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1 Introduction

Hutchinson [1] introduced the term iterated function system (IFS) and was extensively ex-
plored by Barnsley [2]. The IFS is an effective tool for generating fractals. The IFS is used
to construct various fractal interpolation functions. Hutchinson’s IFS theory has been ex-
tended in numerous aspects, for instance, to more general space, infinite IFS, and gener-
alized contractions. IFS based on condition ¢-function was constructed by Hata [3], and
Fernau [4] introduced the concept of infinite IFS.

In various forms of IFS, the existence of the attractor is fundamentally assured by the
fixed point theory. In wide areas of mathematics, for the existence of a solution, we gen-
erally look for a fixed point for an appropriate map. It is found that the fixed points are
indispensable in wide branches of mathematics. One of the most significant, useful, and
well-celebrated findings in the fixed point theory is the Banach fixed point theorem [5].
Extensive research has been done to extend the Banach fixed point theorem in various
aspects. One of the techniques used to extend the Banach fixed point theorem is gener-
alizing the underlying space. Chistyakov [6] defined and studied the concept of modular
metric space. Many researchers proved fixed point results by generalizing the modular
metric spaces. Some of the recent works can be found in [7-9].

In this paper, we define a generalization of modular metric space by relaxing the triangle
inequality, namely ¢-metric modular space. We also assume that ¢-metric modular takes
on real values, unlike metric modular. In the defined space, we study the ¢-o-Meir-Keeler
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contraction by invoking the concepts of Meir-Keeler [10] and explore its fixed point. Fur-
ther, we define the Hausdorff distance on the compact subsets of the ¢-metric modu-
lar space. Moreover, we consider the IFS consisting of ¢-«-Meir-Keeler contractions and
prove that the attractor exists uniquely.

1.1 Delineation

We note all the necessary preludes required throughout the study in Sect. 2. We define
the ¢-metric modular space and provide examples. We also show that a large class of ¢-
metric modular space can be generated from the given metric modular space. In Sect. 3,
we study the ¢-a-Meir Keeler contraction and prove our main result regarding fixed point.
To validate our result, we provide an example. In Sect. 4, we observe that, in general, ¢-
metric modular v need not be continuous on R, x X x A" and give an example to support
this. We define the Hausdorff distance between two non-empty compact subsets of X and
show that the defined Hausdorff distance is also a ¢ -metric modular. Moreover, we explore
some topological properties of ¢-metric modular space. In Sect. 5, we define an iterated
function system on a ¢-metric modular space and prove that the attractor exists uniquely.
Finally, Sect. 6 is dedicated to the conclusions of our findings and possible future works.

2 Preliminaries
The following notations are used in this paper:
+ X := non-empty set,

e« R, :=(0,00),

« R?:=[0,00),

d KJr :=[0,00],

« Ny := set of first N natural numbers,
« N*:=NU{0},

« Fix(g) := collection of all fixed points of g.
Here, v will denote a function from R, x X x X to R,. With the abuse of notation, we
will denote each function v: R, x X x X — R, as v, (x,9), VA € R, and x,y € X. We will
abbreviate the value of a function g at x as gx rather than g(x) for the purpose of our own
convenience.

The notion of metric modular on a non-empty set X' can be found in [6]. Consider the
following simple example:

Define v: R, x R x R — R, by

a2
Vi (%, y) = i )»y| , forx,yeRand A eR,.

Then, it is easy to verify that v is not a metric modular space. To be precise, Vx,y,z € R
and A, u € R,

VA+u(x7y) =< 2{VA(X,Z) + V;L(Z’y)}‘

Motivated by this example, we define ¢-metric modular on &', which is a generalization
of metric modular, by relaxing the triangle inequality as follows:

Definition 2.1 The function v is called a ¢-metric modular on a non-empty set X’ if
Va,b,c € X and A, i > 0 we have:
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l.a=b < v,(a,b)=0;

2. vy(a,b) =v,(b,a);

3. Vi@ ) < 90+ )@, ) + v, (e, )],
where ¢: R, — [1,00).

(X,v) is then called a ¢-metric modular space.

Remark 2.2 For our own convenience, we abbreviate ¢-metric modular as ¢-MM.

Next, we define a regular ¢-MM by having a weaker assumption on the first condition
of Definition 2.1 as follows:

Definition 2.3 The function v is called a regular ¢-MM if Va, b,c € X we have:
1. a=b < v,(a,b) =0 for some A > 0;
2. VA >0, vi(a,b) = v\(b,a);
3. VA, >0, viiu(a,b) <o + p)[vala, c) + vu(c, b)),
where ¢: R, — [1,00).
(X, v) is then called a regular ¢-MM space.

Example Consider v: R, x R xR — R, defined by

o0 ifA<1;

(I1+|cosA])a—b| ifr>1.

vi(a,b) =

The function v is a regular ¢-MM but not a ¢-MM.

Remark 2.4 1t is worth noting that compared to the class of metric modular spaces, the
class of ¢-MM spaces is significantly larger. Clearly, every metric modular is a ¢-MM on
X for p(A) =1,VA e R,.

A large class of ¢o-MM spaces can be generated from a metric modular space, as evident
from the following proposition:

Proposition 2.5 Let (X,v*) be a metric modular and definev: R, x X x X — R, by
vi(a,b) = p(M)V;(a, b),
where ¢: R, — [1,00) is an arbitrary function. Then, (X,v) is a o-MM space.

Proof Since v* is a metric modular, so Ya,b € X and A € R,, vs(a,b) > 0 and v,(a,b) =
0 < a=b. Also, vy(a,b) =v,(b,a). For a,b,c € X and A, u € R,, we have
VAHL(ﬂ’b) = (p()‘- + /'L)VL.H(“: b)
<o+ wW{(eM)vi@c) + (p(w)vi(c,b)}
=+ p)(va(a,c) + vi(c, b))

=+ w)(vi(a,c) +vi(c, b)).

Thus, v is a ¢-MM, and hence (X, v) is a ¢-MM space. O
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Example Consider v: R, x R x R — R,, where
vi(a,b) = (1+|cosh|)la—b| Va,beRandieR,.
Then, vis a ¢-MM with ¢(1) =1 + | cosA|.

At this stage, it would be worth introducing an example that is a ¢-Metric Modular
Space but fails to be a Metric Modular Space.

Example Consider v: R, x R x R — R,, where
vi(a,b) =exp(AM)la-b| Va,beRand 1 eR,.

Then, v is a ¢-MM with ¢(A) = exp(1). However, it fails to be a Metric Modular. To
be precise, triangular inequality fails here. For instance, v1,1(0,2) = 2exp(2) but v;(0,1) +
v1(1,2) = 2exp(1).

Definition 2.6 A sequence {4,} in a 9-MM space (X, v) is called
1. v-Cauchy, or simply Cauchy, if for a given € > 0, AN € N such that Vu,m > N and
A € R, we have v, (a,,a,,) < €.

2. v-convergent, or simply convergent to a € X, if v, (a,,a) - 0as n — oo VA € R,.

Definition 2.7 Let (X, v) be a ¢-MM space. Then,
1. X is v-complete, or simply complete, if every Cauchy sequence converges in X'.

2. U C X is compact if every sequence in U has a convergent subsequence.

Definition 2.8 A self map f on a ¢-MM space (X,v) is called v-continuous, or simply
continuous, if for every sequence {a,} in X converging to a, we get {f(a,)} is convergent

to f(a).

Definition 2.9 [11] Let a: X x X — [0,00) be a function. We say that a self-mapping
T: X — X is triangular «-admissible if

1. %,y € X, a(x,y) > 1 implies o (Tx, Ty) > 1.

2. x%,9,z€ X, a(x,z) > 1 and a(z,y) > 1 implies «(x,y) > 1.

Lemma 2.10 [11] Let f be a triangular o-admissible mapping. Assume that there exists
xo € X such that a(x, fxo) > 1. Define the sequence {x,} by x,, = f"x¢. Then,

a®p,x0) > 1 forallmyn e Nwithm < n.

3 Main result
We define the ¢-a-Meir-Keeler contraction on the ¢-MM space as follows:

Definition 3.1 Let o: X x X — R? and g: X — X be a self map on a p-MM space
(X,v). Then, g is called a ¢-a-Meir-Keeler contraction if for a given € > 0, 35 > 0 such that
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Va,be X and L e R,,
€ <vi(a,b)<pX)(e+8) = ala,b)v,(ga,gh)<e. (3.1)
Ifa(a,b) =1Va,b e X, then g is called a ¢-Meir-Keeler contraction.

Remark 3.2 For our own sake of convenience, we shall use ¢p-a-MK contraction for ¢-a-
Meir Keeler contraction and ¢-MK contraction for ¢-Meir-Keeler contraction.

Proposition 3.3 Letg: X — X be a p-a-MK contraction on a regular ¢-MM space (X, v)
with v, (x,y) < 00, Vx,y € X and ). € R,. Then, foreverya#be X, A € R, and a(a,b) > 1,

vy (ga, gb) < v;.(a,b).

Proof By regularity of v, VA € R, we have v, (a,b) >0, since a # b. For a given € > 0,35 >0
such that (3.1) holds. Choose € = v;(a,b). Then, € < v, (a,b) < p(1)(¢ + §), and hence by
(3.1) we get

vy (ga, gb) < ala, b)v,(ga,gb) < € =v,(a,b).
Thus, v, (ga, gb) < vi(a, b). O

Theorem 3.4 Let g: X — X be a self map on a complete regular ¢p-MM space (X,v). Let
a: X x X — R® be such that g is a:

1. p-a-MK contraction;

2. triangular a-admissible mapping.
Also, let vy (x,y) < 00, Vx,y € X and A € R,. If a(ag,gao) > 1 for some ag € X, then g has a
fixed point.

Proof Let ay € X with a(ag,gao) > 1. Consider the sequence {a,} in X defined by a, =
g"ap. Using Lemma 2.10, we get

Ol(ﬂm,ﬂn)il Vm,n e N,m < n.

Clearly a fixed point exists if for some k € N*, ay = ay,;.
Now let a,, # a,.1 Vn € N*. By regularity of (X, v), we have

Vil@ny Gni1) >0 Ve N¥,
By Proposition 3.3,

Vil@n, an1) < Via@n-1,an) < -+ <vi(ao,a1).
Define o, = vy (4, ans1) Vi € N*. Then, {o,} is a strictly decreasing sequence with o, > 0.
Clearly 0,, — o > 0 for some o € R. Let, if possible, o > 0, then 0 < 0 < 0, Vi € N*.

For € =0 >0, 38 > 0 such that (3.1) holds. Also, 3ny € N such that

€ =0 <0y, = Vk(ﬂnoy an0+1) < (P()»)(G + 8)
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Using (3.1), we have

Onp+1 = Vk(dn0+lrano+2)
< A(@ngs Ang+1)Vi(@ng 1) Ang+2)
= (@pgs Angs1) Vi (@lngr §ng+1)
<€

=0

which is a contradiction. Therefore, o = 0 and hence lim,,_, o, V3 (@, d,.1) = 0, YA > 0. Let
€ >0 be given and § < € be such that (3.1) holds. Since o = 0, AN € N such that

0, =vi(an,an1) <8, VYn>Nand A eR,. (3.2)
Claim: For arbitrary fixed m > N + 1

Vil@my i) <€ YIleN. (3.3)
For [ =1, (3.3) holds by using (3.2).

Let (3.3) hold for [ = p. Then, v, (a,, dm.p) < €.
Now for / = p + 1, we have

Vi (am—l’ ﬂm+p) =< (/7()") (V% (ﬂm—l; ﬂm) + V% (am: am+p))

<) +e).
If vi(@m-1,m+p) = €, then by (3.1), we have

vilam, ﬂm+p+1) < ala@m-1, dm+p)VA (@ms am+p+1)
= (ﬂm—h am+p)VA (gﬂm—l rgﬂm+p)

<E€E.
If vi(@m-1, map) < €, then
Vk(ﬂm,umﬂﬂl) = V)L(gﬂm—lrgamﬂg) = Vk(am—ly am+p) <E€E.

Thus, in any case, (3.3) holds. Hence {4,} is a v-cauchy sequence. By completeness of X,
da* € X such that v;(a,,a*) — 0as n — oo.

vi(ani1,8a") = vi(gan ga*) < vi(an1,a") >0 asn— oco.
Now,
va(a*,ga*) < p(2)(vi(a*, an) + vi(ani1,ga*)) > 0 asn— oo.

Therefore, vo(a*, ga*) = 0. By regularity of X', we have a* = ga*. O
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Remark 3.5 The above theorem ensures that the fixed point of the function exists. The
following result ensures the uniqueness.

Proposition 3.6 Let g: X — X be a self map on a complete regular ¢-MM space (X, v).
Leta: X x X — R? be such that g is a:

1. p-a-MK contraction;

2. triangular a-admissible mapping.
Also, let vy (x,y) <00, Vx,y € X and » e R,. If a(x,y) > 1, Vx,y € X, then g has a unique
fixed point.

Proof By Theorem 3.4, g has a fixed point. Let x; and x; be two fixed points of g. If x; # x5,
using Proposition 3.3, we get,

Vi (1, %2) = v3.(gx1,g%2) < Vi (%1, %2)
which is a contradiction. Thus, the fixed point of g is unique. O

Corollary 3.7 Let g: X — X be a ¢-MK contraction map on a complete regular o-MM
space (X,v) with v, (x,y) < 00, Vx,y € X and ) € R,. Then, the fixed point of g is unique.

Remark 3.8 1t is a special case of Theorem 3.4, where a(x1,x;) = 1, Vay, x5 € X.
Example Endow R with the ¢-MM defined by
Vi (x1,%7) = (1 + |cosk|)|x1 - %3], Vx4 €Rand A eR,.

Defineg: R —> Randa: R x R — R? by

0 ifae(-00,0);
gla)=14 ifaelo,1];
i ifa e (1,00)
and
1 ifa,be|0,1];
a(a,b) =

0 otherwise.

Clearly g is a triangular «-admissible mapping. Also, R is v-complete. Further, there
exists zg € R such that «(zg,gz0) > 1. Next we shall show that g is ¢-«-MK contraction.
Let € > 0 be given. Choose any § > 0 with § < €.
Let also € < vy(a,b) < p(A)(e +8).
If a or b ¢ [0, 1], then obviously «(a, b)v; (ga, gb) < €.
Let 0 <a,b < 1. Then by definition (g, b) = 1 and
a b

vy(ga,gb) = (1 + |c0s)»|)‘4 Z‘

= i((l +[cosil))la - bl
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< i(l +|cos A|)(e +8)

<E€.

Hence for any given € > 0, 3§ > 0 such that whenever € < v,(a,b) < ¢(A)(¢ + §), then
ala, b)v,(ga, gb) < €. Therefore, g is a p-a-MK contraction. By Theorem 3.4, g has a fixed
point. In fact, 0 is the fixed point of g.

4 Hausdorff distance on K(X)
In general, the ¢-MM v need not be continuous on R, x X x X. For instance,

Example Let X = NU {oo} and define v: R, x X x X — R? by

0 ifx=y;
1 _ 11" ifone of x #y is odd, and the other is odd or oo;
ny)=1" "~
if one of x # y is even, and the other is even or oc;
2 otherwise.

Then, v, is a ¢-MM with ¢()) = 3.
Letx,, = 2n+1. Then, vy (x,,00) = v;(2n+1,00) = |
Now, vy (x,,2) = v3 (21 + 1,2) = 2 and vy (00, 2) = 5.

Thus, v; (x,2) # v;.(00,2) as n — 00, and hence v; is not continuous on R, x X’ x X.

1
2n+1

—é|—>0asn—> 00. S0, x, — 00.

For the rest of the sections, we will assume that v is a continuous mapping. From here
on, (X,v) will denote ¢-MM space, where v is a continuous mapping and v, (x,y) < 00,
Vx,y € X and A € R,.

Some more notations:

o K(X):={U C X :U is non-empty and compact}.

o Vi, U):=inf{v, (v, u): ue U} forxe XYand U C X.

o (U, W) :=inf{vy(u,w):u e U,we W} for U, W e K(X).

¢ Bix,€):={ye X:vi(xy) <€}

Definition 4.1 Let (X,v) be a ¢-MM space. A set U C X is said to be totally bounded if
for any given € > 0, 3 finite collection {u;1 < i < k} € U for some k € N such that U C
U?:l Bk(ui) 6), VA € RJr.

Proposition 4.2 Let (X,v) be a (regular) o-MM space. Then, for each x € X, U € K(X)
and A € R,,

vilx, U) = vy (x,u0) for some uy € U.

Proof Since u +— v; (x, u) is a continuous function, so by compactness of U, Juy € U such
that inf{v; (x, u): u € T} = vy (x, ug). Thus, v; (x, U) = v; (x, ug). O

Proposition 4.3 Let (X,v) be a (regular) o-MM space. Then, for every U, W € K(X) and
A e Ry, Jug € U such that sup,,c i {vi(u, W)} = v (uo, W).
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Proof Lete =sup,; v (u, W). Then, Ju,, € U such that € — % < vy (uy, W).Since U € K(X),
3 subsequence {u,,} of {#,} and uy € U such that u,, — uo. Let w € W be such that
Vi (to, w) = va (o, W). Then, limy_, o V5. (4, W) = V5. (110, W).

Since for each k € N, ¢ — i < VU, W).

We have, € < v, (4o, w) = v, (1o, W) and obviously € > v (1, W).

Therefore, sup,., {vi(U, W)} = v, (o, W). |

Consider a (regular) ¢-MM space (X, v). We define a function H,: R, x K(X) x K(X) —
R? by

H,( U W)= max{sup v, (u, W), sup v, (U, w)
uel weW

or, equivalently,
HM\LUW)=infle>0: UC W +¢, W C U +e€},
where U + € = {x € X': vy (x, u) < € for some u € U}.

Proposition 4.4 Let (X,v) be a (regular) ¢p-MM space. Let U,W € K(X) and A, pn €
(0,00). Then

VA+M(S; u) = ‘p()‘- + /L){VA(S, W) + V[L(WS} U)}»
where wy € W such that v; (s, ws) = v, (s, W) and s € X.

Proof By Proposition 4.2, 3w, € W such that v; (s, W) = vy (s, wy).

For each u € U, we have
Va6 U) = Vi (5,0) < 90+ 1) {vals, ) + v, w 1)}.
Hence,
Vieu(s, U) < @1+ 1) {vi (s, W) + v (ws, L)},
which completes the proof. O

Theorem 4.5 Counsider the (regular) o-MM space (X,v). Then, (K(X),H,) is also a (reg-
ular) -MM space with the same ¢.

Proof Let S, U, W € K(X) and A, 1 € R,.

Then, H,(A,S,U) > 0and S = U ifand only if H,(%, S, U) = 0.

Now, we shall show the triangle inequality. By Proposition 4.4, for s € S, we have

VA+/1(S: U) =< 90()» + /’L){Vk(sr W) + VA(WS: U)}!
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where w, € W such that v, (s, w) = v,.(s, W).

sup V(s U) < o(r + M){sup vils, W) + sup v, (w;, LI)}
seS seS§

seS

<+ ,u){supvk(s, W) + sup v, (w, L[)].
ses weW

Similarly,

SUp Vi (S, ) < (A + ,u)[ sup vi(S,w) + supv, (W, u)}.
uell weW uel

Now,

H,(A+u,S,U) = max{sup Varu(s, U), sup v, (S, u)}

seS uel

<@+ u)max{sup vi(s, W) + sup v, (w, U),
seS weW

sup v,(S, w) + supv, (W, u)]
weW uel

<+ u){max[sup v;.(s, W), sup v,.(S, w)}
seS weW

+ max{ sup v, (w, U),supv, (W, u)} }
weW ueld
E w()‘ + I‘L) {HV()\'7 S’ W) + HV(H’! W; u)}'
Hence (K(X), H,) is a ¢-MM space with the same ¢. O

Proposition 4.6 Let U,W € K(X). For each u € U, 3w € W such that vy(u,w) <
H,(\ U, W).

Proof Let u € U. Then, by Proposition 4.2, 3w € W such that v, (u,w) = v\ (u, W) <
SUP,eur V)L(Lt, W) < Hv()\«, u, W) .

Proposition 4.7 Consider a complete (regular) o-MM space (X, v). Every closed subset W
of X is complete.

Proof 1t is straightforward. 0

Proposition 4.8 A (regular) o-MM space (X,v), with (1) < A forsome A > 1, is compact
iff it is totally bounded and complete.

Proof We omit the proof as it is analogous to the case where (X, d) is a metric space. [

Proposition 4.9 Consider a (regular) o-MM space (X,v) such that ¢(A) < A for some
A > 1. If{a,} is a sequence in X such that

Vi@, Ani1) < VieR, andneN,

1
(A +1)"

then {a,} is a Cauchy sequence.

Page 10 of 18
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Proof Let € >0 be given. Choose N € N such that {2 }V"! < £.
For n>m > N, we have
n-m-1 k-1 A
Vil@m, ay) < Z VZLk (@msk-1) Amsk) 1_[ @ (5)
k=1 j=0
n-m-2 A
+ l_[ w(g)vzn);ﬂl (an—lran)
j=0
A VN |
< + -
(A +1)y"1 A+1 A"
A m-1 A n-1
< +
- { A+1 } { A+1 }
€ €
<=+ =
2 2
=e.
Hence, {a,} is a Cauchy sequence. O

Proposition 4.10 Let (X,v) be a (regular) o-MM space. For each U € K(X), the set U + ¢

is a closed set.

Proof Let U € K(&X') and u be any limit point of U + €. Then, 3{u,,} such that u, — u as
n— 00, where u,, e U +¢,Vn e N.

Clearly, vy(u,, U) < €, Vn € N. By Proposition 4.2, 3x, € U such that v, (u,, U) =
Vi (U, x,) and hence v, (u,,x,) < €, Vn € N. U being a compact subset, 3 a subse-
quence {x,,} of {x,} converging to some point of U/, say, x. By continuity of v, we have
ViU Xy ) = Vi1, %) as k — 00. So, v, (u,x) < €. Therefore, u € U + € and hence U + € is

a closed set. O

Proposition 4.11 Consider a (regular) ¢-MM space (X ,v) such that ¢(1) < A for some
A > 1. For a Cauchy sequence {U,} in K(X), let {u,, } be a Cauchy sequence in X such that
uy, € Uy, Yk € N, for some increasing sequence of natural numbers. Then, 3 a Cauchy

sequence {x,} such that x, € U, and x,, = u,,, Yk € N,

Proof Let {u,, } be a Cauchy sequence in X’ such that u,, € U, , Yk € N. For ny_; <n < ny,
where 7y = 0, using Proposition 4.2, choose x,, € U, such that v, (u,,, U,) = vy (14, %,).
Then,

Vx(unk,xn) = Vl(unk» U,) < sup {Vk(x» un)} <H,(», Uy, U,).
xeunk

Clearly, u,, = x,,, Yk € N. Let € > 0 be given. Since {U/,} is a Cauchy sequence in K(X),
3dN; € N such that H,(A, U,, U,,) < m,
Cauchy sequence in X', AN, € N such that v, (uy,, u,,].) <

Vn,m > Np and A € R,. Also, since {u,,} is a

m, Vnk, n;j > N2 and A € R+.

Page 11 0of 18
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Now for n,m > N = max{N1,N,},
V(o m) < @V G th) + V3 (s )}

<009, )+ 0000 (5 ) )
+ qo(/\)w(g)vi(un,,xm)
A
= (,0()»)1/% (unk¢ Uy) +p(M)g (5)‘/2 (”nk: un/-)
0030 (5 vy )

A A
S QO(A)HV(E’ L[nk! UVI) + 90()\)90 <§)Vﬁ (unk; uni)

A A
+ q)()‘)(p(i)Hv<Z: Un,w um)

€ 2 € 2
<A + A + A
A +2A2 A +2A2 A +2A2

=e.
Hence, {x,} is a Cauchy sequence such that x,, € U, and x,,, = u,,,, Yk € N, O

Proposition 4.12 Consider a complete (regular) ¢-MM space (X,v) such that p(1) < A
for some A > 1, and let {U,} € K(X) be a Cauchy sequence. Define U = {u € X : u, —
u, where u,, € U,}. Then, the set U is non-empty and closed.

Proof Given that {U,} is a Cauchy sequence in K(X), choose n; € N such that H,(A,
Uy, Uy,) < ~=, Vn,m > ny and A € R,. Again choose ny > n; such that H,(A, U, U,) <

A+1?
m, Vn,m > n, and A € R,. Continuing the process, we get an increasing sequence {7}
such that H,(A, U,,,, U,) < m, Vn,m > ni and A € R,. Let us fix an element u,, € U,,.

Using Proposition 4.2, 3u,,, € U,, such that v; (u,,, u,,) = v, (4y,, Uy,,). Now,

Va(tny s thny) = Vi (thny s Uny) < SUD,eqg, Ava(, Upy)} < Hy (R Uy, Uny) < ﬁ Similarly, we
choose u,, € U,, such that v, (1, Uy,) = Vi (Uny, Uyy) < Hy (A, Uy, Uys) < ﬁ Continu-
ing the process, we get a sequence {u,, }, where u,, € U, , Yk € N such that

1
Vl(unk: unk+1) = Hv()w Unk; U,

nk+1)< (A+1)k_’ Vi eR,.

Using Proposition 4.9, we get {u,, } is a Cauchy sequence. Again, by Proposition 4.11,3 a
Cauchy sequence {x,} in X such that x,, € U, and x,, = u,,, Yk € N. X’ being complete,
{x,} converges to x (say) € X'. Thus, U is a non-empty set.

Let z be any limit point of U/. Then, 3 a sequence {z¢} € U \ {z} such that zx — z
as k — oo. Since each zx € U, 3 a sequence {aX} such that ak — z; as n — oo and
ak € U, for each n € N. It follows that 3n; such that a;, € U,, and v;(a}, ,z1) < 1. Sim-
ilarly, 3ny > n; such that “%12 € U,, and vx(aﬁz,zg) < % Continuing the process, we get an
increasing sequence {n;} such that v; (a’;k,zk) < %, Vk € N and A € R,. Now, vk(a’;k,z) <
<p()»){v% (af,k,zk) V2 (zx,2)}. So, aﬁk — zas k — 00. Thus, {a,, } is a Cauchy sequence such
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that a’;k € Uy,,, Yk € N. Using Proposition 4.11, 3 a Cauchy sequence {y,} in X’ such that
Yn € Uy and y,, = a’;k. Thus, z € U, and, hence, U is a closed set. O

Proposition 4.13 Consider a complete (regular) ¢-MM space (X,v) such that p(1) < A
forsome A > 1, and let {U,} be a sequence of totally bounded subsets of X . Also, let U € X
be such that for each € >0, U C Uy + € for some N € N. Then, U is also a totally bounded
set.

Proof Let € > 0 be given. Choose N € N such that U € Uy + ;13- Since Uy is a totally
bounded set, there exists a finite set {¢; € Un;1 < i < k} such that Uy C Uf;l By (u;, 457),
VA € R,. For each u € U, 3x € Uy such that v, (x,u) < ﬁ, VA € R,. Moreover, du; € Uy
such that v, (x, ;) < 4;—2, Vi € R,. Now,

Vi, 3) < () {vy (%) + vy (6, 1)}

€ €
fA{W*W}
€

Therefore, for some 1 <i <k, B; (u;, 37) N U #¥, VA € R,. By reordering u;’s, if required,
we may assume that

Bx(ui,ﬁ)ﬂu#ﬂforl5ifpandB,\(u;,i)ﬂLl:@forp<i§k.

Now, for each 1 <i < p, let y; € B, (u;, ﬁ) NU.Let u € U. Then,

vi(u,y:) < fﬂ(/\){V% () + vy (ui, yi) }

€ €
<Al —+—
{21\ ZA}
= €.

Thus, for each u € U, 3y;,1 <i < p such that u € B, (y;,¢), VA € R,. Hence, U is totally
bounded. O

Proposition 4.14 Counsider a complete (regular) o-MM space (X,v) such that ¢(1) < A
forsome A > 1. Then, (K(X),H,) is also a complete (regular) ¢-MM space.

Proof Since (X,v) is a ¢-MM space, by Theorem 4.5, (K(X), H,) is also a ¢-MM space.
Let {U,} be a Cauchy sequence in K(X). Then, each U, is totally bounded and complete.
Define U = {x € X : x, — x,where x,, € U,}. We shall show that U/ € K(X) and {U,,} con-
verges to U. By Proposition 4.12, U is non-empty and closed. Let € > 0 be given. Since
{U,} is a Cauchy sequence IN € N such that H,(A, U,,,, Uy,) < €, YVm,n > N and A € R,.
Then, U,, C U, +¢€,Ym,n > N.Letu € U and fix n > N. Then, 3 a sequence {u;} such that
{u;} converges to u and u; € U;, Vi € N. By Proposition 4.10, U, + € is closed, and since
u; € U, + €, ¥i > N, we get that u € U, + €. Hence U C U, + €. By Proposition 4.13, U is
totally bounded. Also, the set U is complete. Since U is totally bounded and complete, U/
is compact. Thus, U € K(X).

Let € > 0 be given. We shall prove that AN; € N such that H,(A, U, U) < €, Vn > N;
and A € R,. It is sufficient to show that &/ C U, + € and U, C U + €. From the first
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part of the proof, it is already known that 3N; such that U C U, + € Vn > N;j. Now, we
shall show that U, € U + €. Let y € U,,. Since {U,} is a Cauchy sequence, IN; € N such
€

that H,(\, U,, U,,) < AT = €1 Vn > N,. Moreover, 3 a strictly increasing sequence of

natural numbers {rn;} such that H,(A, U, U,) < a;\ﬁ’ Vm,n > n; and n; > N,. Since

u, cu, + _(1?/\), 3x,, € Uy, such that v,(y,x,,) < (1?1\)' Again, since U,, C Uy, + (13\)2,
€1

3x,, € U, such that vy (x,,,%,,) < T Continuing the process, we get a sequence {x,,}

such that v, (%, %p,,,) < i for i € N*, where y = x,,,. Since {x,,} is a Cauchy sequence,

€1
1+A)H1
by Proposition 4.11, 3 a Cauchy sequence {a,} such that a, € U,, Vn € N and a,, = x,,,
Vi e N. Let {a,} converges to a. Then,

2!

j=

-1 A k Ai—l
= {Z{1+A} 61} TN

k=1

i-1 k-1 A -2 A
Vk(y:xni) = {ZVZLI( (xnk,lxxnk) n@(g) } + V% (xni,l:xn,') 1_[90(5)
k=1 j=0

<e(1+A)

€
5
Since v is a continuous function, we have v, (y,a) < € and hence U,, € U + €. Thus, AN; € N
such that U, € U +¢,Vn > Nj. Therefore, H,(A, U,,, U) < € Vn > N; and A € R,. Thus, {U,,}
converges to U € K(&). This completes the proof. d

5 Iterated function system
Definition 5.1 A mapping g: ¥ — Y on a complete metric space (Y, d) is called a con-

traction mapping if
d(g(a),g(b)) <rd(a,b), Va,beY and for some constant r € [0, 1).

The constant r is said to be the contractivity factor for g.

Definition 5.2 A complete metric space (Y,d) together with a finite collection of con-

traction mappings g,: ¥ — Y; n € N, is called an iterated function system (IES).

Define F: K(Y) — K(Y), known as the Hutchinson operator, by F(A) = |J)_; g.(4) for
each A € K(Y), where g, (A) = {g,(x): x € A}. Any set G € K(Y) such that F(G) = G is called
an attractor of the IFS.

Similarly, we define the iterated function system (IFS) on the ¢-MM space consisting of

@-a-MK contractions as follows:

Definition 5.3 A complete (regular) ¢-MM space, (X, v), together with a finite collec-
tion g,: X - X; n € Ny of p-a-MK contractions is called ¢-a-MK contractive iterated
function system in (X, v) and will be denoted as {X; g,, n € Ny}.

Define F: K(X) — K(X) by F(A) = Y, g.(A) for each A € K(X), where g,(A) =
{g.(x): x € A}. Any set G € K(&X) such that F(G) = G is called an attractor for the IFS.
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Remark 5.4 We call the set valued map F on K(X) as the Hutchinson operator.

Let {X’;gx, k € Ny} be a ¢-a-MK contractive IFS on a (regular) ¢-MM space (X, v). We
associate a multivalued function on K(&X) using g; k € Ny as follows:

Y: X — K(X) definedby v(x)= {gk(x): k= 1,2,...,N}.

Then, the operator F: K(X) — K(X) can also be written as
N
F@B)=|Jv®) = Ja®).
beB n=1

Proposition 5.5 Let v be defined as above. Then, \ is a continuous map.

Proof Let € >0 be given. Also, let x, — x in X. Define,

Bn = vf(xn) = {gl (xn)7g2(xn): .. ':gN(xn)}:
B=vy () ={g1(x),©x),...,gn)}.

As each g; k € Ny is a continuous map, so gi(x,) — gk(x) for each k € Ny.
So, for % > 0, dm € N such that for all A € R,,

V3 (ge@), ge()) < % for all # > m and for all k € Ny.

Then, B, C B + % and BC B, + % for all n > m.
So, H,(A, By, B) = inf(8 > 0;B, CB+8,BC B, + 8} <e.
Therefore, ¥ (x,) — ¥ (x), and hence v is a continuous map. g

Proposition 5.6 The Hutchinson operator for {X;g,,n € Ny} is a continuous map on
K(X).

Proof Let S,,S € K(X) such that S, — S with respect to H,.

Setting $* = 52, {S,} U S we get S* € K(X). By Proposition 5.5, ¥ is a continuous map
and S§* being compact, it is uniformly continuous on S*. Let € > 0 be given. Then, for
5 >0, we find § > 0 such that for every pair z,2; € §%, vi(z1,22) < § implies H, (%, ¥ (z1),

V(22)) < 5.
Now let S, S, € K(S*) be such that H, (), S;,S,) < 8. Then,
$CS1+8 and S; S +4.
As, S; € S + 6 and using the uniform continuity of 4 on S*, we have
Y (S2) S Y(S1+8) S (W(Sh) +e.
By symmetry, ¥(S1) C (¥(S2)) + €. Hence, H, (A, ¥ (51), ¥(S2)) < €. So, F is uniformly con-

tinuous on K(S*), and consequently, F(S,) — F(S) as n — oco. Therefore, F is continuous
on K(X). O
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Theorem 5.7 Let (X,v) be a (regular) o-MM space. Let g,: X — X be p-a-MK contrac-
tion for n € Ny. Then, the function F: K(X) — K(X) defined by F(A) = Uﬁilgn(A), where
g,(A) = {g,(a) : a € A} for every A € K(X) is a ¢p-MK contraction map with respect to the

induced (regular) p-metric modular H,.

Proof Let € >0 be given. Then, 35, > 0; n € Ny such that

€ <%y <p(X)(€ +8,) implies «(x,y)v, (g,,(x),g,,(y)) <E€.

Let A,B € K(X) be such that € < H,(A,A, B) < ¢(1)(€ + 8), where § = min{3, : n € Ny}. We
shall show that H, (A, F(A),F(B)) < €.

Let z € F(A) be arbitrary. Then, 3j € Ny and x € A such that z = g;(x). By Proposition 4.6,
Jy € B such that

vi(x,y) < H,(M, A, B) < (M) (e +9).

If vi.(x,) > €, then € <v,(x,y) < @(1)(e + ) and hence a(x, y)v,(gi(x),g(y)) < €. Otherwise,
v (%, 9) < € then v, (gi(x), gi(y)) < va(x,y) < €.

Therefore, v, (z, F(B)) < €. Since F(A) is compact, sup,4{v,(F{a}, F(B))} < €. Similarly,
we have, sup, {vi(F(A), F{b})} < €.

Consequently, we obtain H, (A, F(A), F(B)) < €. Hence, the function F is ¢-MK contrac-
tion. (I

As an application of our main result, we have the following result.

Theorem 5.8 Let (X, v) be a regular o-MM space such that (K(X), H,) is a complete regu-
lar o-MM space. Let g,: X — X be a ¢-a-MK contraction for n € Ny. Define F: K(X) —
K(X) by F(A) = Uff:lg,,(A), where g,(A) = {g,(a) : a € A} for every A € K(X). Then, F has
a unique fixed point G satisfying the following equation

N
K=F(@G)=|Jg.(G).

n=1

Further, the attractor G can be described as G =1lim,,_, o, F"(A) for any A € K(X).

Proof By Theorem 5.7, we conclude that F is a ¢-MK contraction map on K(X). By in-
voking Corollary 3.7, we get that F has a unique fixed point G and G = lim,,_, o, F"(A) for
any A € K(X). O

Remark 5.9 Note that in the above theorem, we have assumed (K(&X'), H,) to be complete.

Without this assumption, using Proposition 4.14, we have the following result:

Corollary 5.10 Let (X,v) be a complete regular ¢-MM space such that (1) < A for some
A >1.Let g,: X - X be p-a-MK contraction for n € Ny. Define F: K(X) — K(X) by
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F(A) = Uﬁilgy,(A), where g,(A) = {g,(a) : a € A} for every A € K(X). Then, F has a unique
fixed point G satisfying the following equation

N
G=F(G) =| JeuK).

n=1
Further, the attractor G can be described as G =lim,,_, o, F"(A) for any A € K(X).

Proof It immediately follows from Proposition 4.14 and Theorem 5.8. O

6 Conclusions and future works
In this paper, we studied the notion of ¢-MM spaces and ¢-a-MK contraction. Based on
this contraction, we proved a fixed point result. Also, we provided an example to support
our findings. We also explored some topological properties of ¢-metric modular space.
Moreover, we proved that the space K(X') is complete, which will be required in proving
the existence of attractor of an IFS on g-metric modular space. Further, we defined an
IFS structure on the above defined space and proved the existence and uniqueness of the
attractor using our main result.

It may be further possible to investigate several other contractive conditions on these
spaces to construct fixed point results. Moreover, its related IFS and attractor can also be
explored. Common fixed points for single and family of mappings can also be explored.

One can also investigate multi-valued mappings for fixed points in these spaces.
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