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Abstract
This article focuses on studying some fixed-point results via�-contraction of
Hardy–Rogers type in the context of supermetric space and ordered supermetric
space. We also introduced rational-type z-contraction on supermetric space. For
authenticity, some illustrative examples and applications have been included.
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1 Introduction
Metric fixed-point theory is one of the most beneficial and appealing areas of nonlinear
functional analysis. In light of Banach’s remarkable fixed-point theorem [1] [BCP], several
findings and publications on the topic have been made during the past decade. Funda-
mentally, there are two widely recognized perspectives on the advancement of the metric
fixed point: one involves weakening or changing the conditions on the contraction map-
pings, and the other involves variation in the abstract structure. Metric spaces, in many
directions, have been met with many generalizations and extensions. These include the
quasimetric space, the b-metric space, the symmetric space, the dislocated metric space,
the partial metric space, the modular metric space, the cone metric space, the ultrametric
space, and a variety of other combinations of these.

Another important generalization of Banach’s remarkable contraction was made by
Wardowski [2], who proposed a new contraction termed F-contraction via an auxiliary
function F, satisfying certain requirements, and also proved a result for a fixed point. In
this direction, various scholars have carried out several noteworthy modifications and ex-
pansions dealing with the initial discoveries of Wardowski. The readers may refer to [3–10]
for more details on F-contraction. In addition, rational contractions are also an important
part of fixed-point theory, especially when looking into the existence and uniqueness of
mathematical problems. Rational contractions are a powerful notion in fixed-point theory,
offering a framework for examining the behavior of mappings and the existence of fixed
points. They enable researchers to extend and generalize existing results and provide a
flexible tool for numerous mathematical applications see [11, 12].
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In the same direction, researchers presented Hardy–Rogers-type (HR-type) results for
self-mappings on complete usual and partial metric spaces, notably Cosentino and Vetro
in [13] and Huang and coauthors in [14]. In addition, Abbas with coauthors presented
results for T-HR-type contraction in partially ordered and partial ordered metric spaces
[15]. Likewise, Karapinar in [16] studied contractions of interpolative HR-type in complete
metric and partial metric spaces. For more details on HR-type contraction see [17–19]

Similarly, one of the most recent generalizations is the supermetric space [20]. All three
axioms of a supermetric space are satisfied by metric spaces, although the triangle inequal-
ity is not always true in supermetric spaces. Supermetric spaces can be a useful tool in a
variety of applications that include fixed-point theory, functional analysis, and optimiza-
tion.

In the framework of supermetric spaces, this paper explores the ideas of HR-type con-
traction and a contraction of rational-type z-contraction. This idea will provide a compre-
hensive framework for research, and help in examining diverse mathematical processes
and structures. In addition, this manuscript will contribute to an understanding of the in-
terplay between supermetric spaces and �-contractions, shedding light on the properties
of self-mappings in the context of supermetric spaces. For the validity of the presented
results, illustrative examples have been discussed.

2 Preliminaries
For the following, the concepts and notations listed below are necessary. In the next sec-
tions we will use an abbreviation (S-Map) in place of self-mappings. First, we recall the
basic properties of the supermetric.

Definition 2.1 [21] For a nonempty set �. Define ms : � × � → [0, +∞) is termed as a
supermetric if these conditions hold:

1. If ms(υ,ω) = 0, then υ = ω for all υ,ω ∈�.
2. ms(υ,ω) = ms(ω,υ) for all υ,ω ∈�.
3. There, we have s ≥ 1 such that for all ω ∈ �, there exist distinct sequences (υη),

(ωη) ⊂� with ms(υη,ωη) → 0 as η tends to infinity, such that

lim sup
η→+∞

ms(ωn,ω) ≤ s lim sup
η→+∞

ms(υη,ω).

Then, we call (�, ms) a supermetric space.

Example 1 [20] Let � = [0, +∞] and define

ms(υ,ω) =

⎧
⎪⎪⎨

⎪⎪⎩

υ+ω
1+υ+ω

if υ �= ω,υ �= 0,ω �= 0,

0 if υ = ω,

max
(

υ
2 , ω

2
)

otherwise.

Then, we can say (�, ms) forms a supermetric space.

Example 2 [20] Let � = [2, 3] and define ms(υ,ω) =

⎧
⎨

⎩

υω if υ �= ω,

0 if υ = ω.
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Let (υη), (ωη) be two distinct sequences such that ms(υη,ωη) → 0 as η → +∞. As we
have the distinct sequences thus, ms(υη,ωη) = υηωη → 0. It can be chosen that ωη → 0
and υη → t as η → +∞, where t ∈�. Furthermore, for any ω ∈�,

lim sup
η→+∞

ms(ωη,ω) = lim sup
η→+∞

ωηω = 0 ≤ lim sup
η→+∞

ms(υη,ω) = lim sup
η→+∞

υηω = t · ω,

hence, this leads to (�, ms) being a supermetric space.

Example 3 [22] Let � = [0, 1] with s = 1, and define ms : �×� → [0, +∞) as follows:

ms(υ,ω) = υω, for all υ �= ω, υ,ω ∈ (0, 1),

ms(υ,ω) = 0, for all υ = ω, υ,ω ∈ [0, 1],

ms(0,ω) = ms(ω, 0) = ω, for all ω ∈ (0, 1],

ms(1,ω) = ms(ω, 1) = 1 –
ω

2
, for all ω ∈ [0, 1).

Then, ms defines a supermetric.

Definition 2.2 [20]
1. For a supermetric space (�, ms) a sequence (υη) in � converges to ω in �, if and only

if ms(υη,ω) tends to 0, as η goes to +∞.
2. For a supermetric space (�, ms) a sequence (υη) in � can be claimed as a Cauchy

sequence in �, if and only if limη→+∞ sup ms(υη,υm) : m > η = 0.
3. A space (�, ms) can be claimed as a complete supermetric space if and only if, every

Cauchy sequence in � converges.

Here, we recall �-contraction.

Definition 2.3 [2] Let � : R+ →R be a mapping satisfying:
(F1) For all υ,ω ∈R

+ υ < ω, implies to �(υ) < �(ω), that it � is strictly increasing.
(F2) For every {υη}η∈N a positive term sequence, limη→+∞ υη = 0

if and only if limn→+∞ �(υη) = –∞.
(F3) There exists t ∈ (0, 1) such that limυ→0+ υt

�(υ) = 0.

We will use the notion � for the family of all those functions that met the requirements
(F1) – (F3).

Definition 2.4 [2] A S-Map S : � →� is referred to as an �-contraction if for some τ > 0
such that for all υ,ω ∈ �:

(m(Sυ, Sω) > 0) ⇒ (τ + �(m(Sυ, Sω)) ≤ �(m(υ,ω))), (1)

where m(·, ·) is the distance metric.

Also, we recall �-contraction of HR type.
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Definition 2.5 [13] Suppose (�, m) is a metric space. a S-Map S is said to be an �-
contraction of HR type on � if there is � ∈ � and τ ∈R

+ such that;

τ + �(m(Sυ, Sω)) ≤ �(αm(υ,ω) + βm(υ, Sυ) + γ m(ω, Sω)

+ δm(υ, Sω) + Lm(ω, Sυ)),
(2)

for all υ,ω ∈� with m(Sυ, Sω) > 0, where α + 2δ + β + γ = 1, L ≥ 0 and γ �= 1.

Remark 1 [13] From (F1) and (1), it can be derived that, in every �-contraction S is a
contractive mapping, that is, m(Sυ, Sω) < m(υ,ω), for all υ,ω ∈�, Sυ �= Sω.

Likewise, (F1) and (2) yields:

m(Sυ, Sω)) < αm(υ,ω) + βm(υ, Sυ) + γ m(ω, Sω) + δm(υ, Sω) + Lm(ω, Sυ), (3)

for all υ,ω ∈ �, Sυ �= Sω, where α + β + γ + 2δ = 1, L ≥ 0, and γ �= 1, which means that
every �-contraction of HR type, S satsifies the above condition.

Now, we introduce the definition of �-contraction of HR-type on a supermetric space.

Definition 2.6 A S-Map S : � → � is referred to as an �-contraction in the context of
supermetric if for some τ > 0 such that for all υ,ω ∈�:

(ms(Sυ, Sω) > 0) ⇒ (τ + �(ms(Sυ, Sω)) ≤ �(ms(υ,ω))), (4)

where ms(·, ·) is the distance supermetric.

Definition 2.7 Suppose (�, ms) is a supermetric space. A S-Map S on � is said to be an
�-contraction of HR-type if there exist � ∈ � and τ ∈R

+ such that;

τ + �(ms(Sυ, Sω)) ≤ �(αms(υ,ω) + βms(υ, Sυ) + γ ms(ω, Sω)

+ δms(υ, Sω) + Lms(ω, Sυ)),
(5)

for all υ,ω ∈� with ms(Sυ, Sω) > 0, where α + 2δ + β + γ = 1, L ≥ 0 and γ �= 1.

Example 4 [2] Let � : R+ →R be defined as �(υ) = lnυ . Certainly, � satisfies (F1) – (F3)
and (F3) for any t ∈ (0, 1).

Remark 2 Every mapping S : � →� satisfying (4) is an �-contraction with

ms(Sυ, Sω) ≤ e–τ ms(υ,ω),

for all υ,ω ∈�, Sυ �= Sω.

Remark 3 From (F1) and (4), it can be derived that, in every �-contraction S is a contrac-
tive mapping, that is, ms(Sυ, Sω) < ms(υ,ω), for all υ,ω ∈�, Sυ �= Sω.

Likewise, (F1) and (5) yields:

ms(Sυ, Sω)) < αms(υ,ω) + βms(υ, Sυ) + γ ms(ω, Sω) + δms(υ, Sω) + Lms(ω, Sυ), (6)
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for all υ,ω ∈ �, Sυ �= Sω, where α + β + γ + 2δ = 1, L ≥ 0, and γ �= 1, which means that
for every �-contraction of HR type in the context of supermetric, S satisfies the above
condition.

Theorem 2.8 [13] For a complete metric space (�, ms) and a S-Map S on �. Assuming
there exists � ∈ � and τ > 0 such that S is a generalized �-contraction of HR-type, that is,

τ + �(ms(Sυ, Sω)) ≤ �(αms(υ,ω) + βms(υ, Sυ) + γ ms(ω, Sω)

+ δms(υ, Sω) + Lms(ω, Sυ)),

for all υ,ω ∈ �, Sυ �= Sω, where α + γ + β + 2δ = 1, γ �= 1, and L ≥ 0. Then, S possesses a
fixed point. Furthermore, if α + δ + L ≤ 1, then S possesses a unique fixed point.

Definition 2.9 [13] For a metric space (�, m) and partially ordered (�,�) on a nonempty
set �, (�, m,�) is termed as an ordered metric space. Now, if either of ϑ � ψ or ψ � ϑ

holds, then ϑ ,ψ ∈� will be comparable.

Definition 2.10 [13] For a partially ordered set (�,�), a S-Map S is referred to as nonde-
creasing if Sϑ � Sψ , whenever ϑ � ψ for all ϑ ,ψ ∈�.

Definition 2.11 [13] For an ordered metric space (�, m,�), � is termed regular, for a
nondecreasing sequence {μη} in � with respect to � if, limη→+∞ μη = μ ∈�, then μη � μ

for all η ∈ N∪ {0}.

Theorem 2.12 [13] For a self- and nondecreasing mapping S on � and an ordered com-
plete metric space (�, ms,�). Assuming � ∈ � and τ > 0 such that S is a generalized �-
contraction of HR-type, that is,

τ + �(ms(Sυ, Sω)) � �(αms(υ,ω) + βms(υ, Sυ) + γ ms(ω, Sω)

+ δms(υ, Sω) + Lms(ω, Sυ)),

for all υ,ω ∈ � comparable, Sυ �= Sω, where α + γ + β + 2δ = 1, γ �= 1, and L ≥ 0. If these
requirements are true:

(C1) There is υ ∈ � such that υ � Sυ ;
(C2) � is regular;

then S will have a fixed point. Furthermore, if α + L + δ ≤ 1, then the set of fixed points of S
will be well ordered, if and only if S possesses a unique fixed point.

3 Main result
This article focuses on examining fixed-point results using an � – contraction of Hardy–
Rogers type in the context of supermetric space and ordered supermetric space. The paper
contains several examples as well as interesting applications of the obtained theoretical
results.

Theorem 3.1 Let (�, ms) be a complete supermetric space with S a self-map on �. Assum-
ing there is � ∈ � and τ > 0 such that S is a generalized �-contraction of HR-type, that
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is,

τ + �(ms(Sυ, Sω)) ≤ �(αms(υ,ω) + βms(υ, Sυ) + γ ms(ω, Sω)

+ δms(υ, Sω) + Lms(ω, Sυ)),
(7)

for all υ,ω ∈ �, Sυ �= Sω, where α + β + γ = 1, δ = 0, γ < 1, and L ≥ 0. Then, S ensures a
fixed point. Furthermore, if α + δ + L ≤ 1, then S ensures a unique fixed point.

Proof Supposing υ0 is an arbitrary point in �, with {υn} the Picard sequence and initial
point υ , that is, υη = Sυη–1 = Sη(υ0).

If υη = υη–1 for some η ∈N, then υη is a fixed point of S.
Now, let mη = ms(υη,υη+1) for all η ∈ N∪ {0}.
Also, υη �= υη+1, means that Sυη–1 �= Sυη for all η ∈N, utilizing (7) such that υ = υη–1 and

ω = υη , it can be obtained that

τ + �(mη) = τ + �(ms(υη,υη+1)) = τ + �(ms(Sυη–1, Sυη))

≤ �(αms(υη–1,υη) + βms(υη–1, Sυη–1) + γ ms(υη, Sυη) + Lms(υη, Sυη–1))

= �(αms(υη–1,υη) + βms(υη–1,υη) + γ ms(υη,υη+1) + Lsm(υη,υη))

= �(αmη–1 + βmη–1 + γ mη)

≤ �((α + β)mη–1 + γ mη.

Now, since � ∈ �, it is strictly increasing,

mη < (α + β)mη–1 + γ mη for all η ∈N.

Focusing on α + β + γ = 1 with γ �= 1, one would have 1 – γ > 0.

mη <
α + β

1 – γ
mη–1 = mη, for all η ∈N.

As a result,

τ + �(mη) ≤ �(mη–1) for all η ∈N,

which means that

�(mη) ≤ �(mη–1) – τ ≤ · · · ≤�(m0) – ητ , for all η ∈N.

Now, limη→+∞ �(mη) = –∞. By (F2) of 2.3, one can obtain mη → 0 as η → +∞.
This implies that

lim
η→+∞ ms(υη,υη+1) = 0.

Now, suppose that κ ,η ∈N and κ > η. If υη = υκ , we have

Sκ (υ0) = Sη(υ0).
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Hence,

Sκ–η(Sη(υ0)) = Sη(υ0).

Thus, Sη(υ0) is the fixed point of Sκ–η .
Also,

S(Sκ–η(Sη(υ0))) = Sκ–η(S(Sη(υ0))) = S(Sη(υ0)).

This means that S(Sη(υ0)) is the fixed point of Sκ–η as well.
Thus, S(Sη(υ0)) = Sη(υ0).
Hence, Sη(υ0) is the fixed point of S.
Hence, maintaining generality, it can be supposed that, υη �= υκ .
Therefore, lim supη→+∞ ms(υη,υη+2) ≤ lim supη→+∞ ms(υη+1,υη+2).
Thus, as lim supη→+∞ ms(υη,υη+2) = 0, we have,

lim sup
η→+∞

ms(υη,υη+3) ≤ lim sup
η→+∞

ms(υη+2,υη+3) = 0.

Inductively, it can be concluded that

lim sup
η→+∞

{ms(υη,υκ ) : κ > η} = 0.

This leads to the fact that sequence {υη} is Cauchy. Provided that � is a complete su-
permetric space, there must be u ∈� such that υη → u. The proof is completed if, u = Su.
Assuming u �= Su. If Sυη = Su for infinitely many values of η ∈ N ∪ {0}, then {υη} ensures
having a convergent subsequence that converges to Su, and since the limit is unique, it
ensures that u = Su.

Hence, it can be assumed that Sυη �= Su for all η ∈ N∪ {0}.
Further noting,

ms(υη+1, Su) = ms(Sυη, Su),

by (6), we have

ms(υη+1, Su) ≤ αms(υη, u) + βms(υη, Sυη) + γ ms(u, Su) + Lms(u, Sυη)

= ms(u,υη+1) + αms(υη, u) + βms(υη,υη+1) + γ ms(u, Su) + Lms(u,υη+1),

which leads to a contradiction, thus u = Su.

Uniqueness
Now, supposing another fixed point q ∈� is not equal to u, of S to justify the uniqueness.
This leads to ms(u, w) > 0. Inserting υ = u and ω = q into (7), we have

τ + �(ms(u, q)) = τ + �(ms(Su, Sq))

≤ �(αms(u, q) + βms(u, Su) + γ ms(q, Sq) + Lms(q, Su))
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= �((α + L)ms(u, q)),

which leads to a contradiction, for choosing, α + L ≤ 1, and hence u = w. �

The above result can yield the following corollaries:

Corollary 1 For a complete supermetric space (�, ms). If a S-Map S on � is an �-
contraction, then S has a unique fixed point.

Proof Setting, β = L = γ = δ = 0 with α = 1 in Theorem (3.1), we obtain the result. �

Corollary 2 For a complete supermetric space (�, ms) and a S-Map S on �. Assume there
exist � ∈ � with τ ∈R

+ such that,

τ + �(ms(Sυ, Sω)) ≤ �(βms(υ, Sυ) + γ ms(ω, Sω)),

for all υ,ω ∈�, Sυ �= Sω, where γ +β = 1, with γ < 1. Then, S possesses a unique fixed point
in �.

Proof Taking α = δ = L = 0 in Theorem 3.1, one can obtain the result. �

Corollary 3 For a complete supermetric space (�, ms) and a S-Map S on �. Assume there
exist � ∈ � with τ ∈R

+ such that

τ + �(ms(Sυ, Sω)) ≤ �(αms(υ,ω) + βms(υ, Sυ) + γ ms(ω, Sω)),

for all υ,ω ∈ �, Sυ �= Sω, where α + γ + β = 1, γ < 1. Then, S ensures a unique fixed point
in �.

Proof Taking δ = L = 0 in Theorem 3.1, we obtain the result. �

Remark 4 Corollary 1 is actually the main result of Wardowski [2] in the framework of
supermetric space.

Remark 5 Corollary 2 is the version of Kannan’s result [23] in the framework of superme-
tric space.

Remark 6 Corollary 3 is a Reich [24] type result in the setting of a supermetric space.

Now, we will move on to our next result of this section that is a rational-type �-
contraction in the setting of supermetric space.

Theorem 3.2 Let (�, ms) be a complete supermetric space and S : � →� be a generalized
�-contraction, such that,

τ + �(ms(Sυ, Sω)) ≤ �

[

k max

{

ms(υ,ω),
ms(υ, Sυ)ms(ω, Sω)

1 + ms(υ,ω)

}]

, (8)

holds for all υ,ω ∈�, with k ∈ [0, 1), Sυ �= Sω, τ > 0 a constant and � ∈ �.
Then, S has a unique fixed point.
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Proof Using (8) and F1, we have:

ms(Sυ, Sω) ≤ k max

{

ms(υ,ω)
ms(υ, Sυ)ms(ω, Sω)

1 + ms(υ,ω)

}

. (9)

Let υ0 ∈ � and let υ1 = Sυ0. If υ0 = υ1 then there is nothing to prove, the proof is completed.
Assuming υ0 �= υ1. Thus, ms(υ0,υ1) > 0. Thus, maintaining generality, we can define the

Picard sequence, Sυη = υη+1 with υη �= υη+1.
Hence, ms(υη,υη+1) > 0, for all η ∈N.
From (9),

ms(υη,υη+1) = ms(Sυη–1, Sυη)

≤ k max

{

ms(υη–1,υη),
ms(υη–1, Sυη–1)ms(υη, Sυη)

1 + ms(υη–1,υη)

}

= k max

{

ms(υη–1,υη),
ms(υη–1,υη)ms(υη,υη+1)

1 + ms(υη–1,υη)

}

≤ k max{ms(υη–1,υη), ms(υη,υη+1)}.

For the case of choosing

max{ms(υη–1,υη), ms(υη,υη+1)} = ms(υη,υη+1),

we meet a contradiction.
This implies that

max{ms(υη–1,υη), ms(υη,υη+1)} = ms(υη–1,υη).

Thus, it can be concluded that

ms(υ,υη+1) ≤ kms(υη,υη–1) ≤ k2ms(υη2 ,υη1 ) ≤ · · · ≤ knms(υ0,υ1)

and taking the limit, we obtain,

lim
η→+∞ ms(υη,υη+1) = 0.

Now, suppose that κ ,η ∈N and κ > η. If υη = υκ , we have

Sκ (υ0) = Sη(υ0).

Hence, we have

Sκ–η(Sη(υ0)) = Sη(υ0).

Thus, Sη(υ0) is the fixed point of Sκ–η .
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Also,

S(Sκ–η(Sη(υ0))) = Sκ–η(S(Sη(υ0))) = S(Sη(υ0)).

This means that S(Sη(υ0)) is also the fixed point of Sκ–η .
Thus, S(Sη(υ0)) = Sη(υ0).
Hence, Sη(υ0) is the fixed point of S.
Hence, maintaining generality, it can be supposed that, υη �= υκ .
Therefore, lim supη→+∞ ms(υη,υη+2) ≤ lim supη→+∞ ms(υη+1,υη+2).
Thus, as lim supη→+∞ ms(υη,υη+2) = 0, we have,

lim sup
η→+∞

ms(υη,υη+3) ≤ lim sup
η→+∞

ms(υη+2,υη+3) = 0.

Inductively, it can be concluded that

lim sup
η→+∞

{ms(υη,υκ ) : κ > η} = 0.

This justifies that {υη} is Cauchy.
Since (�, ms) is supposed to be a complete supermetric space, {υη} converges to u ∈ �.

We claim that u is the fixed point of S. On the contrary, assume ms(u, Su) > 0.
Note that

ms(υn+1, Su) = ms(Sυη, Su) ≤ k max

{

ms(υη,ω),
ms(υη, Sυη)ms(ω, Sω)

1 + ms(υη,ω)

}

. (10)

Thus, limη→+∞ ms(υη+1, Su) ≤ k limη→+∞ ms(υη, u) = 0.
If there exists some N > 0 such that for all η > N , υN+1 = u, equation (10) concludes that

ms(u, Su) = 0 and so u is the fixed point for S. Otherwise, assuming for all η ∈ N, υn �= u.
Thus, we have

ms(u, Su) ≤ s lim
η→+∞ sup ms(υη, u).

Also, it can be concluded that ms(u, Su) = 0, which leads to a contradiction. As a result,
u is the fixed point of S in �.

Uniqueness
For instance, letting another point p ∈� such that Sp = p �= u = Su. Then, by (8), we obtain

τ + �(ms(Sp, Su)) ≤ �

[

k max

{

ms(p, u),
ms(p, Sp)ms(u, Su)

ms(p, u) + 1

}]

.

Thus,

τ ≤ �{ms(p, u)} – �{ms(p, u)} = 0,

which is a contradiction. �
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Example 5 Let � = [2, 3] with supermetric be defined as

ms(υ,ω) =

⎧
⎨

⎩

υω, υ �= ω,

0, υ = ω.

Now, consider S : �×� as follows,

S(υ) =

⎧
⎨

⎩

2, υ �= 3,
5
2 , υ = 3

and define

F(t) = ln(t), t > 0.

Then, proving the following is not tedious

τ + �(ms(Sυ, Sg)) ≤ �(ms(υ, g)),

for some τ ≥ 0.
All the requirements of the Corollary 1 are fulfilled. Thus, the fixed point of S will cer-

tainly be unique.

Example 6 Let � = [0, 1] with s = 1, and define ms : �×� → [0, +∞):

ms(υ,ω) = υω, for all υ �= ω, υ,ω ∈ (0, 1),

ms(υ,ω) = 0, for all υ = ω, υ,ω ∈ [0, 1],

ms(0,ω) = ms(ω, 0) = ω, for all ω ∈ (0, 1],

ms(1,ω) = ms(ω, 1) = 1 –
ω

2
, for all ω ∈ [0, 1), is a supermetric.

Now, consider, S : � →� as follows:

S(υ) =

⎧
⎨

⎩

υ
4 , if υ ∈ [0, 1),
1
8 , if υ = 1

and define

�(t) =
–1√

t
, t > 0.

For k = 1
2 , we check the mapping for the following cases:

1. If υ = 0, ω ∈ (0, 1),

ms(0,ω) = ω, ms(S0, Sω) = ms(
ω

4
).

Also, we can have �( 1
2 ms(υ,ω)) = –

√
2√

ω
, and �(ms(Sυ, Sω)) = –2√

ω
.
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Thus,

τ + �(ms(Sυ, Sω)) ≤ �

[

k max

{

ms(υ,ω),
ms(υ, Sυ)ms(ω, Sω)

1 + ms(υ,ω)

}]

.

Now, for the other two cases,

If υ = 0, ω = 1, and, υ = 1, ω ∈ (0, 1).

Following the same argument we meet the same consequence. Thus, S will have a unique
fixed point.

4 Fixed-point results in the context of ordered supermetric spaces
In the study of results of fixed points, which have vital applications in functional analysis,
operator theory, and nonlinear analysis, partial ordered metric spaces have been employed
extensively. These theorems are crucial in demonstrating the existence and uniqueness of
solutions of certain mathematical and engineering problems. In 2004, Reurings and Ran
[25] initiated the concept of how fixed points of self-mappings exist in ordered sets. This
plays a significant role in the ordered theoretic approach. This study was further continued
by Nieto and Rodriguez-Lopez [26]. In the same direction, many more valuable results
have been established [27, 28].

This section comprises HR-type contractions in the context of ordered supermetric
spaces.

Theorem 4.1 Let (�, ms,�) be a complete supermetric space and with S a self- and non-
decreasing mapping on �. Assuming � ∈ � and τ > 0 such that S is a generalized �-
contraction of HR-type, that is,

τ + �(ms(Sυ, Sω)) � �(αms(υ,ω) + βms(υ, Sυ) + γ ms(ω, Sω)

+ δms(υ, Sω) + Lms(ω, Sυ)),
(11)

for all υ,ω ∈ � comparable, Sυ �= Sω, where α + γ + β = 1, δ = 0, γ < 1, and L ≥ 0. If the
conditions below are true:

(C1) There is υ ∈ � such that υ � Sυ ;
(C2) � is regular;

then S will have a fixed point. Furthermore, if α + L � 1, then S will have a well-ordered set
of fixed points, if and only if S possesses a unique fixed point.

Proof Let υ0 ∈� and υ0 � Sυ0, with {υη} a Picard sequence possessing initial point υ , that
is, υη = Sυη–1 = Sη(υ0). If υη = υη–1 for some η ∈N, then υη S has υη as a fixed point.

Next, letting mη = ms(υη,υη+1) for all η ∈N∪ {0} and suppose υη �= υη–1 for each η ∈N.
Having S nondecreasing with υ0 � Sυ0, it can be obtained that:

υ0 ≺ υ1 ≺ · · · ≺ υn ≺ · · · , (12)

which means that υη and υη+1 can be compared and Sυη–1 �= Sυη for every η ∈N∪ {0}.
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Following the same direction as in the proof of (3.1), we obtain {υη} as a Cauchy se-
quence. The completeness of � means there must be some u ∈ � such that υη → u. If
u = Su there is nothing to prove.

Let us assume u �= Su.
As � is regular and from (12) it can be deduced that υη and u are comparable and Sυη �=

Su for all η ∈N∪ {0}.
Noting that

ms(υη+1, Su) = ms(Sυη, Su)

by (6) in partial order, we have

ms(υη+1, Su) � αms(υη, u) + βms(υη, Sυη) + γ ms(u, Su) + Lms(u, Sυη)

= ms(u,υη+1) + αms(υη, u) + βms(υη,υη+1) + γ ms(u, Su) + Lms(u,υη+1).

Letting η → +∞ in the above inequality, we obtain,

ms(u, Su) � γ ms(u, Su) ≺ d(u, Su),

which leads to a contradiction, thus u = Su.
Now, we assume that α + L ≤ 1 and S has a well-ordered set of fixed points. We declare

that S possesses a unique fixed point. Assuming contrarily that � has another fixed point
of S that is g , such that u �= g . Using (11), with υ = u and ω = g , we obtain

τ + �(ms(u, g)) � �(αms(u, g) + βms(u, Su) + γ ms(g, Sg) + Lms(g, Su))

= �((α + L)ms(u, g))

� �(ms(u, g)),

which leads to a contradiction. Thus, u = g . Conversely, if S possesses a unique fixed point,
then being a singleton set, the set of fixed points of S is well ordered. �

Remark 7 Choosing �(υ) = lnυ in Theorem (4.1) and putting γ = β = L = δ = 0 and τ = 1,
then the Theorem 2.2 of [26] in the frame of supermetric space can be obtained.

Theorem 4.2 Let (�, ms,�) be a complete ordered supermetric space and let S be a S-
Map and nondecreasing on �. Assuming � ∈ � and τ > 0 such that S is a generalized �-
contraction of HR type with δ = γ = 0, if the conditions below are true:

(U1) There is υ ∈� such that υ � Sυ ,
(U2) � is regular, then S possesses a fixed point. Furthermore, if α + L < 1 and,
(U3) For all u, g ∈ � there exists t ∈� such that t and u are comparable and g and t are

comparable;
then S possesses a unique fixed point.
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Proof As a consequence of Theorem 4.1 S ensures a fixed point. Now, let u ∈� be a fixed
point of S. For all t ∈� comparable with u such that Su �= St, we have

τ + �(ms(Su, St)) ��(αms(u, t) + βms(u, Su) + Lms(t, Su))

��(αms(u, t) + Lms(t, u))

= �((α + L)ms(u, t)).

Due to the fact that � is strictly increasing, it can be obtained that

ms(u, St) < (α + L)ms(u, t).

As S is nondecreasing, it can be achieved that u and Sηt can be compared for all η ∈ N. If
u �= Sηt for all η ∈N, then

ms(u, Sηt) < ληms(u, t), for all η ∈N,

where λ = (α +L) < 1. From the previous inequality, we achieve ms(u, Sηt) → 0 as η → +∞.
Now, if u and g are both the fixed points of S, by (U3), there must be some t ∈ � such

that u and t can be compared and g and t are comparable.
If u = Sηt or g = Sηt for some η ∈ N, then u and g can be compared, and the uniqueness

of the fixed point implies since S is an �-contraction of HR-type.
Supposing u �= Sηt and g �= Sηt for all η ∈N. Thus,

τ + �(ms(u, g)) = �(ms(Su, Sg)) � �(αms(u, g) + βms(u, Su) + Lms(g, Su))

� �(αms(u, g) + βms(u, Su) + Lms(g, u)),

τ � (α + L – 1)ms(u, g),

which is a contradiction because, α + L < 1 and hence ms(u, g) = 0, that is, u = g . �

Example 7 Let � = [2, 3] and define,

ms(υ,ω) =

⎧
⎨

⎩

υω if υ �= ω,

0 if υ = ω

is clearly a supermetric space, see Example 2.
Let us define a self-mapping S on � such that,

Sυ =
υ2

2
.

Choosing �(υ) = lnυ and consider partial order � on � as

υm � υη if (m ≤ η).

Now, we need to justify that S is an ordered �-contraction of HR-type with

δ = β = γ = L = 0 and τ = α = 1, Sυ �= Sω.
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Since, for �(υ) = lnυ , the HR-type contraction is equivalent to:

ms(Sυ, Sω)
ms(υ,ω)

� e–τ .

To justify our stance, consider the following calculations:

ms(Sυ, Sω)
ms(υ,ω)

=
υω

4
� e–1.

Now, if {υη} is a convergent nondecreasing sequence, then υm = υη and since � is regular,
as υ0 � Sυ0, all the requirements of Theorem 4.1 are fulfilled. Thus, S ensures a fixed point.

5 Applications
This section will utilize the fixed-points results obtained in the previous sections to
demonstrate the existence of unique fixed points for certain integral-type contractions.

First, we shall establish a precise definition for an alternating distance function.

Definition 5.1 A function � : [0, +∞) → [0, +∞) is termed an alternating distance func-
tion if it fulfills these requirements:

(a) � possesses continuity and is nondecreasing;
(b) �(�) = 0 if and only if � = 0.

Let us now propose the following definition.

Definition 5.2 Let ℵ be the set of functions T : [0, +∞) → [0, +∞) that fulfill these re-
quirements:

(i) T on each compact subset of [0, +∞) is Lebesgue integrable.
(ii)

∫ z
0 T(�)d� > 0 for all z > 0.

It is quite simple to show whether the mapping ρ : [0, +∞) → [0, +∞) defined as

ρ(z) =
∫ z

0
T(�)d� > 0

is an alternating distance function.
Next, the first new outcome of this section is put forward.

Theorem 5.3 Let (�, ms,�) be a complete supermetric space, and let S be a S-Map on �.
Assuming there exist � ∈ � and τ > 0 such that S is a generalized �-contraction of HR-type,
that is,

τ +
∫

�(ms(Sυ1,Sω))

0
T(�)d� � �

{

α

∫ ms(υ,ω)

0
T(�)d� + β

∫ ms(υ,Sυ)

0
T(�)d�

+γ

∫ ms(ω,Sω)

0
T(�)d� + L

∫ ms(ω,Sυ)

0
T(�)d�

}

for Sυ �= Sω, where α + β + γ = 1, δ = 0, γ < 1, and L ≥ 0. then S will have a fixed point.
Furthermore, if α + L ≤ 1, then the fixed point will be unique.
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Proof In Theorem 3.1, considering ρ(z) =
∫ z

0 T(�)d�, we have the conclusion. �

Theorem 5.4 Let (�, ms,�) be a complete supermetric space, and let S be a S-Map on �.
Assuming there exist � ∈ � and τ > 0 such that S is a generalized �-contraction of HR-type,
that is,

τ +
∫

�(ms(Sυ1,Sω))

0
T(�)d� � �

{

α

∫ ms(υ,ω)

0
T(�)d�

}

for Sυ �= Sω, then S possesses a unique fixed point.

Proof In Corollary 1, considering ρ(z) =
∫ z

0 T(�)d�, we can have the conclusion. �

Theorem 5.5 Let (�, ms,�) be a complete supermetric space, and let S be a S-Map on �.
Assuming there exist � ∈ � and τ > 0 such that S is a generalized �-contraction of HR-type,
that is,

τ +
∫

�(ms(Sυ1,Sω))

0
T(�)d� � �

{

β

∫ ms(υ,Sυ)

0
T(�)d� + γ

∫ ms(ω,Sω)

0
T(�)d�

}

for Sυ �= Sω, where β + γ = 1, γ < 1, then S ensures a unique fixed point.

Proof In Corollary 2, considering ρ(z) =
∫ z

0 T(�)d�, we can have the conclusion. �

Theorem 5.6 Let (�, ms,�) be a complete supermetric space, and let S be a S-Map on �.
Assuming there exist � ∈ � and τ > 0 such that S is a generalized �-contraction of HR-type,
that is,

τ +
∫

�(ms(Sυ1,Sω))

0
T(�)d� � �

{

α

∫ ms(υ,ω)

0
T(�)d� + β

∫ ms(υ,Sυ)

0
T(�)d�

+ γ

∫ ms(ω,Sω)

0
T(�)d�

}

for all υ,ω ∈ � comparable, Sυ �= Sω, where α + β + γ = 1, γ < 1, then S possesses a unique
fixed point.

Proof In Corollary 3, considering ρ(z) =
∫ z

0 T(�)d�, we can have the conclusion. �

Theorem 5.7 Let (�, ms) be a complete supermetric space, and S : � →� be a generalized
�-contraction, such that,

τ +
∫

�(ms(Sυ1,Sω))

0
T(�)d� � k

∫
�[k(Ms(υ,ω))]

0
T(�)d�,

where

Ms(υ,ω) = max{ms(υ,ω),
ms(υ, Sυ)ms(ω, Sω)

1 + ms(υ,ω)
}.

Then, S will ensure a unique fixed point.
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Proof In Theorem 3.2, taking ρ(z) =
∫ z

0 T(�)d�, we obtain the conclusion. �

Theorem 5.8 Let (�, ms,�) be an ordered complete supermetric space, and let S be a S-
Map on �. Assuming there exist � ∈ � and τ > 0 such that S is a generalized �-contraction
of HR type, that is,

τ +
∫

�(ms(Sυ1,Sω))

0
T(�)d� � �

{

α

∫ ms(υ,ω)

0
T(�)d� + β

∫ ms(υ,Sυ)

0
T(�)d�

+γ

∫ ms(ω,Sω)

0
T(�)d� + L

∫ ms(ω,Sυ)

0
T(�)d�

}

for all υ,ω ∈ � comparable, Sυ �= Sω, where α + β + γ = 1, δ = 0, γ < 1, and L ≥ 0. If the
following conditions are true:

(Q1) There is υ ∈� such that υ � Sυ ;
(Q2) � is regular;

then S will have a fixed point. Furthermore, if α + L ≤ 1, then S will have the set of fixed
points well ordered, if and only if S has a unique fixed point.

Proof In Theorem 4.1, considering ρ(z) =
∫ z

0 T(�)d�, we can have the conclusion. �

6 Conclusion
The concepts of �-contraction of Hardy–Rogers type and rational-type z-contraction
have been studied and generalized in many contexts because of many generalized struc-
ture of metric spaces. In this paper, we investigate the �-contraction of Hardy–Rogers
type and rational-type z-contraction in the setting of supermetric and ordered superme-
tric space. The study provides a deeper understanding of the behavior of mappings in the
framework of supermetric space and its applications.

Acknowledgements
The authors would like to thank the Prince Sultan University for the support of this work through the TAS LAB.

Author contributions
All authors contribute equally to the writing of this manuscript. All authors reads and approved the final version.

Funding
This research was funded by the National Science, Research and Innovation Fund (NSRF), and Suan Dusit University.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.



Abodayeh et al. Fixed Point Theory Algorithms Sci Eng         (2024) 2024:11 Page 18 of 18

Author details
1Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia. 2Department of
Mathematics, University of Malakand, Chakdara Dir(L), 18800, Khyber Pakhtunkhwa, Pakistan. 3Mathematics Department,
Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand. 4Research Group for Fractional
Calculus Theory and Applications, Science and Technology Research Institute, King Mongkut’s University of Technology
North Bangkok, Bangkok 10800, Thailand.

Received: 5 February 2024 Accepted: 19 June 2024

References
1. Banach, S.: Sur les oprations dans les ensembles abstraits et leurs applications aux equatins integrales. Fundam. Math.

3, 133181 (1922)
2. Wardowski, D.: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory

Appl. 2012, 94 (2012)
3. Agarwal, R.P., Karapinar, E., Khojasteh, F.: F-Ciric and Meir-Keeler fixed point results in super metric spaces. Appl.

Set-Valued Anal. Optim. 4(3) (2022)
4. Fabiano, N., Kadelbur, Z., Mirkov, N., Cavic, V.S., Radenovic, S.: On F-contractions: a survey. Contemp. Math. 3, 327–342

(2022)
5. Cho, S.-H.: Fixed point theorems for set-valued contractions in metric spaces. Axioms 13, 86 (2024)
6. Qawaqneh, H.A., Noorani, M.S., Shatanawi, W.: Fixed point results for for Geraghty type generalized F– Geraghty type

contraction for weak α admissible mappings in metric-like spaces. Eur. J. Pure Appl. Math. 11(3), 702–716 (2018)
7. Aydi, H., Karapinar, E., Yazidi, H.: Modified F-contractions via α-admissible mappings and application to integral

equations. Filomat 31(5), 1141–1148 (2017)
8. Karapınar, E., Fulga, A., Agarwal, R.P.: A survey: F-contractions with related fixed point results. J. Fixed Point Theory

Appl. 22, 1–58 (2020)
9. Wangwe, L., Kumar, S.: Fixed point theorems for multi-valued α-F-contractions in partial metric spaces with an

application. Res. Nonlinear Anal. 4(3), 130–148 (2021)
10. Agarwal, R.P., Aksoy, U., Karapınar, E., Erhan, I.M.: F-contraction mappings on metric-like spaces in connection with

integral equations on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(3), 147 (2020)
11. Karapinar, E., Shatanawi, W., Tas, K.: Fixed point theorem on partial metric spaces involving rational expressions.

Miskolc Math. Notes 14(1), 135–142 (2013)
12. Park, S.: Almost all about Rus-Hicks-Rhoades maps in quasi-metric spaces. Adv. Theory Nonlinear Anal. Appl. 7(2),

455–472 (2023)
13. Cosentino, M., Vetro, P.: Fixed point results for F-contractive mappings of HR-type. Filomat 28(4), 715–722 (2014)
14. Huang, H., Todorcevic, V., Radenovic, S.: Remarks on recent results for generalized F-contractions. Mathematics 10,

768 (2022)
15. Abbas, M., Aydi, H., Radenovic, S.: Fixed point of T-HR contractive mappings in partially ordered partial metric spaces.

Int. J. Math. Math. Sci. 11(2) (2012)
16. Karapinar, E., Alqahtani, O., Ayadi, H.: On interpolative Hardy-regers-type contractions. Symmetry 11, 8 (2018)
17. Hardan, B., Patil, J., Mohammed, A.B.D.O., ChaudhariA.: A fixed point theorem for Hardy-Rogers type on generalized

fractional differential equations. Adv. Theory Nonlinear Anal. Appl. 4(4), 407–420 (2020)
18. Roldan Lopez de Hierro, A.F., Karapınar, E., Fulga, A.: Multiparametric contractions and related Hardy-Roger type fixed

point theorems. Mathematics 8(6), 957 (2020)
19. Karapınar, E.: Revisiting simulation functions via interpolative contractions. Appl. Anal. Discrete Math. 13(3), 859–870

(2019)
20. Karapınar, E., Khojasteh, F.: Super metric spaces. Filomat 36(10), 3545–3549 (2020)
21. Abodayeh, K., Khayyam Shah, S., Sarwar, M., Promsakon, C., Sitthiwirattham, T.: Ciric-type generalized F-contractions

with integral inclusion in super metric spaces. Results Control Optim. 16, 100443 (2024)
22. Karapınar, E., Fulga, A.: Contraction in rational forms in the framework of super-metric spaces. Mathematics 10, 3077

(2022)
23. Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)
24. Reich, S.: Some remarks concerning contraction mappings. Can. Math. Bull. 14, 121–124 (1971)
25. Ran, A.C.M., Reurings, M.C.: A fixed point theorem in partially ordered sets and some applications to matrix equations.

Proc. Am. Math. Soc. 132, 1435–1443 (2004)
26. Nieto, J.J., Rodriguez-Lopez, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary

differential equations. Order 22(3), 223–239 (2005)
27. Tallafha, A.A., Qawasmeh, T., Tahat, N., Shatanawi, W., Bataihah, A.: Some coincidence point and some fixed-point

results in ordered metric spaces and application. Dyn. Syst. Appl. 30(1), 143–156 (2021)
28. Paesano, D., Vetro, P.: Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for

partially ordered metric spaces. Topol. Appl. 159, 911–920 (2012)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	F-Contraction of Hardy-Rogers type in supermetric spaces with applications
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main result
	Fixed-point results in the context of ordered supermetric spaces
	Applications
	Conclusion
	References

