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Abstract
In this article, we prove new common fixed-point theorems on a C ∗-algebra-valued
R-metric space. An example is given based on our obtained results. To enhance our
results, a strong application based on the fractional-order initial value problem is
provided.

Mathematics Subject Classification: 47H10; 54H25; 46J10; 46J15

Keywords: Common fixed point;R-metric space; C ∗-algebra; C ∗-algebra-valued
R-metric space

1 Introduction
The concept of C ∗-AVMS was outlined by Ma et al. in 2014, [1] and they proved some
fixed-point results with a new contraction type. Many authors and researchers have gen-
eralized with a new type of outcome (see [2–5]).

Let B be the unital algebra with unit I . The conjugate linear map δ �→ δ∗ on B is such
that δ∗∗ = δ and (δη)∗ = η∗δ∗ for all δ,η ∈ B. The set of all bounded linear operators on a
Hilbert space H, under the norm topology L(H), is a C ∗-algebra. The concept of a cone
metric space was outlined by Huang and Zhang in 2007 [6] and they replaced the set of
real numbers by an ordered Banach space.

The CFP for commuting mappings in metric space was investigated by Jungck in 1966
[7]. Likewise, many fixed and CFP results were obtained in different types like cone met-
ric space [8], uniform space [9], noncommutative Banach space [10], fuzzy metric space
[11] and so on. Hussain et al. proved Suzuki–Berinde-type fixed-point theorems and the
CFP theorem on a cone b-metric space in these works [12, 13], respectively. Khalehoghli,
Rahimi and Gordji introduced the R-metric space to prove the fixed-point theorem [14].
Wardowski proposed a new Banach contraction principle in a complete metric space to
prove the fixed-point theorem [15]. Astha, Deepak and Choonkil proposed a C ∗ algebra-
valued R-metric space to prove a unique fixed-point theorem [16]. Afshari and Khosh-
vaghti proved a unique fixed-point theorem in an operator equation on the ordered Ba-
nach space [17]. Afshari et al. [18], used a fixed-point theorem to study a boundary value
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problem for a fractional differential equation in a b-metric space. Deuri and Das in [19]
proved the fixed-point theorem in a newly constructed contraction operator. Chandra
Deuri et al. [20] investigated the existence of a fractional integral equation by using the
Darbo fixed-point theorem. Further, Das et al. [21], proved the fixed-point theorem based
on the Darbo-type theorem. Researchers in [22], utilized the fixed-point theorem for dis-
cussing a generalized proportional fractional integral equation in a Banach space. Das and
Deuri [23], proved the fixed-point theorem on a generalization of Darbo’s fixed-point the-
orem in a Banach space. The authors of [24, 25], established the qualitative properties of
fractional differential equation in unbounded domains.

In this paper, we prove some CFP theorems on a C ∗-algebra-valued R-metric space.
Additionally, we established the uniqueness of a common solution for the fractional-order
initial value problem. Throughout this paper, B will denote C ∗-algebra with unit I and R
denotes a nonempty binary relation. C ∗-AVMS means a C ∗-algebra-valued metric space
and C ∗-AVR-MS means a C ∗-algebra-valued R- metric space. CFP means Common
Fixed Point.

2 Preliminaries
Definition 2.1 Let a nonvoid set be X . Let the mapping � : X ×X → B be such that:

(1) 0B ≤ � (ζ ,ϑ) for all ζ ,ϑ ∈X ;
(2) � (ζ ,ϑ) = 0B iff ζ = ϑ ;
(3) � (ζ ,ϑ) = � (ϑ , ζ ) for all ζ ,ϑ ∈X ;
(4) � (ζ ,ϑ) ≤ � (ζ ,ν) + � (ν,ϑ) for all ζ ,ϑ ,ν ∈X .

Then, (X ,B,� ) is called a C ∗-AVMS.

Definition 2.2 Let a nonvoid set be X defined a binary relation on R, a sequence
{ζφ}φ∈N ∈X is called a R-sequence if (ζφ , ζφ+1) ∈R for all φ ∈N.

Definition 2.3 A binary relation R on a metric space (X ,� ) is called a R-metric space
and it is denoted by (X ,� ,R).

Lemma 2.1 [26]
1. If {ηφ}∞φ=1 ⊆ B and limφ→∞ ηφ = 0B , then for any δ ∈ B, limφ→∞ δ∗ηφδ = 0B .
2. If δ,η ∈ Bh and c ∈ B′

+, then δ ≤ η deduces cδ ≤ cη, where B′
+ = B+ ∩B′.

3. Let {ζφ}∞φ=1 be a sequence in X . If {ζφ} converges to ζ and ϑ , respectively, then ζ = ϑ .

Definition 2.4 Let (X ,B,� ,R) be a C ∗-AVR-MS, let a R-sequence {ζφ}φ∈N ⊂X be said
to be R-Cauchy, if κ > 0, we can find φ0 ∈N that satisfies ‖� (ζφ , ζm)‖ ≤ κ , ∀φ,m≥ φ0.

Definition 2.5 Let (X ,B,� ,R) be a C ∗-AVR-MS that is called a Complete C ∗-AVR-
MS, if every R- Cauchy sequence with respect to B is convergent.

Definition 2.6 Let two mappings Ξ and Φ on (X ,B,� ) be a C ∗-AVMS be called com-
patible, if the sequence {ζφ}∞φ=1 ⊆ X , such that limφ→∞ Ξζφ = limφ→∞ Φζφ = σ ∈ X , then

� (ΞΦζφ ,ΦΞζφ)
‖·‖B−−→ 0B (φ → ∞).

3 Main results
We prove our first result.
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Theorem 3.1 Let (X ,B,� ,R) be a complete C ∗-AVR-MS and let the two mappings
Ξ ,Φ : X →X , such that

(i) Ξ (X ) ⊆X , Φ(X ) ⊆X ;
(ii) Ξ , Φ are R-preserving;

(iii) We can find some ζ0 ∈X satisfying (ζ0,ϑ) ∈R for all ϑ ∈ Ξ (X );
(iv) For all ζ ,ϑ ∈X with (ζ ,ϑ) ∈R, there exists δ ∈ B, where ‖δ‖ < 1 such that

� (Ξζ ,Φϑ) ≤ δ∗� (ζ ,ϑ)δ, for any ζ ,ϑ ∈X .

Then, Ξ and Φ have a unique CFP.

Proof Let ζ0 ∈ X and consider a R-sequence {ζφ}∞φ=0 ⊆ X , such that ζφ = Φζφ–1, ζφ+1 =
Ξζφ , ζφ–1 = Ξζφ–2. From condition (iv),

� (ζφ+1, ζφ) = � (Ξζφ ,Φζφ–1)

≤ δ∗� (ζφ , ζφ–1)δ

≤ (
δ∗)2

� (ζφ–1, ζφ–2)(δ)2

...

≤ (
δ∗)φ

� (ζ1, ζ0)(δ)φ .

Since, η, c ∈ Bh, then η ≤ c, which implies δ∗ηδ ≤ δ∗cδ.
Similarly,

� (ζφ , ζφ–1) = � (Φζφ–1,Ξζφ–2)

≤ δ∗� (ζφ–1, ζφ–2)δ

...

≤ (
δ∗)� (ζ1, ζ0)(δ)φ–1,

for any p ∈N, then by the triangle inequality,

� (ζφ+p) ≤ � (ζφ+p, ζφ+p–1) + � (ζφ+p–1, ζφ+p–2) + · · · + � (ζφ+1, ζφ)

≤
φ+p–1∑

υ=φ

(
δ∗)υ

� (ζ1, ζ0)(δ)υ

≤
φ+p–1∑

υ=φ

(
δ∗)υ

η2(δ)υ

≤
φ+p–1∑

υ=φ

(
δ∗)υ

η · η(δ)υ

≤
φ+p–1∑

υ=φ

(
ηδυ

)∗ · (ηδυ
)
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≤
φ+p–1∑

υ=φ

∣∣ηδυ
∣∣2

≤
φ+p–1∑

υ=φ

∥
∥
∣
∣ηδυ

∣
∣2∥∥1B

≤ ‖η‖21B
φ+p–1∑

υ=φ

∥
∥δυ

∥
∥ → 0B as φ → ∞,

where 1B is a unit element in B and � (ζ1, ζ0) = η2 for some η ∈ B. From definition 2.5, we
obtain that {ζφ}∞φ=1 is a Cauchy sequence inX . We can find ζ ∈X satisfying limφ→∞ ζφ = ζ .

Now, using the triangle inequality

� (ζ ,Φζ ) ≤ � (ζ , ζφ) + � (ζφ ,Φζ )

≤ � (ζ , ζφ) + � (Φζφ–1,Φζ )

≤ � (ζ , ζφ) + δ∗� (ζφ–1, ζ )δ.

Taking φ → ∞, the right-hand side approaches 0B , by lemma 2.1 (condition 1), we obtain
Φζ = ζ .

Similarly,

� (Ξζ , ζ ) = � (Ξζ ,Φζ )

≤ δ∗� (ζ , ζ )δ

= 0B .

We have,

� (Ξζ , ζ ) = 0B ,

which means, Ξζ = ζ .
Let us take another fixed point ϑ ∈ X such that Ξϑ = Φϑ = ϑ , From condition (iv) of

Theorem 3.1:

� (ζ ,ϑ) = � (Ξζ ,Φϑ) ≤ δ∗� (ζ ,ϑ)δ,

with ‖δ‖ < 1, such that

0 ≤ ∥∥� (ζ ,ϑ)
∥∥ ≤ ‖δ‖2∥∥� (ζ ,ϑ)

∥∥

≤ ∥
∥� (ζ ,ϑ)

∥
∥.

Thus, ‖� (ζ ,ϑ)‖ = 0 and � (ζ ,ϑ) = 0B , which gives ζ = ϑ . Hence, Ξ and Φ have a unique
CFP in X . �

Here, we prove our second result.
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Theorem 3.2 Let (X ,B,� ,R) be a complete C ∗-AVR-MS and let the two mapping
Ξ ,Φ : X →X such that

(i) Ξ (X ) ⊆X , Φ(X ) ⊆X ;
(ii) Ξ , Φ is R-preserving;

(iii) We can find some ζ0 ∈X satisfying (ζ0,ϑ) ∈R for all ϑ ∈ Ξ (X );
(iv) For all ζ ,ϑ ∈R with (ζ ,ϑ) ∈R, there exist δ ∈ B, where ‖δ‖ < 1 such that

� (Ξζ ,Ξϑ) ≤ δ� (Ξζ ,Φζ ) + δ� (Ξϑ ,Φϑ).

Then, Ξ and Φ have a unique CFP.

Proof Let ζ0 ∈ X and consider a R-sequence {ζφ}∞φ=0 ⊆ X such that Φζφ = ζφ+1, and
Φζφ+1 = ζφ+2, then

� (ζφ+2, ζφ+1) = � (Φζφ+1,Φζφ)

≤ δ� (Ξζφ+1,Φζφ+1) + δ� (Ξζφ ,Φζφ)

≤ δ� (ζφ+1, ζφ+2) + δ� (ζφ , ζφ+1)

≤ δ� (ζφ+2, ζφ+1) + δ� (ζφ+1, ζφ),

� (ζφ+2, ζφ+1) – δ� (ζφ+2, ζφ+1) = δ� (ζφ+1, ζφ),

(1B – δ)� (ζφ+2, ζφ+1) = δ� (ζφ+1, ζφ),

� (ζφ+2, ζφ+1) ≤ δ

(1B – δ)
� (ζφ+1, ζφ),

� (ζφ+2, ζφ+1) ≤ η� (ζφ+1, ζφ), where η =
δ

(1B – δ)
.

By induction,

� (ζφ+2, ζφ+1) ≤ ηφ� (ζ1, ζ0).

For φ > m,

� (ζφ+1, ζm) ≤ � (ζφ+1, ζφ) + � (ζφ , ζφ–1) + · · · + � (ζm+1, ζm)

≤ (
ηφ + ηφ–1 + · · · + ηm

)
� (ζ1, ζ0)

≤ ∥
∥ηφ + ηφ–1 + · · · + ηm

∥
∥
∥
∥� (ζ1, ζ0)

∥
∥1B

≤ ∥∥ηφ
∥∥ +

∥∥ηφ–1∥∥ + · · · +
∥∥ηm

∥∥∥∥� (ζ1, ζ0)
∥∥1B

≤ ‖η‖m
1 – ‖η‖

∥∥� (ζ1, ζ0)
∥∥1B .

Hence, {ζφ}∞φ=0 is a Cauchy sequence in R-sequence. We can find q ∈ X satisfying
limφ→∞ ζφ = q. By condition (iv),

� (ζφ+1,q) = � (Φζφ ,Ξq)

≤ δ� (Φζφ ,Ξζφ) + δ� (Ξq,Φq)
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≤ δ� (Φζφ ,Ξq) + δ� (Ξq,Ξζφ) + δ� (Ξq,Φζφ) + δ� (Φζφ ,Φq)

≤ 2δ� (Φζφ ,Ξq) + δ� (Ξq,Ξζφ) + δ� (Φζφ ,Φq),

(1B – 2δ)� (ζφ+1,q) ≤ δ� (Ξq,Ξζφ) + δ� (Φζφ ,Φq).

Since ‖δ‖ < 1, then 1B – 2δ is invertible:

� (ζφ+1,q) ≤ δ

(1B – 2δ)
� (Ξq,Ξζφ) +

δ

(1B – 2δ)
� (Φζφ ,Φq),

then limφ→∞ ζ = q. Let us choose Ξq = Φq. Hence, Ξ and Φ have a coincidence point
in X .

Assume p ∈X such that Ξp = Φp, and by using condition (iv), we obtain

� (Φp,Φq) = � (Ξp,Ξq) ≤ δ� (Ξp,Φp) + δ� (Ξq,Φq),

which shows that ‖� (Φp,Φq)‖ = 0, then

Φp = Φq.

Similarly,

Ξp = Ξq.

Hence, Ξ and Φ have a unique CFP in X . �

Example 3.3 Let X = R and B = M2(R). Define relation R on X as (ζ ,ϑ) ∈R iff ζ ,ϑ ≥ 0
and � (ζ ,ϑ) =

[ |ζ–ϑ |2 0
0 υ|ζ–ϑ |2

]
, where ζ ,ϑ ∈ R and υ ≥ 0 is a constant. Then, (X ,B,� ,R)

is a complete C ∗-AVR-MS:

Ξζ =

⎧
⎨

⎩
2 – 1

ζ
, ζ ∈ [0, 5

4 ),

2, ζ ∈ ( 5
4 , 3],

Φζ =

⎧
⎨

⎩

2
ζ2 , ζ ∈ [0, 1),

ζ , ζ ∈ (1, 3].

Clearly, Ξ and � are R-preserving. First, the set of their coincidence points is singleton
{2}, and then we have Ξ and Φ commute at this point. Thereby, Ξ and Φ are weak com-
patible.

Let the sequence {ζφ} ⊆X such that ζφ = 1 – φ ∈X , hence,

Ξζφ = 2 –
1

1 – φ
=

1 – 2φ

1 – φ
, Φζφ =

2
(1 – φ)2 .

Then, limφ→∞ Ξζφ = limφ→∞ Φζφ = 3,

� (Ξζφ , 3) = �

(
1 – 2φ

1 – φ
, 3

)
=

[
| φ–2

1–φ
|2 0

0 υ| φ–2
1–φ

|2
]

‖·‖B−−→ 0B , as φ → ∞,

� (Φζφ , 3) = �

(
2

(1 – φ)2 , 3
)

=

[
| 3φ–1

1–φ
|2 0

0 υ| 3φ–1
1–φ

|

]
‖·‖B−−→ 0B , as φ → ∞.
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However,

� (ΞΦζφ ,ΦΞζφ) = �

(
Ξ

(
1 – 2φ

1 – φ

)
,Φ

(
2

(1 – φ)2

))

= � (3, 2)

=

[
1 0
0 υ

]

,

which means � (ΞΦζφ ,ΦΞζφ) � 0B . Hence, Ξ and Φ have a unique CFP.

4 Application
Consider the nonlinear fractional-order initial value problem (FIVP) of the form

Dα
0 ζ (σ ) = κζ (�) + g

(
�, ζ (�)

)
, σ ≥ 0,

ζ (0) = μ,
(4.1)

where 0 < α ≤ 1 is the fractional order, κ is a nonnegative real constant, and μ is a real
constant. The nonlinear term is g and it is continuous for every σ ∈R

n. (For more details
see [27]).

The solution of equation (4.1) is

ζ (σ ) = μ +
1

�(α)

∫ σ

0
(σ – �)α–1[κ · ζ (�) + g

(
�, ζ (�)

)]
d�.

Let X = {e ∈ C(I ,R) : e(σ ) > 0,∀σ ∈ I} and B = M2(R). Define relation R on X as
(ζ ,ϑ) ∈ R iff ζ ,ϑ ≥ 0 and � (ζ ,ϑ) =

[ |ζ–ϑ 0
0 υ|ζ–ϑ |

]
, where ζ ,ϑ ∈ R and υ ≥ 0 is a constant.

Then, (X ,B,� ,R) is a complete C ∗-AVR-MS.

Theorem 4.1 Assume the nonlinear fractional-order initial value problem as given in
(4.1). Suppose that the following condition is satisfied:

(i) Consider that the solutions of the nonlinear fractional-order initial value problem
(4.1) are

ζ (σ ) = μ +
1

�(α)

∫ σ

0
(σ – �)α–1[κ · ζ (�) + g1

(
�, ζ (�)

)]
d�,

ζ (σ ) = μ +
1

�(α)

∫ σ

0
(σ – �)α–1[κ · ζ (�) + g2

(
�, ζ (�)

)]
d�,

where g1, g2 are nonnegative real constants.
(ii) There exist a constant L ∈R

+ and κ > 0 such that |g(σ , e) – g(σ , l)| ≤ L
κ
|e – l|,

(iii) There exists 0 < α ≤ 1 such that σα

�(α)L < 1.
Then, the nonlinear fractional-order initial value value problem (4.1), has a unique com-
mon solution.

Proof Define Ξ ,� : X →X by

Ξζ (σ ) = μ +
1

�(α)

∫ σ

0
(σ – �)α–1[κ · ζ (�) + g1

(
�, ζ (�)

)]
d�,
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�ζ (σ ) = μ +
1

�(α)

∫ σ

0
(σ – �)α–1[κ · ζ (�) + g2

(
�, ζ (�)

)]
d�.

Clearly, Ξ and � are R-preserving. For all (ζ ,ϑ) ∈R, one has

� (Ξζ ,Φϑ)

=

[
|Ξζ – Φϑ | 0

0 υ|Ξζ – Φϑ |

]

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

|μ + 1
�(α)

∫ σ

0 (σ – �)α–1[κ · ζ (�)
+g1(�, ζ (�))] d�

–μ – 1
�(α)

∫ σ

0 (σ – �)α–1[κ · ϑ(�)
+g2(�,ϑ(�))] d�| 0

0 υ|μ + 1
�(α)

∫ σ

0 (σ – �)α–1[κ · ζ (�)
+g1(�, ζ (�))] d�

–μ – 1
�(α)

∫ σ

0 (σ – �)α–1[κ · ϑ(�)
+g2(�,ϑ(�))] d�|

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

| 1
�(α) [

∫ σ

0 (σ – �)α–1[κ · ζ (�) + g1(�, ζ (�))] d�

–
∫ σ

0 (σ – �)α–1[κ · ϑ(�) + g2(�,ϑ(�))] d�]| 0
0 υ| 1

�(α) [
∫ σ

0 (σ – �)α–1[κ · ζ (�) + g1(�, ζ (�))] d�

–
∫ σ

0 (σ – �)α–1[κ · ϑ(�) + g2(�,ϑ(�))] d�]|

⎤

⎥
⎥
⎦

≤
[

1
�(α)L‖ζ – ϑ‖| ∫ σ

0 (σ – �)α–1 d�| 0
0 υ

�(α)L‖ζ – ϑ‖| ∫ σ

0 (σ – �)α–1 d�|

]

=

[
1

�(α)L‖ζ – ϑ‖ σα

�
0

0 υ
�(α)L‖ζ – ϑ‖ σα

�

]

≤
(

σ�

�(α)�

)
L

[
‖ζ – ϑ‖ 0

0 υ‖ζ – ϑ‖

]

,

which implies that

� (Ξζ ,Φϑ) ≤P� (ζ ,ϑ), where P =
(

σα

�(α)�

)
L < 1.

Therefore, all the hypothesis of Theorem 3.1 are satisfied. Hence, Ξ and Φ have a unique
common solution. �

5 Conclusion
In this paper, we proved some CFP theorems on C ∗-AVR-MS. In addition, based on our
obtained results an example was provided. Specifically, an application of a fractional-order
initial value problem was presented.
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