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Abstract
In this paper, we introduce the notion of generalized (α,φ)-Meir–Keeler hybrid
contractive mappings of type I and II via simulation function and establish fixed point
theorems for such mappings in the setting of complete b-metric spaces. Our results
extend and generalize many related fixed point results in the existing literature.
Finally, we provide an example in support of our main finding.
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1 Introduction
Fixed point theory is one of the most important topics in development of nonlinear and
mathematical analysis in general. Also, fixed point theory has been effectively used in
many other branches of science such as chemistry, physics, biology, economics, computer
science, all engineering fields, and so on. In 1922, Banach [1] introduced a well-known
fixed point result, now called Banach contraction principle, which is one of the pivotal re-
sults in nonlinear analysis. Due to its importance and fruitful applications, several authors
have obtained many interesting extensions and generalizations of the Banach contraction
principle in several direction (see, e.g., [2, 3]). These generalizations are achieved either by
using contractive conditions or by imposing some additional conditions on the ambient
spaces. For example, one of the important and peculiar generalizations is due to Meir and
Keeler [4]. The class of Meir–Keeler contractions consists of the class of Banach contrac-
tions and many other classes of nonlinear contractions (see, for example, [5]). Meir and
Keeler’s theorem was the originator of further exploration in metric fixed point theory.
Later on, Meir–Keeler contraction mapping has been generalized by several authors in
several ways. For more works in this line of research, we refer to [6–8], as well as [9–14].
On the other hand, the notion of a b-metric space was introduced by Bakhtin [15] and
Czerwik [16] as a generalization of metric spaces. Since then, several papers have been
published on the fixed point theory in such spaces which are interesting extensions and
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generalizations of the Banach contraction principle. For further works in the setting of
b-metric spaces and their generalization, we refer the readers to [17–42]. In 2020, Karap-
inar et al. [43] studied fixed point results for the Meir–Keeler contraction via simulation
function in the setting of metric spaces. Inspired and motivated by the work of Karapinar
et al. [43], the main objectives of this research is to introduce the notion of generalized
(α,φ)-Meir–Keeler hybrid contractive mappings of type I and II via simulation function
and establish fixed point theorems for the introduced mappings in the setting of b-metric
spaces. The present results extend and generalize the results of Karapinar et al. [43] and
many other related results in the existing literature.

2 Preliminaries
In what follows we recall basic definitions and results on the topics which we use in the
sequel.

Notations 1 Throughout this paper, we denote R
+, R and N respectively by

• R
+ = [0,∞) – the set of all non-negative real numbers;

• R – the set of all real numbers;
• N – the set of all natural numbers.

Khojasteh et al. [44] introduced the notion of a simulation function as follows.

Definition 1 ([44]) A weak simulation function is a mapping ζ : R+ ×R
+ → R satisfying

the following conditions:
(ζ1) ζ (0, 0) = 0;
(ζ2) ζ (t, s) < s – t for all t, s > 0.

Note Throughout this paper we denote by Zw the family of all simulation functions ζ :
R

+ ×R
+ →R. Due to the axiom (ζ2), we have ζ (t, t) < 0 for all t > 0.

Recently, Suzuki [45] introduced the following class of mappings and proved the follow-
ing interesting fixed point result to extend the coverage of Meir–Keeler theorem in the
setting of metric spaces. Let (X, d) be a metric space and T : X → X be a self-mapping.
Define a mapping M : X × X →R

+ as follows:

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2

}
.

And let p : X × X → R
+ be a mapping satisfies the following conditions:

(P1
p : M) x �= y and d(x, Tx) ≤ d(x, y) imply p(x, y) ≤ M(x, y);

(P2
p : c) xn �= y, limn→∞ d(xn, y) = 0, and limn→∞ d(xn, Txn) = 0 imply

lim sup
n→∞

d(xn, y) ≤ cd(y, Ty), where c ∈ [0, 1).

Theorem 1 ([45]) Let T be a self-mapping on a complete metric space (X, d). Let p :
X × X → R

+ be mapping that satisfies the conditions (P1
p : M) and (P2

p : c) defined above.
Suppose also that the following are satisfied:

(i) For any ε > 0, there exists δ(ε) > 0 such that x �= y and p(x, y) < ε + δ(ε) imply
d(Tx, Ty) ≤ ε;
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(ii) x �= y and p(x, y) > 0 imply d(Tx, Ty) < p(x, y).
Then T has a unique fixed point z. Moreover, the sequence {Tnx} converges to z for all x ∈ X.

Bakhtin [15] and Czerwik [16] defined a b-metric space as follows.

Definition 2 ([15, 16]) Let X be a nonempty set and s ≥ 1 be a given real number. A
function d : X ×X →R

+ is said to be a b-metric if and only if for all x, y, z ∈ X, the following
conditions are satisfied:

(a) d(x, y) = 0 if and only if x = y;
(b) d(x, y) = d(y, x);
(c) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

It should be noted that the class of b-metric spaces is effectively larger than that of metric
spaces. A metric space is a b-metric with s = 1. But, in general, the converse is not true.

Example 1 ([32]) Let X = R and d : X × X → R
+ be given by d(x, y) = |x – y|2 for x, y ∈ X,

then d is a b-metric on X with s = 2 but it is not a metric on X since for x = 2, y = 4, and
z = 6, we have

d(2, 6) > d(2, 4) + d(4, 6).

Hence, the triangle inequality for a metric does not hold.

Definition 3 ([46]) Let X be a b-metric space and {xn} a sequence in X. We say that
1. {xn} is b-convergent to x ∈ X if d(xn, x) → 0 as n → ∞.
2. {xn} is a b-Cauchy sequence if d(xn, xm) → 0 as n, m → ∞.
3. (X, d) is b-complete if every b-Cauchy sequence in X is b-convergent.

Definition 4 ([47]) Let (X, d) be a b-metric space with the coefficient s ≥ 1 and let T : X →
X be a given mapping. We say that T is b-continuous at x0 ∈ X if and only if for every
sequence xn ∈ X such that xn → x0 as n → ∞, we have Txn → Tx0 as n → ∞. If T is
b-continuous at each point x ∈ X, then we say that T is b-continuous on X.

In general, a b-metric is not necessarily continuous.

Example 2 ([48]) Let X = N∪ {∞}.
Define a mapping d : X × X →R

+ as follows:

d(m, n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if m = n,

| 1
m – 1

n | if one of m and n is even and the other even or ∞,

5 if one of m and n is odd and the other odd or ∞,

2 otherwise.

Observe that d(m, p) ≤ 3
2 [d(m, n) + d(n, p)] for all m, n, p ∈ X.

Then (X, d) is a b-metric space with s = 3
2 .
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If we choose xn = 2n for each n ∈N, then

d(xn,∞) = d(2n,∞) =
1

2n
→ 0 as n → ∞,

that is, xn → ∞ as n → ∞.
But limn→∞ d(xn, 1) = 2 �= 5 = d(∞, 1). Hence, d is not continuous.

The following are definitions of α-orbital admissible and triangular α-orbital admissible
mappings.

Definition 5 ([49]) Let X be a nonempty set and α : X × X → R
+ a function. A map-

ping T : X → X is said to be α-orbital admissible if, for all x ∈ X, α(x, Tx) ≥ 1 implies
α(Tx, T2x) ≥ 1.

Definition 6 ([49]) Let X be a nonempty set, T : X → X, and α : X ×X →R
+. We say that

T is triangular α-orbital admissible if:
(i) T is α-orbital admissible;

(ii) for all x, y ∈ X , α(x, y) ≥ 1 and α(y, Ty) ≥ 1 imply that α(x, Ty) ≥ 1.

In 2020, Karapinar et al. [43] introduced the class of hybrid contraction mappings of
type I and II and studied fixed point results for such mappings.

Definition 7 ([43]) Let T be a self-mapping on a metric space (X, d) and ζ ∈ Zw. Suppose
that p : X × X → R

+ is a function that satisfies only (P1p : M). Then T is called a hybrid
contraction of type I if the following conditions are fulfilled:

(a) For any ε > 0, there exists δ(ε) > 0 such that x �= y and p(x, y) < ε + δ(ε) imply
d(Tx, Ty) ≤ ε;

(b) x �= y and p(x, y) > 0 imply ζ (α(x, y)d(Tx, Ty), p(x, y)) ≥ 0.

Let a mapping N : X × X →R
+ be defined as follows:

N(x, y) = max

{
d(y, Ty)

1 + d(x, Tx)
1 + d(x, y)

, d(x, y)
}

,

where T is a self-mapping defined on a metric space (X, d). We notice that, for any x, y ∈ X
with x = y, we have 0 = d(Tx, Ty) ≤ N(x, y). Moreover, if x �= y, then N(x, y) > 0.

Definition 8 ([43]) Let T be a self-mapping on a metric space (X, d) and ζ ∈ Zw. Suppose
that p : X ×X →R

+ is a function that satisfies (P1p : N) and (P2p : c), for all c ∈ [0, 1). Then
T is called a hybrid contraction of type II if the following conditions are satisfied:

(a) For any ε > 0 there exists δ(ε) > 0 such that x �= y and p(x, y) < ε + δ(ε) imply
d(Tx, Ty) ≤ ε;

(b) x �= y and p(x, y) > 0 imply ζ (α(x, y)d(Tx, Ty), p(x, y)) ≥ 0.

Theorem 2 ([43]) Let (X, d) be a complete metric space and T : X → X be a hybrid con-
traction of type I. Assume that the following conditions are satisfied:

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
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(iii) T is continuous.
Then T has a fixed point u. Moreover, {Tnx} converges to u for all x ∈ X.

Theorem 3 ([43]) Let (X, d) be a complete metric space and T : X × X be a hybrid con-
traction of type II. Assume that the following conditions are fulfilled:

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) either T is continuous;
(iv) or T2 is continuous and α(u, Tu) ≥ 1;
(v) or (X, d) is regular.

Then T has a fixed point u. Moreover, {Tnx} converges to u for all x ∈ X.

3 Results
In this section, first we introduce generalized (α,φ)-Meir–Keeler hybrid contractive map-
ping of type I in the setting of b-metric spaces and prove fixed point results for such map-
pings.

Note In this section, we denote the class of mappings Ψ by

Ψ =
{
φ : R+ →R

+ : φ is continuous, monotone nondecreasing,φ(t) = 0 iff t = 0
}

.

Let (X, d) be a b-metric space with s ≥ 1 and T : X → X be a self-mapping. We define a
mapping Ms : X × X →R

+ by

Ms(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)
2s

}
.

Let also p : X × X → R
+ be a mapping. The following conditions are used in this section:

(P1
p : Ms) x �= y and d(x, Tx) ≤ d(x, y) imply p(x, y) ≤ Ms(x, y);

(P2
p : sc) xn �= y, limn→∞ d(xn, y) = 0 and limn→∞ d(xn, Txn) = 0 imply lim supn→∞(sd(xn,

y)) ≤ cd(y, Ty), where c ∈ [0, 1).

Definition 9 Let (X, d) be a b-metric space with s ≥ 1, T : X → X, α : X × X → R
+, p :

X × X → R
+ satisfy (P1

p : Ms), and φ ∈ Ψ . Then the mapping T is said to be a generalized
(α,φ)-Meir–Keeler hybrid contractive mapping of type I if it satisfies, for all x, y ∈ X, the
following conditions:

(i) For any ε > 0, there exists δ(ε) > 0 such that x �= y and p(x, y) < ε + δ(ε) imply
d(Tx, Ty) ≤ ε

s ;
(ii) x �= y and p(x, y) > 0 imply ζ (α(x, y)φ(d(Tx, Ty)),φ(p(x, y))) ≥ 0.

Remark 1 If T is a generalized (α,φ)-Meir–Keeler hybrid contractive mapping of type I,
then

α(x, y)φ
(
d(Tx, Ty)

)
< φ

(
p(x, y)

) ≤ φ
(
Ms(x, y)

)
. (1)

Indeed, we have d(x, y) > 0 since x �= y. If p(x, y) = 0, from (ii), we have φ(d(Tx, Ty)) < ε for
any ε > 0. But ε > 0 is arbitrary, thus we obtain Tx = Ty. In this case, α(x, y)φ(d(Tx, Ty)) =
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0 ≤ φ(p(x, y)). Otherwise, p(x, y) > 0, and if Tx �= Ty, then d(Tx, Ty) > 0. If α(x, y) = 0, then
(1) is satisfied. On the other hand, from (ζ2) and Definition 9(ii), we get

0 ≤ ζ
(
α(x, y)φ

(
d(Tx, Ty)

)
,φ

(
p(x, y)

))
< φ

(
p(x, y)

))
– α(x, y)φ

(
d(Tx, Ty)

)
,

so (1) holds.

Now, we give our first main result as follows:

Theorem 4 Let (X, d) be a complete b-metric space with s ≥ 1, T : X → X, α : X ×X →R
+

be mappings, and φ ∈ Ψ . Suppose the following conditions hold:
(i) T is generalized (α,φ)-Meir–Keeler hybrid contractive mapping of type I;

(ii) T is a triangular α-orbital admissible mapping;
(iii) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iv) T is b-continuous.

Then T has a fixed point z. Moreover, {Tnx} converges to z for all x ∈ X.

Proof By (iii) above, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. We construct an iterative
sequence {xn} in X by xn = Txn–1 for n ∈ N. Suppose first that xn0 = xn0+1 for some n0 ∈N.
Since Txn0 = xn0+1 = xn0 , the point xn0 is a fixed point of T and this completes the proof.
So from now on, we suppose that xn �= xn+1 for all n ∈ N ∪ {0}. Since T is triangular α-
orbital admissible, α(x0, Tx0) = α(x0, x1) ≥ 1 ⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1 ⇒ α(Tx1, Tx2) =
α(x2, x3) ≥ 1. Continuing in this manner, we get

α(xn, xn+1) ≥ 1 for all n ≥ 0. (2)

Again, by using the assumption that T is triangular α-orbital admissible, for all n ∈ N ∪
{0}, (2) yields that α(xn, xn+1) ≥ 1 and α(xn+1, xn+2) ≥ 1 ⇒ α(xn, xn+1) ≥ 1. Recursively, we
conclude that α(xn, xn+j) ≥ 1 for all n, j ∈ N. In what follows we prove that the sequence
{d(xn, xn+1)} is monotone decreasing. Taking x = xn and y = xn+1 in (P1

p : Ms), we get

0 < d(xn, xn+1) = d(xn, Txn) ≤ d(xn, xn+1),

which implies

p(xn, xn+1) ≤ Ms(xn, xn+1),

where

Ms(xn, xn+1) = max

{
d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn, Txn+1) + d(xn+1, Txn)
2s

}

= max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)
2s

}

= max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2)
2s

}
,
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and, taking the b-triangle inequality into account, we observe that

d(xn, xn+2)
2s

≤ sd(xn, xn+1) + sd(xn+1, xn+2)
2s

=
d(xn, xn+1) + d(xn+1, xn+2)

2

≤ max
{

d(xn, xn+1), d(xn+1, xn+2)
}

,

which gives

Ms(xn, xn+1) = max
{

d(xn, xn+1), d(xn+1, xn+2)
}

.

By Definition 9(ii), we get that

0 ≤ ζ
(
α(xn, xn+1)φ

(
d(Txn, Txn+1)

)
,φ

(
P(xn, xn+1)

))
< φ

(
P(xn, xn+1)

)
– α(xn, xn+1)φ

(
d(Txn, Txn+1)

)
,

which is equivalent to

φ
(
d(xn+1, xn+2)

)
= φ

(
d(Txn, Txn+1)

)
≤ α(xn, xn+1)φ

(
d(Txn, Txn+1)

)
< φ

(
p(xn, xn+1)

)
≤ φ

(
Ms(xn, xn+1)

)
.

(3)

If Ms(xn, xn+1) = d(xn+1, xn+2), then (3) yields a contradiction. Thus, we have

Ms(xn, xn+1) = d(xn, xn+1). (4)

Moreover, from (3), we get

φ
(
d(xn+1, xn+2)

)
< φ

(
d(xn, xn+1)

)
,

which implies, using the monotonicity of φ,

d(xn+1, xn+2) < d(xn, xn+1) for all n ∈N∪ {0},

that is, {d(xn, xn+1)} is a monotone decreasing sequence of nonnegative real numbers.
Thus, there is some l ≥ 0 such that limn→∞ d(xn, xn+1) = l. We need to show l = 0. Sup-
pose, on the contrary, that l > 0 and set 0 < ε = l. We also note that

ε = l < d(xn, xn+1) for all n ∈N∪ {0}. (5)

On the other hand, from (3) and (4), we have

p(xn, xn+1) ≤ d(xn, xn+1) < ε + δ(ε)
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for n sufficiently large. So, applying Definition 9(i), we have

d(Txn, Txn+1) ≤ ε

s
. (6)

Combining (5) together with (6), we obtain

ε < d(xn+1, xn+2) = d(Txn, Txn+1) ≤ ε

s
,

which is a contradiction. We conclude that ε = 0, that is,

lim
n→∞ d(xn, xn+1) = 0. (7)

Now, we show that {xn} is a b-Cauchy sequence. Let ε1 > 0 be fixed. From (7), we can
choose k ∈N large enough such that

d(xk , xk+1) <
δ1

2s
, (8)

for some δ1 > 0. Without loss of generality, we assume that δ1 = δ1(ε1) < ε1. By induction,
we prove that

d(xk , xk+m) < ε1 +
δ1

2
for all k, m ∈N∪ {0}. (9)

We already have (9) from (8), for m = 1. Suppose that (9) is satisfied for some m = j. Now,
we show that (9) holds for m = j + 1. On account of (8) and (9), we first observe that

d(xk , xk+j+1) + d(xk+j, xk+1)
2s

≤ sd(xk , xk+j) + sd(xk+j, xk+j+1) + sd(xk+j, xk) + sd(xk , xk+1)
2s

=
d(xk , xk+j) + d(xk+j, xk+j+1) + d(xk+j, xk) + d(xk , xk+1)

2

<
1
2

[
2ε1 + δ1 +

δ1

s

]

≤ 1
2

[2ε1 + 2δ1] = ε1 + δ1.

Thus, we have

Ms(xk , xk+j)

= max

{
d(xk , xk+j), d(xk , Txk), d(xk+j, Txk+j),

d(xk , Txk+j) + d(xk+j, Txk)
2s

}

= max

{
d(xk , xk+j), d(xk , xk+1), d(xk+j, xk+j+1),

d(xk , xk+j+1) + d(xk+j, xk+1)
2s

}

< max

{
ε1 +

δ1

2
,
δ1

2s
, ε1 + δ1

}

= ε1 + δ1.
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From the above inequality, we have

p(xk , xk+j) ≤ Ms(xk , xk+j) = d(xk , xk+j) < ε1 + δ1,

and, by Definition 9(i), we get

d(xk+1, xk+j+1) = d(Txk , Txk+j) ≤ ε1

s
. (10)

Now, using the b-triangle inequality, as well as (8) and (10), we have

d(xk , xk+j+1) ≤ sd(xk , xk+1) + sd(xk+1, xk+j+1)

= sd(xk , xk+1) + sd(Txk , Txk+j)

<
δ1

2
+ ε1.

So, (9) holds for m = j + 1. Therefore,

d(xk , xk+m) < ε1 for all k, m ∈N∪ {0}.

In other words, for m > n, we have limn,m→∞ d(xn, xm) = 0 and hence the sequence {xn} is
a b-Cauchy sequence. Since, (X, d) is a complete b-metric space, there exists u ∈ X such
that xn → u as n → ∞. By b-continuity of T , we have

u = lim
n→∞ xn+1 = lim

n→∞ Txn = Tu,

that is, u is a fixed point of T . �

Now, replacing continuity of T by continuity of T2 in Theorem 4, we prove the following
fixed point result.

Theorem 5 Let (X, d) be a complete b-metric space with s ≥ 1 and let T : X → X be a
generalized (α,φ)-Meir–Keeler hybrid contractive mapping of type I satisfying the following
conditions:

(i) T is a triangular α-orbital admissible mapping;
(ii) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T2 is continuous.
Then {Tnx} is converges to z for all x ∈ X. Moreover, for α(z, Tz) ≥ 1, z is a fixed point of T ,
and T is discontinuous at z if and only if limx→z Ms(x, z) �= 0.

Proof Following the proof of Theorem 4, we see that the sequence {xn} in X defined by xn =
Txn–1 for all n ∈N is convergent to z ∈ X and α(xn, xn+1) ≥ 1 for all n ∈N∪ {0}. Regarding
the fact that any subsequence of {xn} converges to z, we get limn→∞ xn+1 = limn→∞ Txn = z
and limn→∞ xn+2 = limn→∞ T2xn = z. On the other hand, due to the continuity of T2,

T2z = lim
n→∞ T2xn = z.
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We claim that Tz = z. Suppose, on the contrary, that Tz �= z and p(z, Tz) > 0. Then we have

p(z, Tz) ≤ Ms(z, Tz)

= max

{
d(z, Tz), d(z, Tz), d

(
Tz, T2z

)
,

d(z, T2z) + d(Tz, Tz)
2s

}

= d(z, Tz).

Thus, using (1) together with the hypothesis α(z, Tz) ≥ 1, we obtain

0 ≤ ζ
(
α(z, Tz)φ

(
d
(
Tz, T2z

))
,φ

(
P(z, Tz)

))
,

and also

0 < φ
(
d(Tz, z)

)
= φ

(
d
(
Tz, T2z

))
≤ α(z, Tz)φ

(
d
(
Tz, T2z

))
< φ

(
P(z, Tz)

)
≤ φ

(
Ms(z, Tz)

)
= φ

(
d(z, Tz)

)
,

which is a contradiction. So, z = Tz, that is, z is a fixed point of T . �

Definition 10 A b-metric space (X, d) is called regular if for any sequence {xn} in X with
limn→∞ d(xn, z) = 0 and α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}, one has α(xn, z) ≥ 1 for all n ∈
N∪ {0}.

In the following, we prove the following fixed point theorem, without continuity as-
sumption of T and T2.

Theorem 6 Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X be a gener-
alized (α,φ)-Meir–Keeler hybrid contractive mapping of type I. Suppose that (P2

p : sc) and
the following conditions hold:

(i) T is a triangular α-orbital admissible mapping;
(ii) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) (X, d) is regular.
Then {Tnx} is converges to z for all x ∈ X. Moreover, z is a fixed point of T .

Proof Following the proof of Theorem 4, we see that the sequence {xn} in X defined by
xn = Txn–1 for all n ∈ N is convergent to z ∈ X and α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}. We
notice also that all adjacent terms in {xn} are distinct. Moreover, we note Tnx �= z for all
n ∈ N ∪ {0}. Regarding the limits limn→∞ d(xn, z) = 0 and limn→∞ d(xn, xn+1) = 0, we drive
from (P2

p : sc) that

s lim sup
n→∞

p(xn, z) ≤ cd(z, Tz) for any c ∈ [0, 1). (11)
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So, by assumption (iii), we get α(xn, z) ≥ 1. Now, we prove that z is a fixed point of T .
Suppose, on the contrary, that Tz �= z. Taking x = xn and y = z in Definition 9(ii), we obtain
that

0 ≤ ζ
(
α(xn, z)φ

(
d(Txn, Tz)

)
,φ

(
p(xn, z)

))
< φ

(
p(xn, z)

)
– α(xn, z)φ

(
d(Txn, Tz)

)
,

which is equivalent to

φ
(
d(xn+1, Tz)

)
= φ

(
d(Txn, Tz)

)
≤ α(xn, z)φ

(
d(Txn, Tz)

)
< φ

(
p(xn, z)

)
.

(12)

Since φ is monotone, (12) yields

d(xn+1, Tz) < p(xn, z). (13)

Applying the b-triangle inequality and using (13), we have

d(z, Tz) ≤ sd(z, xn+1) + sd(xn+1, Tz)

< sd(z, xn+1) + sp(xn, z).
(14)

Taking the limit as n → ∞ in (14) and using (P2
p : sc), we obtain that

d(z, Tz) < s lim sup
n→∞

p(xn, z) ≤ cd(z, Tz) for any c ∈ [0, 1),

which is a contradiction. Therefore, z is a fixed point of T . �

For the uniqueness of fixed point, we need the following additional condition.

Condition (U) For all x, y ∈ Fix(T), we have α(x, y) ≥ 1, where Fix(T) denotes the set of
all fixed points of T .

Theorem 7 Adding Condition (U) to the hypotheses of Theorem 4 (resp. Theorems 5 and
6), we prove the uniqueness of fixed point of T .

Proof We argue by contradiction, that is, suppose there exist z, w ∈ X such that z = Tz and
w = Tw with z �= w. By Condition (U), we have α(z, w) ≥ 1. We notice first that the case
p(z, w) = 0 is impossible since we have Tz = Tw and

0 < d(z, w) = d(Tz, Tw) = 0,

which is a contradiction. Thus, we get that p(z, w) > 0. Since

0 = d(z, Tz) ≤ d(z, w),
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by (P1
p : Ms), we have

p(z, w) ≤ Ms(z, w),

where

Ms(z, w) = max

{
d(z, w), d(z, Tz), d(w, Tw),

d(z, Tw) + d(Tz, w)
2s

}
= d(z, w).

Using Definition 9(ii), we get

0 ≤ ζ
(
α(z, w)φ

(
d(Tz, Tw)

)
,φ

(
p(z, w)

))
< φ

(
p(z, w)

)
– α(z, w)φ

(
d(Tz, Tw)

)
,

which imply

0 < φ
(
d(z, w)

)
= φ

(
d(Tz, Tw)

)
≤ α(z, w)φ

(
d(Tz, Tw)

)
< φ

(
p(z, w)

)
≤ φ

(
d(z, w)

)
,

which is a contradiction. Hence, d(z, w) = 0, that is, the fixed point of T is unique. �

In the following, we introduce generalized (α,φ)-Meir–Keeler hybrid contractive map-
ping of type II and study fixed point results for such mappings.

Definition 11 Let (X, d) be a b-metric space with s ≥ 1, T : X → X, α : X × X → R
+,

ζ ∈ Zw, φ ∈ Ψ , and suppose p : X ×X →R
+ is a function that satisfies (P1

p : Ns) and (P2
p : sc).

The mapping T is said to be a generalized (α,φ)-Meir–Keeler hybrid contractive mapping
of type II if it satisfies for all x, y ∈ X the following conditions:

(a) For any ε > 0, there exists δ(ε) > 0 such that x �= y and p(x, y) < ε + δ(ε) imply
d(Tx, Ty) ≤ ε

s ;
(b) x �= y and p(x, y) > 0 imply

ζ
(
α(x, y)φ

(
d(Tx, Ty)

)
,φ

(
p(x, y)

)) ≥ 0. (15)

We define a mapping Ns : X × X →R
+ by

Ns(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(y, Ty)[1 + d(x, Tx)]
1 + d(x, y)

,
d(x, Tx)[1 + d(y, Ty)]

1 + d(Tx, Ty)

}
.

We note that, for any x, y ∈ X with x = y, we have 0 = d(Tx, Ty) ≤ Ns(x, y). Moreover, if
x �= y, then Ns(x, y) > 0.

Now, we state and prove the following fixed point theorem.



Abduletif Mamud and Koyas Tola Fixed Point Theory Algorithms Sci Eng          (2024) 2024:4 Page 13 of 20

Theorem 8 Let (X, d) be a complete b-metric space with s ≥ 1 and T : X → X be a gen-
eralized (α,φ)-Meir–Keeler hybrid contractive mapping of type II satisfying the following
conditions:

(i) T is a triangular α-orbital admissible mapping;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) either T is continuous;
(iv) or T2 is continuous and α(z, Tz) ≥ 1;
(v) or (X, d) is regular.

Then T has a fixed point z. Moreover, {Tnx} is convergent to z for all x ∈ X.

Proof As in the proof of Theorem 4, we construct a recursive sequence {xn} as follows:

xn = Txn–1 for all n ∈N.

One can conclude that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}, due to conditions (i) and (ii).
Throughout the proof, we assume xn �= xn+1 for all n ∈N∪ {0}. Indeed, as it was discussed
in the proof of Theorem 4, the other case is trivial and is excluded. Now, by letting x = xn

and y = xn+1 in (P1
p : Ns), we have

d(xn, Txn) ≤ d(xn, xn+1),

which implies

p(xn, xn+1) ≤ Ns(xn, xn+1),

where

Ns(xn, xn+1) = max

{
d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn+1, Txn+1)[1 + d(xn, Txn)]
1 + d(xn, xn+1)

,
d(xn, Txn)[1 + d(xn+1, Txn+1)]

1 + d(Txn, Txn+1)

}

= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn+1, xn+2)[1 + d(xn, xn+1)]
1 + d(xn, xn+1)

,
d(xn, xn+1)[1 + d(xn+1, xn+2)]

1 + d(xn+1, xn+2)

}

= max
{

d(xn, xn+1), d(xn+1, xn+2)
}

.

By Definition 11(b), we have

0 ≤ ζ
(
α(xn, xn+1)φ

(
d(Txn, Txn+1)

)
,φ

(
p(xn, xn+1)

))
.
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Consequently, the above inequality yields

φ(d(xn+1, xn+2) = φ
(
d(Txn, Txn+1)

)
≤ α(xn, xn+1)φ

(
d(Txn, Txn+1)

)
< φ

(
p(xn, xn+1)

)
≤ φ

(
Ns(xn, xn+1)

)
,

(16)

where

Ns(xn, xn+1) = max
{

d(xn, xn+1), d(xn+1, xn+2)
}

= d(xn, xn+1). (17)

Thus, from (16), (17) and the monotonicity of φ, for all n ∈N∪ {0}, we have

d(xn+1, xn+2) < d(xn, xn+1),

that is, {d(xn, xn+1)} is nonincreasing sequence of nonnegative real numbers. Conse-
quently, there exists a real number r ≥ 0 such that d(xn, xn+1) → r as n → ∞. Suppose
that r = ε > 0. First, we note that r = ε < d(xn, xn+1) for all n ∈ N ∪ {0}. On the other hand,
from (16), there exists δ > 0 such that

p(xn, xn+1) ≤ Ns(xn, xn+1)

= d(xn, xn+1)

< ε + δ(ε),

for n sufficiently large. Keeping the observations above, Definition 11(a) yields that

d(Txn, Txn+1) ≤ ε

s
.

Thus, we have

ε < d(xn+1, xn+2) = d(Txn, Txn+1) ≤ ε

s
,

which is a contradiction. So, we derive that ε = 0, that is, limn→∞ d(xn, xn+1) = 0. In what
follows, we show that the sequence {xn} is b-Cauchy. For this aim, let m ∈ N be large
enough to satisfy

d(xm, xm+1) <
δ1

s
.

Now, we show by induction that

d(xm, xm+k) < ε1 + δ1 for all k ∈N. (18)

Without loss of generality, we assume that δ1 = δ1(ε) < ε. We have already proved the claim
for k = 1. Now, we consider the following two cases:
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Case (i). If d(xm+k , xm+k+1) ≤ d(xm, xm+k), then we get

d(xm+k , xm+k+1)
1 + d(xm, xm+k)

≤ d(xm+k , xm+k+1)

and

d(xm+k , xm+k+1)d(xm, xm+1)
1 + d(xm, xm+k)

< d(xm, xm+1).

Hence, we have

p(xm, xm+k) ≤ Ns(xm, xm+k)

= max

{
d(xm, xm+k), d(xm, Txm), d(xm+k , Txm+k),

d(xm+k , Txm+k)[1 + d(xm, Txm)]
1 + d(xm, xm+k)

,
d(xm, Txm)[1 + d(xm+k , Txm+k)]

1 + d(Txm, Txm+k)

}

= max

{
d(xm, xm+k), d(xm, xm+1), d(xm+k , xm+k+1),

d(xm+k , xm+k+1)[1 + d(xm, xm+1)]
1 + d(xm, xm+k)

,
d(xm, xm+1)[1 + d(xm+k , xm+k+1)]

1 + d(xm+1, xm+k+1)

}

< max{ε1 + δ1, 2δ1, δ1} = ε1 + δ1,

and so it follows from Definition 11(a) that

d(Txm, Txm+k) ≤ ε1

s
.

Thus, by the b-triangle inequality, we have

d(xm, xm+k+1) ≤ sd(xm, xm+1) + sd(xm+1, xm+k+1)

= sd(xm, xm+1) + sd(Txm, Txm+k)

< ε1 + δ1.

Case (ii). If d(xm+k , xm+k+1) > d(xm, xm+k), then we get

d(xm, xm+k+1) ≤ sd(xm, xm+k) + sd(xm+k , xm+k+1)

< 2sd(xm+k , xm+k+1)

< 2s
δ1

s

= 2δ1 < ε1 + δ1.

Thus, by induction, (18) holds for every k ∈N. Since ε1 > 0 is arbitrary, we get

lim sup
k→∞

d(xm, xm+k) = 0,



Abduletif Mamud and Koyas Tola Fixed Point Theory Algorithms Sci Eng          (2024) 2024:4 Page 16 of 20

which implies that {xn} is a b-Cauchy sequence in a complete b-metric space (X, d). Hence,
{xn} b-converges to some z ∈ X.

Next, we show that z is a fixed point of T . If T is continuous, then we have

z = lim
n→∞ xn+1 = lim

n→∞ Txn = Tz,

that is, z is a fixed point of T .
If T2 is continuous, since xn → z, we get that any subsequence of {xn} converges to the

same limit point z, so

lim
n→∞ xn+1 = lim

n→∞ Txn = z and lim
n→∞ xn+2 = lim

n→∞ T2xn = z.

On the other hand, due to the continuity of T2,

T2z = lim
n→∞ T2xn = z.

We claim that Tz = z. To the contrary, if Tz �= z, then we have p(z, Tz) > 0 and

p(z, Tz) ≤ Ns(z, Tz)

= max

{
d(z, Tz), d(z, Tz), d

(
Tz, T2z

)
,

d(Tz, Tz)[1 + d(z, Tz)]
1 + d(z, Tz)

,
d(z, Tz)[1 + d(Tz, T2z)]

1 + d(Tz, T2z)

}

= max

{
d(z, Tz), d(z, Tz), d

(
Tz, T2z

)
,

d(Tz, T2z)[1 + d(z, Tz)]
1 + d(z, Tz)

,
d(z, Tz)[1 + d(Tz, T2z)]

1 + d(Tz, T2z)

}

= d(z, Tz).

Therefore, together with the supplementary hypothesis α(z, Tz) ≥ 1, we have

0 ≤ ζ
(
α(z, Tz)φ

(
d
(
Tz, T2z

))
,φ

(
p(z, Tz)

))
< φ

(
p(z, Tz)

)
– α(z, Tz)φ

(
d
(
Tz, T2z

))
.

From the above inequality, we obtain

0 < φ
(
d(Tz, z)

)
= φ

(
d
(
Tz, T2z

))
≤ α(z, Tz)φ

(
d
(
Tz, T2z

))
< φ

(
p(z, Tz)

)
≤ φ

(
Ns(z, Tz)

)
= φ

(
d(z, Tz)

)
,
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which is a contradiction. Hence, z is a fixed point of T .
If X is regular, we deduce that d(z, Tz) = 0, using the same arguments as in the proof of

Theorem 6. That is, z is a fixed point of T . �

The uniqueness of fixed point of T can be deduced as in Theorem 7.
Now, we give an example to illustrate Theorem 8.

Example 3 Let X = [0, 4] and d : X ×X →R
+ be defined by d(x, y) = |x – y|2 for all x, y ∈ X.

Then (X, d) is a complete b-metric space with s = 2 which is not a metric space. Let T :
X → X be defined by

T(x) =

⎧⎨
⎩

1 if x ∈ [0, 2),
x
2 if x ∈ [2, 4].

Also, we define α : X × X →R
+, q : X × X →R

+ and φ : R+ →R
+ as follows:

α(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

2 if x, y ∈ [0, 2),

1 if x, y ∈ [2, 4],

0 otherwise,

q(x, y) = max{d(x, y), d(x,Tx)d(y,Ty)
1+d(x,y) , d(x,Tx)d(y,Ty)

1+d(Tx,Ty) } and φ(t) = t2

2 . First, we note that q satisfies
condition (P1

q : Ns) and q(x, y) > 0 for all x �= y. Since, for x = 0 we have T0 = 1 and α(0, T0) =
α(0, 1) = 2 > 1, assumption (ii) of Theorem 8 is satisfied. Also, it is easy to see that T is
triangular α-orbital admissible. Let ζ ∈ Zw be is given by ζ (t, s) = 2

3 s – t. Now, we consider
the following cases:

Case 1. For x, y ∈ [0, 2), x �= y, we have d(Tx, Ty) = 0, so

ζ
(
α(x, y)φ

(
d(Tx, Ty)

)
,φ

(
q(x, y)

))
=

2φ(q(x, y))
3

=
(q(x, y))2

3
> 0.

Case 2. For x, y ∈ [2, 4], x �= y, we have

d(Tx, Ty) =
|x – y|

2
, q(x, y) = max

{
|x – y|,

x
2 . y

2
1 + |x – y| ,

x
2 . y

2
1 + | x–y

2 |
}

,

so

ζ
(
α(x, y)φ

(
d(Tx, Ty)

)
,φ

(
q(x, y)

))
=

2φ(q(x, y))
3

– φ

( |x – y|
2

)

=
(q(x, y))2

3
–

(|x – y|)2

8
≥ 0.

Case 3. For x ∈ [0, 2) and y ∈ [2, 4], we have α(x, y) = 0 and

ζ
(
α(x, y)φ

(
d(Tx, Ty)

)
,φ

(
q(x, y)

))
=

2φ(q(x, y))
3

=
(q(x, y))2

3
> 0.

Thus, due to the cases considered above, T satisfies all the conditions of Theorem 8 and
has a unique fixed point x = 1.
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Now, we give some corollaries to our main findings.

Corollary 1 Let (X, d) be a complete b-metric space with s ≥ 1 and let T : X → X be a
(α,φ)-Meir–Keeler hybrid contractive mapping of type I with p(x, y) = d(x, y). Assume that
the following conditions are satisfied:

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) either T is continuous or T2 is continuous and α(u, Tu) ≥ 1 or (X, d) is regular.
Then T has a fixed point u. Moreover, {Tnx} converges to u for all x ∈ X.

Remark 2 Under the conditions of Corollary 1, since x �= y implies d(x, y) > 0, it is obvious
that (b) from Definition 9 is equivalent to the following:

(b′) d(x, y) > 0 implies ζ (α(x, y)φ(d(Tx, Ty)),φ(d(x, y))) ≥ 0.

Proof It is clear that d satisfies the conditions (P1
d : Ms), respectively (P2

d : 0), and so all the
assumptions of Theorems 4, 5, and 6 are also satisfied. Thus, T has a fixed point. �

Corollary 2 Let (X, d) be a complete b-metric space with s ≥ 1, and let T : X → X be a
(α,φ)-Meir–Keeler hybrid contractive mapping of type I. Let ρ : X × X →R

+ be defined by

ρ(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty),

where a1, a2, a3 ∈ [0, 1
s ), a1 + a2 ≤ 1

2s and a3 ≤ 1
2s . Assume also that:

(i) T is triangular α-orbital admissible;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) either T is continuous or T2 is continuous and α(u, Tu) ≥ 1 or (X, d) is regular.
Then T has a fixed point u. Moreover, {Tnx} converges to u for all x ∈ X.

Proof Let x, y ∈ X be such that x �= y and d(x, Tx) ≤ d(x, y). Then,

ρ(x, y) = a1d(x, y) + a2d(x, Tx) + a3d(y, Ty)

≤ (a1 + a2)d(x, y) + a3d(y, Ty)

≤ d(x, y) + d(y, Ty)
2s

≤ Ms(x, y),

which shows that (P1
ρ : Ms) holds. On the other hand, if xn �= y, then

lim
n→∞ d(xn, y) = 0 and lim

n→∞ d(xn, xn+1) = 0

hold, and then we have

lim sup
n→∞

ρ(xn, y) = lim sup
n→∞

[
a1d(xn, y) + a2d(xn, xn+1) + a3d(y, Ty)

]
= a3d(y, Ty).

Thus, (P2
ρ : a3) holds. Hence, T has a fixed point. �
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4 Conclusion
In 2020, Karapinar et al. [43] introduced a generalized Meir–Keeler contraction via a sim-
ulation function and studied fixed point results for the mappings introduced in the setting
of metric spaces. In this work, we introduced generalized (α,φ)-Meir–Keeler hybrid con-
tractive mappings of type I and II in the setting of b-metric spaces and proved the existence
and uniqueness of fixed points for such mappings. Our results extend and generalize the
results of Karapinar et al. [43] and many other related fixed point results in the existing
literature. Finally, we have also supported the main result of this work by an illustrative
example.
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26. Jovanović, M., Kadelburg, Z., Radenović, S.: Common fixed point results in metric-type spaces. Fixed Point Theory

Appl. 2010, 978121 (2010)
27. Khamsi, M.A., Hussain, N.: KKM mappings in metric type spaces. Nonlinear Anal. 73, 3123–3129 (2010)
28. Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Berlin (2014)
29. Koleva, R., Zlatanov, B.: On fixed points for Chatterjea’s maps in b-metric spaces. Turk. J. Anal. Number Theory 4, 31–34

(2016)
30. Miculescu, R., Mihail, A.: A generalization of Matkowski’s fixed point theorem and Istratescu’s fixed point theorem

concerning convex contractions. J. Fixed Point Theory Appl. 19(2), 1525–1533 (2017)
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