
n + 1

)

=
(

0,
√

n – 1√
n

ηn +
ηn√

nη2
n – η2

n + 1

)
.

As n → ∞, the Ishikawa iteration (0,ηn+1) → (0, 1), in particular, at (0,η118) = (0, 1),
reaches the best proximity point of �. This result is achieved by simple Matlab coding.

Finally, we approximate the best proximity point for strongly pseudo-contractive
nonself-mappings without Lipschitzian. This is an extended version of Theorem 1.4, for
the case of nonself-mappings.

Theorem 2.5 Let M, N be two closed, bounded, and convex subsets of a real uniformly
convex Banach space H . Let � : M → N be a strongly pseudo-contractive that has at least
a best proximity point η∗ and assume that �(M0) ⊆ N0. Let η1 ∈ M0, then the Ishikawa
iteration {ηn}, defined in (4), with {γn}, {δn} being sequences of positive numbers satisfying

(i) 0 ≤ γn, δn < 1, n ≥ 1; (ii) lim
n→∞γn = 0, lim

n→∞ δn = 0;

(iii)
∞∑

n=1

γn = ∞,

converges strongly to a best proximity point of �.

Proof One can easily verify that the mapping PM0� : M0 → M0 is strongly pseudo-
contractive and the result follows by Theorem 1.4. �
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