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1 Introduction
Let (M,‖.‖) be a Banach space and C a nonempty subset of M. A mapping S : C → C is
said to be nonexpansive if

∥
∥S(u) – S(v)

∥
∥ ≤ ‖u – v‖, ∀u, v ∈ C.

A point u† ∈ C is said to be a fixed point of S if S(u†) = u†. In the context of Banach spaces,
a nonexpansive mapping may not necessarily possess a fixed point. However, it is possible
to obtain fixed points for such mappings by enriching the space with certain geometric
properties. In 1965, Browder [5] and Göhde [15] separately established that nonexpansive
mappings have fixed points in every uniformly convex Banach space. Kirk [20], on the
other hand, extended the fixed-point theorem for nonexpansive mappings to the broader
category of reflexive Banach spaces with normal structure. Recall that a Banach space
(M,‖.‖) is said to have normal structure, if for each bounded, closed, and convex subset
C of M consisting of more than one point there is a point u ∈ C such that

sup
{‖v – u‖ : v ∈ C

}

< diam‖.‖(C) = sup
{‖v – u‖ : u, v ∈ C

}

.

In [3], Baillon and Schöneberg weakened the concept of normal structure and introduced
the asymptotic normal structure as follows: A Banach space (M,‖.‖) is said to have asymp-
totic normal structure, if for each bounded, closed, and convex subset C of M consisting
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of more than one point and each sequence {un} in C satisfying un – un+1 → 0 as n → ∞,
there is a point u ∈ C such that

lim inf
n→∞ ‖un – u‖ < diam‖.‖(C).

The relationship between fixed-point theory and the geometry of Banach spaces has been
highly productive and significant. In the context of metric fixed-point problems, geomet-
ric properties are particularly influential. Nonexpansive mappings are a prominent area of
study in metric fixed-point theory. Many authors have since derived generalizations and
extensions of nonexpansive mappings and their associated results. The literature contains
a considerable body of research on classes of mappings that are more general than the
nonexpansive ones. Some of the notable extensions and generalizations of nonexpansive
mappings can be found in [1, 2, 4, 6, 7, 11, 13, 21, 22, 24–26]. Some classes of mappings
are not necessarily continuous on their domains, unlike nonexpansive mappings. In 2008,
Suzuki [27] introduced a new class of nonexpansive-type mappings, referred to as map-
pings satisfying condition (C), and derived some significant fixed-point results for them.
Suzuki [27] also demonstrated that this class of mappings does not necessarily exhibit
continuity, unlike nonexpansive mappings. García-Falset et al. [11] explored a broader
version of condition (C), called mappings satisfying condition (E). In 2011, Llorens-Fuster
and Moreno-Galvez [21] introduced a general class of mappings called (L)-type mappings
(or condition (L)), which is contingent on two conditions. First, the existence of an approx-
imate fixed-point sequence (a.f.p.s.) for S in all nonempty, closed, convex, and S-invariant
subsets of C. Secondly, the distances between points and their images in the limiting case
from the a.f.p.s. For this class of mappings, the nonexpansiveness condition need not hold
for all points but only for certain points in the domain. They obtained several fixed-point
results for their new class of nonexpansive-type mappings.

It is noted herein that the normal structure condition depends on the distance between
all points of set C and point u, while the asymptotic normal structure condition depends
on the limiting distance between sequence {un} and point u. This condition seems similar
to the second condition of (L)-type mappings. It looks natural to investigate the fixed-
point theorem for (L)-type mappings in the setting of Banach spaces having asymptotic
normal structure. In this paper, we present some results concerning the demiclosedness
principle of a mapping satisfying condition (L-1) in uniform convex spaces. Further, we
obtain some fixed-point theorems for (L-1)-type mappings in the setting of Banach spaces
having asymptotic normal structure. Moreover, we show that in �1 and J0 (James space),
(L-1)-type self-mapping of a bounded weak∗ closed convex subset has a fixed point. In this
way, results in [11, 18, 21, 27] have been extended, generalized, and complemented.

2 Preliminaries
Definition 1 [12]. Let C be a nonempty subset of a Banach space M. A sequence {un}
in C is said to be an approximate fixed-point sequence (in short, a.f.p.s.) for a mapping
S : C → C if limn→∞ ‖un – S(un)‖ = 0.

Definition 2 [12]. Let C be a subset of a Banach space M. A mapping G : C → C is said
to be demiclosed if for any sequence {un} in C the following implication holds:

{un} converges weakly to u and lim
n→∞

∥
∥G(un) – w

∥
∥ = 0
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that implies

u ∈ C and G(u) = w.

Definition 3 [16]. Let M be a Banach space and u, v ∈ M. A vector u is orthogonal to v
if ‖u‖ ≤ ‖u + μv‖ for all scalars μ. We use to denote u⊥v if u is orthogonal to v.

In general, the relation ⊥ is not symmetric cf. [18].

Definition 4 [18]. Let M be a Banach space. The relation ⊥ is said to be approximately
symmetric if for each u ∈ M and ε > 0, there exists a closed, linear subspace Y = Y(u, ε)
such that the following two conditions hold:

(i) Y has finite codimension;
(ii) ‖z‖ ≤ ‖z + μu‖ for all z ∈ Y , ‖z‖ = 1, and each μ with μ ≥ ε.

Definition 5 [18]. Let M be a conjugate space, that is, there exists a normed space Z such
that M = Z∗. The relation ⊥ is said to be weak∗ approximately symmetric if conditions
(i) and (ii) in Definition 4 hold along with Y is weak∗ closed.

Definition 6 [18]. Let M be a Banach space. The relation ⊥ is said to be uniformly ap-
proximately symmetric (uniformly weak∗ approximately symmetric) if it is approximately
symmetric (weak∗ approximately symmetric) and condition (ii) in Definition 4 is replaced
by the following stronger condition:

(iii) there exists δ = δ(u, ε) > 0 such that ‖z‖ ≤ ‖z + μu‖ – δ, for all z ∈ Y , ‖z‖ = 1, and
each μ with μ ≥ ε.

In the spaces �p, p ∈ (1,∞), the relation ⊥ is uniformly approximately symmetric. In
spaces �1 and J0 (James space [17]) the relation ⊥ is uniformly weak∗ approximately sym-
metric. However, in both spaces Lp, p �= 2 and c0, the relation ⊥ fails to be uniformly ap-
proximately symmetric.

Lemma 1 (Goebel–Karlovitz) [14]. Let C be a subset of a reflexive Banach space M, and
suppose C is minimally invariant with respect to being nonempty, bounded, closed, convex,
and S-invariant for some nonexpansive mapping S. Let {xn} be a sequence in C that satisfies
limn→∞ ‖un – S(un)‖ = 0. Then, for each u ∈ C , limn→∞ ‖un – u‖ = diam(C).

Theorem 1 [14] Let M be a uniformly convex Banach space. Then, for any d > 0, ε > 0
and u, v ∈ X with ‖u‖ ≤ d,‖v‖ ≤ d,‖u – v‖ ≥ ε, there exists a δ > 0 such that

∥
∥
∥
∥

1
2

(u + v)
∥
∥
∥
∥

≤
[

1 – δ

(
ε

d

)]

d.

Theorem 2 [23]. Let M be a Banach space. The following conditions are equivalent:
(i) M is strictly convex;

(ii) If u, v ∈M and ‖u + v‖ = ‖u‖ + ‖v‖, then u = 0 or v = 0 or v = cu for some c > 0.

Theorem 3 [3]. Let β ≥ 1 and let Mβ be the real space �2 renormed according to

|u|β = max
{‖u‖2,β‖u‖∞

}

,
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where ‖u‖∞ denotes the �∞-norm and ‖u‖2 the �2 norm. Then,
(1) Mβ has normal structure if and only if β <

√
2; and

(2) Mβ has asymptotic normal structure if and only if β < 2.

Lemma 2 [3]. Let β ≥ 1, x, y, z ∈Mβ and α ∈ [0, 1]. Then,

∥
∥x –

(

(1 – α)y + αz
)∥
∥

2
2 + α(1 – α)‖y – z‖2

2 = (1 – α)‖x – y‖2
2 + α‖x – z‖2

2.

Lemma 3 [3, 9, 10]. Let β ≥ 1 and C be a bounded, closed, and convex subset of Mβ . Let
{un} be a sequence in C . Then, there exists a unique point w ∈ C that satisfies the following
conditions:

(i) lim supn→∞ ‖un – w‖2
2 + ‖w – u‖2

2 ≤ lim supn→∞ ‖un – u‖2
2 for all u ∈ C ; and

(ii) 2 lim supn→∞ ‖un – w‖2
2 ≤ lim supp→∞{lim supn→∞ ‖un – up‖2

2}.

Lemma 4 [3]. Let 1 ≤ β ≤ 2 and C be a bounded, closed, and convex subset of Mβ with
d = diam|.|β (C). Let {un} be a sequence in C such that un – un+1 → 0 as n → ∞ and
limn→∞ |un – u|β = d for all u ∈ C , let w ∈ C be the ‖.‖2-asymptotic-center of {un} in C .
Then, lim supn→∞ ‖un – w‖2

2 ≥ 2( d
β

)2.

Lemma 5 [3]. Let C be a bounded, closed, and convex subset of M2 and let {vn} be a se-
quence in C such that limn→∞ |vn – u|2 = d = diam|.|β (C) for all u ∈ C . Then, limn→∞ ‖vn –
u‖∞ = d

2 for all u ∈ C .

Lemma 6 [3]. Let {xn} and {yn} be two sequences in �2. Suppose that d > 0, yn ⇀ 0 as
n → ∞, limn→∞ ‖yn‖∞ = d

2 and limn→∞ ‖xn‖∞ = d
2 , ‖xn – yp‖ ≤ d

2 for all n, p and

lim sup
n→∞

{

lim sup
p→∞

‖xn + yp‖2
2

}

= d2.

Then,

lim sup
n→∞

{

lim sup
p→∞

‖xn + yp‖∞
}

< d.

Let {un} be a bounded sequence in Banach space M, and C be a nonempty subset of M.
The asymptotic radius of {un} at a point x in M is defined by

r
(

x, {un}
)

:= lim sup
n→∞

‖un – x‖.

The asymptotic radius of {un} with respect to C is defined by

r
(

C, {un}
)

:= inf
{

r
(

x, {un}
)

: x ∈ C
}

.

The asymptotic center of {un} with respect to C is defined as

A
(

C, {un}
)

:= {x ∈ C : r
(

x, {un}
)

= r
(

C, {un}
)

.
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Definition 7 [27]. Let M be a Banach space and C a nonempty subset of M. A mapping
S : C → C is said to satisfy condition (C) if

1
2
∥
∥u – S(u)

∥
∥ ≤ ‖u – v‖ implies

∥
∥S(u) – S(v)

∥
∥ ≤ ‖u – v‖ ∀u, v ∈ C.

Definition 8 [11]. Let C be a nonempty subset of a Banach space M. A mapping S : C → C
is said to fulfill condition (Eμ) if there exists μ ≥ 1 such that

∥
∥u – S(v)

∥
∥ ≤ μ

∥
∥u – S(u)

∥
∥ + ‖u – v‖ ∀u, v ∈ C.

We say that S satisfies condition (E) if it satisfies (Eμ) for some μ ≥ 1.

3 Class of mappings satisfying condition (L)
Llorens-Fuster and Moreno-Gálvez [21] introduced the following class of nonlinear map-
pings:

Definition 9 Let C be a nonempty subset of a Banach space (M,‖.‖). We say that a map-
ping S : C → C satisfies condition (L), (or it is an (L)-type mapping), if the following two
conditions hold:

(1) If a set D ⊂ C is nonempty, closed, convex, and S-invariant, (i.e., S(D) ⊂D), then
there exists an a.f.p.s. for S in D.

(2) For any a.f.p.s. {un} of S in C and each u ∈ C

lim sup
n→∞

∥
∥un – S(u)

∥
∥ ≤ lim sup

n→∞
‖un – u‖.

In [21] it is shown that the above two conditions in the definition of (L)-type mappings
are independent in nature.

It is proved in [21] that the class of (L)-type mappings contains strictly the following
classes:

(A) nonexpansive mappings;
(B) Suzuki generalized nonexpansive mappings (cf. [27]);
(C) generalized nonexpansve in many cases, see [21];
(D) The class of mappings satisfying condition (E) that in turn satisfy condition (1) in

the Definition 9 (cf. [11]).
Now, we consider a subclass of class of (L)-type mappings.

Definition 10 Let C be a nonempty subset of a Banach space (M,‖.‖) and a mapping
S : C → C satisfies condition (L-1), (or it is an (L-1)-type mapping), if the following two
conditions hold:

(1) If a set D ⊂ C is nonempty, closed, convex, and S-invariant, (i.e., S(D) ⊂D), then
there exists an a.f.p.s. for S in D.

(2) For any a.f.p.s. {un} of S in C , there exists a sequence {cn} in [0,∞) such that cn → 0
as n → ∞ and each u ∈ C , we have

∥
∥un – S(u)

∥
∥ ≤ ‖un – u‖ + cn. (3.1)

Example 1 Let (�2,‖ · ‖2) be the Banach space of square-summable sequences endowed
with its standard norm. Assume that B[0M, 1] is a unit ball centered at 0M (zero element).
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Suppose that S : B[0M, 1] → B[0M, 1] is the mapping given by the following definition:

S(u) =

⎧

⎨

⎩

1
2

u
‖u‖ u ∈ B[0M, 1]\B[0M, 1

2 ],

0M u ∈ B[0M, 1
2 ].

In fact, the unique fixed point of S is 0M. We can have a.f.p.s. {un} given by un ≡ 0. Suppose
{cn} = { 1

n } in [0,∞), then cn → 0 as n → ∞. Then, if u ∈ B[0M, 1
2 ]

∥
∥un – S(u)

∥
∥ =

∥
∥0M – S(u)

∥
∥ ≤ ‖0M – u‖ ≤ ‖un – u‖ + cn.

Again, if u ∈ B[0M, 1]\B[0M, 1
2 ]

∥
∥0M – S(u)

∥
∥ =

∥
∥
∥
∥

1
2

u
‖u‖

∥
∥
∥
∥

=
1
2

≤ ‖u‖ = ‖0M – u‖ ≤ ‖un – u‖ + cn.

On the other hand, u ∈ B[0M, 1] with ‖u‖ = 1
2 and v := 3

2 u, The mapping S is not nonex-
pansive.

Proposition 1 Let S : C → C be a mapping satisfying condition (L-1), then S is a mapping
satisfying condition (L).

Proof The first conditions in both mappings are the same. Hence, we only compare the
second conditions. Since mapping S is a mapping satisfying condition (L-1), then for any
a.f.p.s. {un} of S in C , there exists a sequence {cn} in [0,∞) such that cn → 0 as n → ∞ and
each u ∈ C

∥
∥un – S(u)

∥
∥ ≤ ‖un – u‖ + cn.

Taking lim sup on both sides, we obtain the desired result. �

In the next theorem, we present the structure of the fixed-point set of class of (L-1)-type
mappings.

Theorem 4 Let C be a nonempty, closed subset of a Banach space M and S : C → C a
mapping satisfying condition (L-1) with F(S) �= ∅. Then, the following implications hold:

(i) F(S) is closed in C ;
(ii) If C is convex and M is strictly convex then F(S) is convex.

Proof
(i) Let {wn} ⊆ F(S) such that wn → w ∈ C as n → ∞. Thus, S(wn) = wn and {wn} is an

a.f.p.s. for S in C . Since S is a (L-1)-type mapping, we have

∥
∥wn – S(w)

∥
∥ ≤ ‖wn – w‖ + cn,

making n → ∞, which implies that S(w) = w and F(S) is closed.
(ii) See [8, Theorem 1]. �
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4 Demiclosedness principle in uniformly convex spaces
In this section, we present some results concerning the demiclosedness principle of a map-
ping satisfying condition (L-1).

Lemma 7 Suppose C is a bounded convex subset of a uniformly convex Banach space M
and S : C → M is a mapping satisfying condition (L-1). If {un} and {vn} are approximate
fixed-point sequences, then {wn} = { 1

2 (un + vn)} is an approximate fixed-point sequence too.

Proof Suppose the assertion of the lemma is false. Then, there exist sequences {un} and
{vn} satisfying limn→∞ ‖un – S(un)‖ = 0 and limn→∞ ‖vn – S(vn)‖ = 0 such that ‖wn –
S(wn)‖ ≥ ε for some ε > 0 and every n ∈ N. We can assume by passing to a subsequence
that

lim
n→∞‖un – vn‖ = 2r > 0.

It follows that

lim
n→∞‖un – wn‖ = lim

n→∞‖vn – wn‖ = r.

By the definition of mapping S, for a.f.p.s. {un} of S in C , there exists a sequence {cn,1} in
[0,∞) such that cn,1 → 0 as n → ∞, we have

∥
∥un – S(wn)

∥
∥ ≤ ‖un – wn‖ + cn,1. (4.1)

Similarly,

∥
∥vn – S(wn)

∥
∥ ≤ ‖vn – wn‖ + cn,2,

where cn,2 → 0 as n → ∞. Choose s > 0 such that s < ε
r . Hence, for sufficiently large n, we

have

s <
ε

cn,1 + ‖un – wn‖ (4.2)

and

s <
ε

cn,2 + ‖vn – wn‖ .

Now,

∥
∥
∥
∥

un –
1
2
(

wn + S(wn)
)
∥
∥
∥
∥

=
∥
∥
∥
∥

un – S(wn) + (un–vn)
2

2

∥
∥
∥
∥

and it can be seen that

∥
∥un – S(wn)

∥
∥ ≤ ‖un – wn‖ + cn,1.
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Now,

‖un – wn‖ =
∥
∥
∥
∥

un –
1
2

(un + vn)
∥
∥
∥
∥

=
1
2
‖un – vn‖.

Thus,
∥
∥
∥
∥

(un – vn)
2

∥
∥
∥
∥

≤ ‖un – wn‖ + cn,1

and ‖wn – S(wn)‖ ≥ ε. By the uniform convexity of M (see Theorem 1), we have

∥
∥
∥
∥

un –
1
2
(

wn + S(wn)
)
∥
∥
∥
∥

≤
(

1 – δ

(
ε

cn,1 + ‖un – wn‖
))

(

cn,1 + ‖un – wn‖
)

.

It is noted that the modulus of convexity, δ(ε), is a nondecreasing function of ε, it follows
that

∥
∥
∥
∥

un –
1
2
(

wn + S(wn)
)
∥
∥
∥
∥

≤ (

1 – δ(s)
)(

cn,1 + ‖un – wn‖
)

. (4.3)

Similarly,

∥
∥
∥
∥

vn –
1
2
(

wn + S(wn)
)
∥
∥
∥
∥

≤
(

1 – δ

(
ε

cn,2 + ‖vn – wn‖
))

× (

cn,2 + ‖vn – wn‖
)

≤ (

1 – δ(s)
)(

cn,2 + ‖vn – wn‖
)

. (4.4)

By the triangle inequality, (4.3), and (4.4), we obtain

‖un – vn‖ ≤
∥
∥
∥
∥

un –
1
2

(wn + S(wn)
∥
∥
∥
∥

+
∥
∥
∥
∥

vn –
1
2

(wn + S(wn)
∥
∥
∥
∥

≤ (

1 – δ(s)
){(

cn,1 + ‖un – wn‖
)

+
(

cn,2 + ‖vn – wn‖
)}

.

Letting n → ∞, we obtain 2r ≤ 2r(1–δ(s)), a contradiction and this completes the proof.�

Proposition 2 Suppose C is a bounded, closed, and convex subset of a uniformly convex
space. Let S : C → C be a mapping satisfying condition (L-1). Then, S has a fixed point.

Proof See [21, Theorem 4.4]. �

Theorem 5 (Demiclosedness principle). Suppose C is a closed, convex subset of a uni-
formly convex space. Let S : C → C be a mapping satisfying condition (L-1). Then, the map-
ping G = I – S is demiclosed on C .

Proof Let {un} be a sequence in C such that {un} converges weakly to u† and limn→∞ ‖un –
S(un) – w‖ = 0. Without loss of generality, we assume w = 0, as limits are preserved under
the translation. Define Cn = conv{un, un+1, . . . }, using Proposition 2 on set Cn, there exists
yn ∈ Cn such that S(yn) = yn. Since any weak subsequential limit of yn lies in

⋂∞
n=1 Cn = {u†},
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it implies that yn converges weakly to u†. Therefore, u† is in the weak closure of the fixed-
point set F(S). Since M is uniformly convex, M is both reflexive and strictly convex. From
Theorem 4, fixed-point set F(S) is closed and convex, so weakly closed and u† ∈ F(S). This
completes the proof. �

5 Some fixed-point theorems
In this section, we present some fixed-point results for the class of mappings satisfying
condition (L-1).

Theorem 6 Suppose C is a closed, convex subset of a uniformly convex space. Let S : C → C
be a mapping satisfying condition (L-1). If {un} is an a.f.p.s. for S such that it converges
weakly to u† ∈ C , then u† is a fixed point of S.

Proof It can be easily seen from Theorem 5 that mapping I – S is demiclosed at 0. From
the demiclosedness principle it follows that u† is a fixed point of S. �

Remark 1 The above theorem should be compared with [21, Theorem 4.6] that asserts
the same conclusion in view of the Opial property.

Theorem 7 Let C be a nonempty bounded, closed, and convex subset of M2 and S : C → C
a mapping satisfying condition (L-1). Assume the following conditions hold:

(1) If D is minimal with respect to S, and there is an a.f.p.s. {un} in D, then
un – un+1 → 0 as n → ∞;

(2) If D is minimal with respect to S, and {un} is an a.f.p.s. in D, then
|un – u|2 → d = diam|.|β (C) for all u ∈D.

Then, S has a fixed point.

Proof By the application of Zorn’s lemma there is a nonempty, bounded, closed, convex,
and S-invariant subset D of C with no proper subsets, so D is minimal with respect to S.
Let d = diam|.|β (C) and assume, for a contradiction, that d > 0. Let {un} be an a.f.p.s. in D
such that un – un+1 → 0 as n → ∞. Let w ∈ D denote the ‖.‖2-asymptotic center of {un}
in D. By Lemma 4, we have

lim sup
n→∞

‖un – w‖2
2 ≥ d2

2
. (5.1)

Without loss of generality, we may assume there is a subsequence {unk } of {un} with unk ⇀

u ∈D and

lim
k→∞

‖unk – w‖2
2 = lim sup

n→∞
‖un – w‖2

2.

Again, take a subsequence {umk } of {un} with unk ⇀ v ∈D and

lim
k→∞

‖umk – u‖2
2 = lim sup

n→∞
‖un – u‖2

2.

By (5.1) and Lemma 3(i), we obtain

d2 ≥ lim
k→∞

{

lim
p→∞‖unk – ump‖2

2

}
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= lim sup
n→∞

‖un – u‖2
2 + lim sup

n→∞
‖un – w‖2

2 – ‖w – u‖2
2

≥ 2 lim sup
n→∞

‖un – w‖2
2 ≥ d2.

From the above inequalities, we have the following:

lim sup
n→∞

‖un – w‖2
2 =

d2

2
(5.2)

and

lim
k→∞

{

lim
p→∞‖unk – ump‖2

2

}

= d2. (5.3)

Now, we show that

lim sup
k→∞

{

lim sup
p→∞

∥
∥
∥
∥

1
2

(unk + ump ) – u
∥
∥
∥
∥∞

}

=
d
2

for all u ∈ C.

Take �k = unk and 	k = umk . From Lemma 2, for k, p ∈N, we have

∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

–
1
2

(�k + 	p)
∥
∥
∥
∥

2

2
+

1
4
‖�k – 	p‖2

2

=
1
2

∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

– �k

∥
∥
∥
∥

2

2

1
2

∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

– 	p

∥
∥
∥
∥

2

2
. (5.4)

Now,
∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

– �k

∥
∥
∥
∥

2
≤

∣
∣
∣
∣
S
(

1
2

(�k + 	p)
)

– �k

∣
∣
∣
∣
2
.

Since {�k} is a.f.p.s for S, from the definition of condition (L-1), we have

∣
∣
∣
∣
S
(

1
2

(�k + 	p)
)

– �k

∣
∣
∣
∣
2
≤

∣
∣
∣
∣

(
1
2

(�k + 	p)
)

– �k

∣
∣
∣
∣
2

+ cn,1,

where cn,1 → 0 as n → ∞. From the above inequality, we obtain

∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

– �k

∥
∥
∥
∥

2
≤ 1

2
|�k – 	p|2 + cn,1

≤ d
2

+ cn,1 (5.5)

and, similarly,

∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

– 	p

∥
∥
∥
∥

2

2
≤ d

2
+ cn,2, (5.6)

where cn,2 → 0 as n → ∞. Using (5.5) and (5.6) in (5.4), we have

∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

–
1
2

(�k + 	p)
∥
∥
∥
∥

2

2
+

1
4
‖uk – vp‖2

2 ≤ 1
2

(
d
2

+ cn,1

)2

+
1
2

(
d
2

+ cn,2

)2

.
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Since limk→∞{limp→∞ ‖�k – 	p‖2
2} = d2, from the above inequality, we obtain

lim sup
k→∞

{

lim sup
p→∞

∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

–
1
2

(�k + 	p)
∥
∥
∥
∥

2

2

}

= 0.

Thus,

lim sup
k→∞

{

lim sup
p→∞

∥
∥
∥
∥

S
(

1
2

(�k + 	p)
)

–
1
2

(�k + 	p)
∥
∥
∥
∥∞

}

= 0. (5.7)

Assume there exists u ∈ C such that

lim sup
k→∞

{

lim sup
p→∞

∥
∥
∥
∥

1
2

(�k + 	p) – u
∥
∥
∥
∥∞

}

< 
 <
d
2

. (5.8)

From (5.7) and (5.8), we can choose subsequences {�kq} and {�pq} such that for q ∈N:

∣
∣S(zq) – zq

∣
∣
2 ≤ 2

q
and ‖zq – u‖∞ ≤ 
, where zq =

1
2

(�kq + 	pq ).

Therefore, limq→∞ |S(zq) – zq|2 = 0 and lim supq→∞ ‖zq – u‖∞ ≤ 
 < d
2 , which contradicts

Lemma 5 by assumption (2). Hence,

lim sup
k→∞

{

lim sup
p→∞

∥
∥
∥
∥

1
2

(unk + ump ) – u
∥
∥
∥
∥∞

}

=
d
2

for all u ∈ C. (5.9)

In particular, it yields,

lim sup
k→∞

{

lim sup
p→∞

∥
∥
∥
∥

1
2

(unk + ump ) –
1
2

(u + v)
∥
∥
∥
∥

2

2

}

≥ d2

4
.

From Lemma 2, it follows that

d2

4
≤ lim sup

k→∞

{

lim sup
p→∞

∥
∥
∥
∥

1
2

(unk + ump ) –
1
2

(u + v)
∥
∥
∥
∥

2

2

}

= lim sup
k→∞

{

lim sup
p→∞

∥
∥
∥
∥

1
2

(unk – u) +
1
2

(ump – v)
∥
∥
∥
∥

2

2

}

=
1
4

lim
k→∞

‖unk – u‖2
2 +

1
4

lim
p→∞‖ump – v‖2

2. (5.10)

Since unk ⇀ u ∈D as k → ∞, then for each k ∈N,

‖unk – w‖2
2 = ‖unk – u + u – w‖2

2

= ‖unk – u‖2
2 + 2〈unk – u, u – w〉 + ‖u – w‖2

2.

From (5.2), we have

lim
k→∞

‖unk – u‖2
2 =

d2

2
– ‖w – u‖2

2. (5.11)
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Similarly,

lim
p→∞‖ump – v‖2

2 =
d2

2
– ‖w – v‖2

2. (5.12)

Using (5.11) and (5.12) in (5.10) it follows that

d2

4
≤ 1

4

(
d2

2
– ‖w – u‖2

2

)

+
1
4

(
d2

2
– ‖w – v‖2

2

)

≤ d2

4
–

1
4
(‖w – u‖2

2 + ‖w – v‖2
2
)

and it proves that u = v = w. Take σk = unk – w and �k = umk – w. Since {umk } converges
weakly to v = w,

�k ⇀ 0 as k → ∞. (5.13)

Since |umk – w|2 → d and |unk – w|2 → d as k → ∞, from Lemma 5, the following hold:

‖�k‖∞ → d
2

and ‖σk‖∞ → d
2

as k → ∞. (5.14)

By the definition of d, the following condition is satisfied:

for each k, p ∈N, ‖σk – �k‖∞ ≤ d
2

. (5.15)

From (5.3), we have

lim
k→∞

{

lim
p→∞‖unk – ump‖2

2

}

= lim
k→∞

{

lim
p→∞

∥
∥(unk – w) – (ump – w)

∥
∥

2
2

}

= lim
k→∞

{

lim
p→∞‖σk – �p‖2

2

}

= d2. (5.16)

From (5.9), we obtain 1
2 lim supk→∞{lim supp→∞ ‖(unk – w) + (ump – w)‖∞} = d

2 and it fol-
lows that

lim sup
k→∞

{

lim sup
p→∞

‖σk + �p‖∞
}

= d. (5.17)

From Lemma 2, for all k, p ∈N, we have

‖σk + �p‖2
2 = 2‖σk‖2

2 + ‖�p‖2
2 – ‖σk – �p‖2

2.

In view of (5.13), (5.14), (5.15), (5.16), (5.17), and Lemma 6, this implies

lim
k→∞

{

lim
p→∞‖σk + �p‖2

2

}

= d2,

which is impossible. This completes the proof. �
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Theorem 8 Let C be a nonempty, bounded, closed (resp., weak∗ closed), and convex subset
of a reflexive Banach space (resp., the conjugate of a separable Banach space) M. Let S :
C → C be a mapping satisfying condition (L-1). Suppose that the relation ⊥ is uniformly
approximately symmetric (resp., uniformly weak∗ approximately symmetric) in M, then
F(S) �= ∅.

Proof By the application of Zorn’s lemma there exists a nonempty, bounded, closed, con-
vex, and S-invariant subset D of C with no proper subsets, so D is minimal with re-
spect to S. Since S satisfies condition (L-1), there exists an a.f.p.s. {un} for S in D. By
the reflexiveness of M, there exists a subsequence {unk } of {un} such that unk converges
weakly to u†. After possible extraction of a subsequence, if necessary, we assume that
limk→∞ ‖xnk – x†‖ = . Take v = u† – S(u†). If  = 0 or v = 0, then S(u†) = u† and the proof
is completed. Therefore, we assume that  > 0 and v �= 0. Following largely the same argu-
ment in [18, Theorem 1] let ε = 1

2
. By the assumptions, there exists a closed (resp., weak∗

closed) linear subspace Y such that conditions (i) in Definition 4 and (iii) in Definition 6
are satisfied. This implies that there exists a δ > 0 such that

|μ| ≤ ‖v + μu‖ – |μ|δ (5.18)

for every u ∈ Y , ‖u‖ = 1 and each μ with |μ| ≤ 2. Further, the subspace spanned by
Y and v has a finite-dimensional complement Z . Therefore, for each k ∈ N, σnk ∈ Y and
�nk ∈Z , we have

unk – u† = μnk v + σnk + �nk . (5.19)

Since Z is a finite-dimensional space and noting the convergence of unk – u†, it follows
that μnk → 0 and ‖�nk ‖ → 0 as k → ∞. Thus, ‖σnk ‖ →  and for sufficiently large k,
‖σnk ‖

(1+μnk ) ≤ 2. From (5.18) and (5.19), we have

∥
∥unk – S

(

u†
)∥
∥ =

∥
∥unk – u† + u† – S

(

u†
)∥
∥ =

∥
∥(1 + μnk )y + σnk + �nk

∥
∥

≥ ∥
∥(1 + μnk )v + σnk

∥
∥ – ‖�nk ‖

≥ |1 + μnk |
∥
∥
∥
∥

v +
( ‖σnk ‖

(1 + μnk )

)
σnk

‖σnk ‖
∥
∥
∥
∥

– ‖�nk ‖

≥ ‖σnk ‖(1 + δ) – ‖�nk ‖. (5.20)

Since the mapping S satisfies condition (L-1), we have

∥
∥unk – S

(

u†
)∥
∥ ≤ ∥

∥unk – u†
∥
∥ + ck , (5.21)

where ck → 0 as k → ∞. Making k → ∞, ‖unk – S(u†)‖ → . From (5.20), noting that
‖unk ‖ →  and ‖vnk ‖ → 0 as k → ∞ we obtain the following inequality

 ≥ (1 + δ),

which is a contradiction. Therefore,  = 0, and this completes the proof. �
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Corollary 1 Let C be a convex, bounded, and weak∗ closed subset of �1 or the James space
J0. Let S : C → C be a mapping satisfying condition (L-1). Then, S has a fixed point in C .

We conclude the paper by posing the following interesting problem.
Kassay [19] showed that the converse of the above theorem is also true. More precisely,

a reflexive Banach space having normal structure can be characterized by the fixed-point
property for Jaggi-nonexpansive mappings.

5.1 Problem
Can a reflexive Banach space having asymptotic normal structure be characterized by the
fixed-point property for mapping satisfying condition (L-1)?
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