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Abstract
Let � be a nonempty closed convex subset of a real Hilbert space H. Let � be a
nonspreading mapping from � into itself. Define two sequences {ψn}∞n=1 and {φn}∞n=1
as follows:

⎧
⎨

⎩

ψn+1 = πnψn + (1 –πn)�ψn,

φn =
1
n

n∑

t=1
ψt ,

for n ∈ N, where 0 ≤ πn ≤ 1, and πn → 0. In 2010, Kurokawa and Takahashi
established weak and strong convergence theorems of the sequences developed
from the above Baillion-type iteration method (Nonlinear Anal. 73:1562–1568, 2010).
In this paper, we prove weak and strong convergence theorems for a new class of
(η,β)-enriched strictly pseudononspreading ((η,β)-ESPN) maps, more general than
that studied by Kurokawa and W. Takahashi in the setup of real Hilbert spaces. Further,
by means of a robust auxiliary map incorporated in our theorems, the strong
convergence of the sequence generated by Halpern-type iterative algorithm is
proved thereby resolving in the affirmative the open problem raised by Kurokawa
and Takahashi in their concluding remark for the case in which the map � is averaged.
Some nontrivial examples are given, and the results obtained extend, improve, and
generalize several well-known results in the current literature.
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1 Introduction
From time immemorial, it has been an indisputable fact that the exact solutions of several
physically modeled problems of the form

�ψ = ℘ (1.1)

are either very difficult to attain or relatively impossible to solve. Considering the influence
of such a problem as (1.1) in human existence, it becomes necessary to seek approximate
solutions. Luckily, problem (1.1) can be reduced to a fixed point (FP) problem of the form

�ψ = ψ . (1.2)

Research findings show that the solution of (1.2) is achievable through approximate FP
theorems, which does not only provide vital information on the existence of such FP but
also on its uniqueness.

Throughout this paper, we make the following assumptions: H is a real Hilbert space,
∅ �= � ⊂ H is a closed convex set, N , R, and F (�) are the sets of positive integers, real
numbers, and FPs of the map � : � −→ �, respectively.

Definition 1.1 Let � : � −→ � be a nonlinear map. Recall that
1. � is called nonexpansive if

‖�ψ – �℘‖ ≤ ‖ψ – ℘‖ ∀ψ ,φ ∈ �. (1.3)

2. � is called quasi-nonexpansive if F (�) �= ∅ and for all (ψ ,ϑ) ∈ � ×F (�),

‖�ψ – ϑ‖ ≤ ‖ψ – ϑ‖. (1.4)

3. � is called nonspreading [1] if for all ψ ,℘ ∈ �,

2‖�ψ – �℘‖2 ≤ ‖�ψ – ℘‖2 + ‖�℘ – ψ‖2. (1.5)

It is not difficult to show that (1.5) is equivalent to

‖�ψ – �℘‖2 ≤ ‖ψ – ℘‖2 + 2〈℘ – �℘,ψ – �〉. (1.6)

4. � is called β-strictly pseudononspreading (β-SPN) [2] if there exists β ∈ [0, 1) such
that for all ψ ,℘ ∈ �,

‖�ψ – �℘‖2 ≤ ‖ψ – ℘‖2 + β‖ψ – �ψ – (℘ – �℘)‖ + 2〈℘ – �℘,ψ – �〉. (1.7)

Remark 1.1 It is easy to see from Definition 1.1 [(3) and (4)] that
(a) if (1.5) holds and F (�) �= ∅, then (1.4) immediately follows for all ϑ ∈F (�).
(b) if (1.5) holds, then (1.7) holds with β = 0; the converse is not true from the following

example.
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Example 1.1 Let R be endowed with the usual norm, and let � : R−→R be defined by

�ψ =

⎧
⎨

⎩

ψ , ψ ∈ (–∞, 0],

–2ψ , ψ ∈ [0,∞).

Then � satisfies (1.7) but not (1.5). Thus the class of maps satisfying (1.7) is more general
than the class of maps satisfying (1.5).

In 2011, Osilike and Isiogugu [2] initiated the concept of β-SPN maps and established
weak convergence result of Bailion type similar to that obtained in [1] and [3]. In addition,
using the notion of mean convergence, they obtained strong convergence results similar
to that established in [1] and hence brought to rest an open problem posed by Kurokawa
and Takahashi [1] for the case in which the map � is averaged.

On the other hand, the notion of enriched nonlinear maps was first introduced by
Berinde [4] (see also [5] and [6]) in the setup of a real Hilbert space. This concept was
later extended to the more general Banach space by Saleem et al. [7].

Definition 1.2 A map � : � −→ � is called (η,
�)-enriched Lipshitizian (see [7]) if for all
ψ ,φ ∈ �, there exist η ∈ [0, +∞) and a continuous nondecreasing function 
� : R+ −→ R+

with 
�(0) = 0 such that

‖η(ψ – φ) + �ψ – �φ‖ ≤ (η + 1)
�(‖ψ – φ‖). (1.8)

The following particular cases emanating from inequality (1.8) are worth mentioning:
(i) if η = 0, then inequality (1.8) reduces to the class of maps known as 
�-enriched

Lipschitzian;
(ii) if η = 0 and 
�(t) = Lt for L > 0, then (1.8) reduces to the class of maps called

L-Lipschitzian. In a more particular case where η = 0 and 
�(t) = t, then the

�-enriched Lipschitzian map immediately reduces to the class of nonexpansive
maps on �;

(iii) if 
�(t) = 1, then (1.8) becomes

‖η(ψ – φ) + �ψ – �φ‖ ≤ (η + 1)‖ψ – φ‖ (1.9)

and is known as an η-enriched nonexpansive map. This class of maps was first
studied by Berinde [5, 6] as a generalization of the well-known class of
nonexpansive maps.

Note that if 
� is not necessarily nondecreasing and satisfies the condition


�(t) < t, t > 0,

then we have the class of η-enriched nonexpansive maps.

Definition 1.3 [7] A map � is called (η,λ)-enriched strictly pseudocontractive ((η,λ)-
ESPC) if for all ψ ,φ ∈ �, there exist η ∈ [0, +∞) and j(ψ – φ) ∈ J(ψ – φ) such that

〈η(ψ – φ) + �ψ – �φ, j((η + 1)(ψ – φ))〉 ≤ (η + 1)2‖ψ – φ‖2
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–λ‖ψ – φ – (�ψ – �φ)‖2, (1.10)

where λ =
1
2

(1 – β) for some β ∈ [0, 1).

In the setup of a real Hilbert space, inequality (1.10) is equivalent to

‖η(ψ – φ) + �ψ – �φ‖2 ≤ (η + 1)2‖ψ – φ‖2 + β‖ψ – φ – (�ψ – �φ)‖2, (1.11)

where β = 1 – 2λ.
Saleem et al. [7] established that if � is a bounded close convex subset of a real Banach

space and � : � −→ � is a finite family of (η,λ)-ESPC maps, then � has an FP in �.
In view of the above results, it is pertinent to consider the following question.

Question 1.1 Is it possible to prove the results in [2] for the class of maps more general
than that studied in [2] and obtain the results in [2] as particular cases?

Berinde [4] considered the class of (η,λ)-ESPC maps and proved that if � is a bounded
close convex subset of a real Hilbert space and � : � −→ � is an (η,λ)-ESPC map, then �
has an FP in �. Osilike and Isiogugu [2] introduced and studied the class of β-SPN maps.
Apart from providing an affirmative answer to the lingering open problem raised at the
concluding remark of [1], the results they obtained extended and generalized the corre-
sponding results in [1] and several others in the existing literature. Inspired by Berinde
[4] and Osilike and Isiogugu [2], in this paper, we first introduce a new class of nonlinear
maps called (η,β)-ESPN and give some nontrivial examples to demonstrate its existence.
Further, we study the Bailion-type and Halpern-type iterative schemes and thereafter give
an affirmative answer to Question 1.1.

2 Preliminaries
The following well-known results shall be helpful in the course of establishing our main
results. Let H be a real Hilbert space, and let {ψn} ∈ H. We will denote the weak conver-
gence of {ψn} to a point ψ ∈ H by ψn ⇀ ψ and the strong convergence of {ψn} to a point
ψ ∈H by ψn → ψ as n → ∞, respectively.

Let X be a real Banach space. A map � with domain D(�) and range R(�) in X is called
demiclosed at a point ϑ (see, for instance, [8]) if whenever {ψn} is a sequence in D(�) such
that ψn ⇀ ψ ∈D(�) and {�ψn} converges strongly to ℘ , then �ψ = ℘ .

Lemma 2.1 ([2]) Let H be a real Hilbert space. Then
(i)

‖σψ + (1 – σ )℘‖2 = σ‖ψ‖2 + (1 – σ )‖℘‖2 – σ (1 – σ )‖ψ – ℘‖2,

for all ψ ,℘ ∈H and σ ∈ [0, 1];
(ii)

‖ψ + ℘‖2 ≤ ‖ψ‖2 + 2〈℘,ψ + ℘〉 ∀ψ ,℘ ∈H;
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(iii) if {ψn} is a sequence in H such that ψn ⇀ ℘ ∈ H, then

lim sup
n→∞

‖ψn – �‖2 = lim sup
n→∞

‖ψn – ℘‖2 + ‖℘ – �‖2 ∀� ∈H.

Consider a real Hilbert space H and a closed convex set ∅ �= � ⊂ H. The nearest point
projection P� : H −→ � is the operator that assigns to each ψ ∈ H its nearest point, de-
noted by P�ψ , in �. Thus P�ψ is the unique point in � such that

‖ψ – P�ψ‖ ≤ ‖ψ – �‖ ∀� ∈ �.

It has been established that for each ψ ∈H,

〈ψ – P�ψ ,� – P�ψ〉 ≤ 0 ∀� ∈ �. (2.1)

Lemma 2.2 ([9]) Consider a real Hilbert space H, a closed convex set ∅ �= � ⊂ H, and a
metric projection P� : H −→ �. Let {ψn} be a sequence in H such that

‖ψn+1 – ϑ‖ ≤ ‖ψn – ϑ‖

for all ϑ ∈ � and n = 0, 1, 2, . . . . Then {P�ψn} converges strongly to some u ∈ �.

Lemma 2.3 ([10, 11]) Let {πn} be a sequence of nonnegative real numbers satisfying

νn+1 ≤ (1 – πn)νn + πnμn,

where {νn} and {μn} are real sequences such that
(i) {νn} ⊂ [0, 1] and

∑∞
n=1 νn = ∞;

(ii) lim supn→∞ μn ≤ 0.
Then limn→∞ πn = 0.

Lemma 2.4 ([12]) Consider a real Hilbert space H, a closed convex set ∅ �= � ⊂ H, and a
β-SPN map � : � −→ � such that F (�) �= ∅. Let �ξ = ξ I + (1 – ξ )�, ξ ∈ [β , 1). Then:

1. F (�) = F (�ξ );
2. the map I – �ξ is demiclosed at zero;

3. ‖�ψ – �ψ‖2 ≤ ‖ψ – φ‖2 +
2

1 – ξ
〈ψ – �ψ ,φ – �φ〉;

4. �ξ is a quasi-nonexpansive map.

3 Results and discussion
We need the following definition.

Definition 3.1 Consider a real Hilbert space H. A map � with domain D(�) and range
R(�) in H is known as (η,β)-ESPN in the sense of Browder and Petryshyn [13] if there
exist η ∈ [0,∞) and β ∈ [0, 1) such that for all (ψ ,φ) ∈D(�),

‖η(ψ –φ)+�ψ –�φ‖2 ≤ (η+1)2‖ψ –φ‖2 +β‖ψ –�ψ –(φ–�φ)‖2 +2〈ψ –�ψ ,φ–�φ〉.
(3.1)
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Remark 3.1 It is easy to see that if η = 0 in (3.1), then the class of maps known as β-SPN
emerges. Further, if β = 1 in (3.1), then we have the class of η-enriched pseudononspread-
ing maps. For the particular case β = 0, we obtain the class of η-enriched nonspreading
maps.

Let ω =
1

η + 1
. Then it is clear that ω ∈ (0, 1]. In this case, inequality (3.1) becomes

∥
∥
∥

(1 – ω)

ω
(ψ – φ) + �ψ – �φ

∥
∥
∥

2

≤ 1
ω2 ‖ψ – φ‖2 + β‖ψ – �ψ – (φ – �φ)‖2 + 2〈ψ – �ψ ,φ – �φ〉,

which, on simplification, yields

‖�ωψ – �ωφ‖2

≤ ‖ψ – φ‖2 + β‖ψ – �ωψ – (φ – �ωφ)‖2 + 2〈ψ – �ωψ ,φ – �ωφ〉. (3.2)

Inequality (3.2) is equivalently written as

〈(I – �ω)ψ – (I – �ω)φ,ψ – φ〉
≥ λ‖ψ – �ωψ – (φ – �ωφ)‖2 – 〈ψ – �ωψ ,φ – �ωφ〉, (3.3)

where �ω = (1 – ω)I + ω�, λ =
1
2

(1 – β), and I is the identity operator on �. It not difficult
to see from (3.2) that the average operator �ω is strictly pseudononspreading.

The following example shows that the class of (η,β)-ESPN maps is larger than that of
β-SPN maps.

Example 3.1 Let � : [–2, 2] −→ [–2, 2] be defined by

�ψ = –
5
3
ψ , ψ ∈ [–2, 2].

Then we have

|η(ψ – φ) + �ψ – �φ|2 =
(
η –

5
3

)
|ψ – φ|2,

1
4
|ψ – �ψ – (φ – �φ)|2 =

1
4

∣
∣
∣ψ +

5
3
ψ –

(
φ +

5
3
φ
)∣
∣
∣
2

=
(1

4

)(64
9

)
|ψ – φ|2,

2〈ψ – �ψ ,φ – �φ〉 = 2
〈
ψ +

5
3
ψ ,φ +

5
3
φ
〉

=
128

9
ψφ.

Thus, for η = 5
3 , β = 1

4 , and �(ψ ,φ) = (η + 1)2|ψ – φ|2 +
1
4
|ψ – �ψ – (φ – �φ)|2 + 2〈ψ –

�ψ ,φ – �φ〉, we get

�(ψ ,φ) =
64
9

|ψ – φ|2 +
(1

4

)(64
9

)
|ψ – φ|2 +

128
9

ψφ

=
64
9

[ψ2 – 2ψφ + φ2] +
(1

4

)(64
9

)
|ψ – φ|2 +

128
9

ψφ
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=
64
9

[ψ2 + φ2] +
(1

4

)(64
9

)
|ψ – φ|2

=
∣
∣
∣
5
3

(ψ – φ) –
5
3

(ψ – φ)
∣
∣
∣
2

= |η(ψ – φ) + �ψ – �φ|2 > 0.

Hence � is a ( 5
3 , 1

4 )-ESPN map, but it is not β-SPN since for ψ =
3
2

and φ = –
3
2

, we obtain

‖�ψ – �φ‖2 =
∣
∣
∣�

(3
2

)
– �

(
–

3
2

)∣
∣
∣
2

=
∣
∣
∣ –

5
3

(3
2

)
+

5
3

(
–

3
2

)∣
∣
∣
2

=
∣
∣
∣ –

10
2

∣
∣
∣
2

= 25,

|ψ – φ|2 =
∣
∣
∣
3
2

–
(

–
3
2

)∣
∣
∣
2

= 9,

β

∣
∣
∣(I – �)

(3
2

)
– (I – �)

(
–

3
2

)∣
∣
∣
2

=
1
4

∣
∣
∣
3
2

+
5
3

(3
2

)
–

((
–

3
2

)
+

5
3

(
–

3
2

))∣
∣
∣
2

=
1
4
|8|2 = 16,

and

2
〈
(I – �)

(3
2

)
, (I – �)

(
–

3
2

)〉
= 2

〈3
2

+
5
3

(3
2

)
,
(

–
3
2

)
+

5
3

(
–

3
2

)〉
= 2(4)(–4) = –32.

Therefore

‖�ψ – �φ‖2 = 25 > 9 + 16 – 32

= ‖ψ – φ‖2 + β‖ψ – �ψ – (φ – �φ)‖2 + 2〈ψ – �ψ ,φ – �φ〉

for β =
1
4

.

Proposition 3.1 Let E be a normed space, and let � : D(�) ⊆ E −→ E be an (η,λ)-ESPC
map. Then � is an L-Lipschitzian map.

Proof Since � is an (η,λ)-ESPC map, by (1.11) there exists β ∈ [0, 1) such that for all ψ ,φ ∈
D(�),

‖η(ψ – φ) + �ψ – �φ‖2 ≤ (η + 1)2‖ψ – φ‖2 + β‖ψ – �ψ – (φ – �φ)‖2.

From the above inequality,

‖η(ψ – φ) + �ψ – �φ‖2

≤ (η + 1)2‖ψ – φ‖2 + β‖ψ – �ψ – (φ – �φ)‖2

≤ [(η + 1)‖ψ – φ‖ +
√

β‖ψ – �ψ – (φ – �φ)‖]2

≤ [(η + 1)‖ψ – φ‖ +
√

β‖(η + 1)(ψ – φ) – [η(ψ – φ) + �ψ – �φ]‖]2

≤ [(η + 1)‖ψ – φ‖ +
√

β(η + 1)‖ψ – φ‖ +
√

β‖η(ψ – φ) + �ψ – �φ‖]2.

Therefore

‖η(ψ – φ) + �ψ – �φ‖ ≤L‖ψ – φ‖

with L =
(η + 1)(1 +

√
β)

1 –
√

β
. �
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Proposition 3.2 Consider a real Hilbert space H, ∅ �= � ⊂ H, and an (η,β)-ESPN map
� : � −→ �. Then (I – �) is demiclosed at 0.

Proof Let {ψn} be a sequence in F(�) that converges weakly to ϑ and {ψn –�ψn} converges
strongly to 0. We want to show that ϑ ∈ F (�). Now, since {ψn} converges weakly, it is
bounded.

For each ψ ∈H, define f : H −→ [0,∞) by

f (ψ) = lim sup
n→∞

‖ψn – ψ‖2.

Then, using Lemma 2.1(iii), we get

f (ψ) = lim sup
n→∞

‖ψn – ϑ‖2 + ‖ϑ – ψ‖2 ∀ψ ∈ H.

Consequently,

f (ψ) = f (ϑ) + ‖ϑ – ψ‖2,

and

f (�ω) = f (ϑ) + ‖ϑ – �ωϑ‖2 = f (ϑ) +
1

(η + 1)2 ‖ϑ – �ϑ‖2 ∀ψ ∈H. (3.4)

Observe that

f (�ω) = lim sup
n→∞

‖ψn – �ωϑ‖2

= lim sup
n→∞

‖ψn – �ωψn + �ωψn – �ωϑ‖2

= lim sup
n→∞

‖ψn – [(1 – ω)ψn + ω�ψn] + (1 – ω)ψn + ω�ψn – [(1 – ω)ϑ + ω�ϑ]‖2

= lim sup
n→∞

‖ω(ψn – �ψn) + (1 – ω)(ψn – ϑ) + ω(�ψn – �ϑ)‖2

= lim sup
n→∞

∥
∥
∥

η

η + 1
(ψn – ϑ) +

1
η + 1

(�ψn – �ϑ)
∥
∥
∥

2

=
1

(η + 1)2 lim sup
n→∞

‖η(ψn – ϑ) + �ψn – �ϑ‖2

≤ 1
(η + 1)2 lim sup

n→∞
[(η + 1)2‖ψn – ϑ‖2 + β‖ϑ – �ϑ‖2]

= f (ϑ) +
β

(η + 1)2 ‖ϑ – �ϑ‖2. (3.5)

From (3.4) and (3.5) it follows that

(1 – β)‖ϑ – �ϑ‖ ≤ 0,

so that ϑ ∈F (�) as required. �
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Proposition 3.3 Consider a real Hilbert space H, ∅ �= � ⊂ H, and an (η,β)-ESPN map
� : � −→ �. Then F (�) is closed and convex.

Proof Let {ψn} be a sequence in F(�) that converges to ψ . We want to show that ψ ∈F (�).
Since

ω‖�ψ – ψ‖ ≤ ω‖�ψ – �ψn‖ + ω‖ψn – ψ‖
= ω‖η(ψ – ψn) + �ψ – �ψn – η(ψ – ψn)‖ + ω‖ψn – ψ‖
≤ ω‖η(ψ – ψn) + �ψ – �ψn‖ + ω(η + 1)‖ψn – ψ‖ (3.6)

and � is an (η,β)-ESPN mapping, we have

‖η(ψ – ψn) + �ψ – �ψn‖2 ≤ (η + 1)2‖ψ – ψn‖2 + β‖ψn – �ψn – (ψ – �ψ)‖2

+ 〈ψn – �ψn,ψ – �ψ〉
≤ [(η + 1)‖ψ – ψn‖ +

√
β‖ψ – �ψ‖]2. (3.7)

Using (3.6) in (3.7), we obtain

0 ≤ ‖ψ – �ψ‖ ≤ 2(η + 1)

1 –
√

β
‖ψ – ψn‖ → 0 as n → ∞.

Hence ψ ∈F (�).
Next, let ϑ1,ϑ2 ∈ F (�) and λ ∈ [0, 1]. We prove that λϑ1 + (1 – λ)ϑ2 ∈ F (�). Set ℘ =

λϑ1 + (1 – λ)ϑ2. Then ϑ1 – ℘ = (1 – λ)(ϑ1 – ϑ2) and ϑ2 – ℘ = λ(ϑ2 – ϑ1). Since

ω2‖�℘ – ℘‖2 = ‖℘ – �ω℘‖2

= ‖λϑ1 + (1 – λ)ϑ2 – �ω℘‖2

= ‖λ(ϑ1 – �ω℘) + (1 – λ)(ϑ2 – �ω℘)‖2

= λ‖ϑ1 – �ω℘‖2 + (1 – λ)‖ϑ2 – �ω℘‖2 – λ(1 – λ)‖ϑ1 – ϑ2‖2

= λ‖(1 – ω)ϑ1 + ω�ϑ1 – [(1 – ω)℘ + ω�℘]‖2

+ (1 – λ)‖(1 – ω)ϑ2 + ω�ϑ2 – [(1 – ω)℘ + ω�℘]‖2

– λ(1 – λ)‖ϑ1 – ϑ2‖2

= ‖(1 – ω)(ϑ1 – ℘) + ω(�ϑ1 – �℘)‖2

+ (1 – λ)‖(1 – ω)(ϑ2 – ℘) + ω(�ϑ2 – �℘)‖2

– λ(1 – λ)‖ϑ1 – ϑ2‖2

=
λ

(η + 1)2 ‖η(ϑ1 – ℘) + �ϑ1 – �℘‖2

+
1 – λ

(η + 1)2 ‖η(ϑ2 – ℘) + �ϑ2 – �℘‖2 – λ(1 – λ)‖ϑ1 – ϑ2‖2

≤ λ

(η + 1)2 [(η + 1)2‖ϑ1 – ℘‖2 + β‖℘ – �℘‖2]
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+
1 – λ

(η + 1)2 [(η + 1)2‖ϑ2 – ℘‖2 + β‖℘ – �℘‖2]

– λ(1 – λ)‖ϑ1 – ϑ2‖2

= λ(1 – λ)2‖ϑ1 – ϑ2‖2 +
β

(η + 1)2 ‖℘ – �℘‖2

+ (1 – λ)λ2‖ϑ2 – ϑ1‖2 – λ(1 – λ)‖ϑ1 – ϑ2‖2

= λ(1 – λ)[1 – λ + λ]‖ϑ1 – ϑ2‖2 +
β

(η + 1)2 ‖℘ – �℘‖2

– λ(1 – λ)‖ϑ1 – ϑ2‖2,

it follows that (1 – β)‖℘ – �℘‖ ≤ 0. Therefore ℘ = �℘ , and ℘ ∈F (�), as required. �

The examples below demonstrate the conclusion that the class of (η,λ)-ESPC maps and
the class of maps studied in this paper are independent.

Example 3.2 Let � : R−→R be defined, for each ψ ∈R, by

�ψ =

⎧
⎨

⎩

0 if ψ ∈ (–∞, 2],

1 if ψ ∈ (2,∞),

where R denotes the reals with usual norm. Then, for all ψ ,φ ∈ (–∞, 2] and β ∈ [0, 1), �
is an (η,β)-ESPN map with η = 0 (see [2] for details). However, � is not an (η,λ)-ESPC
map since every (η,λ)-ESPC map satisfies the Lipschitz condition (see Proposition 3.1).

Example 3.3 Let � : R−→R be defined, for each ψ ∈R, by

�ψ = –3ψ , (3.8)

where R denotes the reals with usual norm. It is shown in [2] that � is an (η,λ)-ESPC map
with η = 0. Nevertheless, it is not difficult to see that � is not an (η,β)-ESPN map. Indeed,

for η = 0, if ψ =
1
2

and φ = –
1
2

, then

|η(ψ – φ) + �ψ – �φ|2 = 9(η + 1)

= (η + 1)|ψ – φ|2 + |ψ – �ψ – (φ – �φ)|2

+2〈ψ – �ψ ,φ – �φ〉
> (η + 1)|ψ – φ|2 + β|ψ – �ψ – (φ – �φ)|2

+2〈ψ – �ψ ,φ – �φ〉

for all β ∈ [0, 1).

Theorem 3.4 Consider a real Hilbert space H, ∅ �= � ⊂ H, and an (η,β)-ESPN map � :
� −→ � such that F (�) �= ∅. Let ξ ∈ [β , 1) and {πn} be in [0, 1) with limn→∞ πn = 0. Let
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{ψn} and {φn} be sequences in � developed from arbitrary ψ1 ∈ � by
⎧
⎪⎨

⎪⎩

ψn+1 = πnψn + (1 – πn)[ξψn + (1 – ξ )�ωψn],

φn =
1
n

n–1∑

t=0
ψt , n ≥ 1,

(3.9)

Then {φn} converges weakly to ℘ ∈ F (�), where ℘ = limn→∞ PF (�)ψn. In particular, for
ψ ∈ �, define

ðnψ =
1
n

n–1∑

t=0

�t
ξ ,ηψ , n ≥ 1, (3.10)

where �ξ ,η = ξ I + (1 – ξ )�ω . Then {ðnψ} converges weakly to φ ∈ F (�), where φ =
limn→∞ PF (�)�n

ξ ,ηψ .

Proof Set �ξ ,η = ξψ + (1–ξ )�ωψ . Then, for all ψ ,φ ∈ �, we obtain the following estimates:

‖�ξ ,ηψ – �ξ ,ηφ‖2

=
∥
∥
∥ξ (ψ – φ) + (1 – ξ )

[η + �
η + 1

ψ –
η + �
η + 1

φ
]∥
∥
∥

2

=
∥
∥
∥ξ (ψ – φ) + (1 – ξ )

[ η

η + 1
(ψ – φ) +

1
η + 1

(�ψ – �φ)
]∥
∥
∥

2

= ξ‖ψ – φ‖2 + (1 – ξ )
∥
∥
∥

η

η + 1
(ψ – φ) +

1
η + 1

(�ψ – �φ)
∥
∥
∥

2

– ξ (1 – ξ )
∥
∥
∥ψ – φ –

[ η

η + 1
(ψ – φ) +

1
η + 1

(�ψ – �φ)
]∥
∥
∥

2

= ξ‖ψ – φ‖2 +
(1 – ξ )

(η+)2

∥
∥
∥η(ψ – φ) + �ψ – �φ

∥
∥
∥

2

–
ξ (1 – ξ )

(η + 1)2

∥
∥
∥η(ψ – φ) + [ψ – (η + �)ψ – (φ – (η + �))φ]

∥
∥
∥

2

≤ ξ‖ψ – φ‖2 +
(1 – ξ )

(η+)2

∥
∥
∥η(ψ – φ) + �ψ – �φ

∥
∥
∥

2

–
ξ (1 – ξ )

(η + 1)2

∥
∥
∥ψ – (η + �)ψ – (φ – (η + �)φ)

∥
∥
∥

2

≤ ξ‖ψ – φ‖2 +
(1 – ξ )

(η + 1)2 [(η + 1)2‖ψ – φ‖2

+ β‖ψ – �ψ – (φ – �φ)‖2 + 2〈ψ – �ψ ,φ – �φ〉]

–
ξ (1 – ξ )

(η + 1)2 ‖ψ – (η + �)ψ – (φ – (η + �)φ)‖2

= ξ‖ψ – φ‖2 + (1 – ξ )‖ψ – φ‖2

+
(1 – ξ )

(η + 1)2 β‖ψ – �ψ – (φ – �φ)‖2 + 2
(1 – ξ )

(η + 1)2 〈ψ – �ψ ,φ – �φ〉

–
ξ (1 – ξ )

(η + 1)2 ‖η(φ – ψ) + [ψ – �ψ – (φ – �φ)]‖2

≤ ξ‖ψ – φ‖2 + (1 – ξ )‖ψ – φ‖2
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+
(1 – ξ )

(η + 1)2 β‖ψ – �ψ – (φ – �φ)‖2 + 2
(1 – ξ )

(η + 1)2 〈ψ – �ψ ,φ – �φ〉

–
ξ (1 – ξ )

(η + 1)2 ‖ψ – �ψ – (φ – �φ)‖2

= ξ‖ψ – φ‖2 + (1 – ξ )‖ψ – φ‖2

–
(1 – ξ )

(η + 1)2 (ξ – β)‖ψ – �ψ – (φ – �φ)‖2 + 2
(1 – ξ )

(η + 1)2 〈ψ – �ψ ,φ – �φ〉

≤ ‖ψ – φ‖2 + 2
(1 – ξ )

(η + 1)2 〈ψ – �ψ ,φ – �φ〉. (3.11)

Observe that

〈ψ – �ψ ,φ – �φ〉
= 〈ηψ + ψ – (η + �)ψ ,ηφ + φ – φ(η + �)φ〉
= 〈ηψ + ψ – (η + �)ψ ,ηφ〉 + 〈ηψ + ψ – (η + �)ψ ,ηφ + φ – φ(η + �)φ〉
= 〈–[(η + �)ψ – (η+)ψ],ηφ〉 + 〈ηψ , –[(η + �)φ – (η+)φ]〉

+ 〈ψ – (η + �)ψ ,φ – φ(η + �)φ〉
= –‖(η + �)ψ – (η+)ψ‖‖ηφ‖ – ‖ηψ‖‖(η + �)φ – (η+)φ‖

+ 〈ψ – (η + �)ψ ,φ – φ(η + �)φ〉
≤ 〈ψ – (η + �)ψ ,φ – (η + �)φ〉. (3.12)

From (3.11) and (3.12) it follows that

‖�ξ ,ηψ – �ξ ,ηφ‖2 ≤ ‖ψ – φ‖2 + 2
(1 – ξ )

(η + 1)2 〈ψ – (η + �)ψ ,φ – (η + �)φ〉. (3.13)

Since �ξ ,ηψ = ξψ + (1 – ξ )�ωψ , it follows that

�ξ ,ηψ = ξψ + (1 – ξ )[(1 – ω)ψ + ω�ψ]

= ξψ + (1 – ξ )
[ η

η + 1
ψ +

1
η + 1

�ψ
]

= ξψ +
(1 – ξ )

η + 1
(η + �)ψ .

The last identity implies that

1
1 – ξ

(ψ – �ξ ,ηψ) = ψ –
1

η + 1
(η + �)ψ .

Thus, if we set V =
1

(1 – ξ )2 〈ψ – �ξ ,ηψ ,φ – �ξ ,ηφ〉, then

V =
〈 ψ

η + 1
–

1
η + 1

(η + �)ψ +
(
ψ –

ψ

η + 1

)
,

φ

η + 1
–

1
η + 1

(η + �)φ +
(
φ –

φ

η + 1

)〉

=
1

(η + 1)2 〈ψ – (η + �)ψ ,φ – (η + �)φ〉
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+
〈 ψ

η + 1
–

1
η + 1

(η + �)ψ ,φ –
φ

η + 1

〉

+
〈
ψ –

ψ

η + 1
,

φ

η + 1
–

1
η + 1

(η + �)φ
〉

+
〈
ψ –

ψ

η + 1
,φ –

φ

η + 1

〉
,

so that

1
(η + 1)2 〈ψ – (η + �)ψ ,φ – (η + �)φ

〉
=

1
(1 – ξ )2 〈ψ – �ξ ,ηψ ,φ – �ξ ,ηφ〉

–
〈 ψ

η + 1
–

1
η + 1

(η + �)ψ ,φ –
φ

η + 1

〉

–
〈
ψ –

ψ

η + 1
,

φ

η + 1
–

1
η + 1

(η + �)φ
〉

–
〈
ψ –

ψ

η + 1
,φ –

φ

η + 1

〉
. (3.14)

From (3.13) and (3.14) it follows that

‖�ξ ,ηψ – �ξ ,ηφ‖2 ≤ ‖ψ – φ‖2 +
2

(1 – ξ )
〈ψ – �ξ ,ηψ ,φ – �ξ ,ηφ〉. (3.15)

From (3.15), for each ϑ ∈F (�),

‖ψn+1 – ϑ‖ = ‖πn(ψn – ϑ) + (1 – πn)(�ξ ,ηψn – ϑ)‖
≤ πn‖ψn – ϑ‖ + (1 – πn)‖�ξ ,ηψn – ϑ‖
≤ ‖ψn – ϑ‖. (3.16)

Therefore {ψn} is bounded.
Using (3.15) and Lemma 2.1(i), we obtain, for all integer t ≥ 1 and for all φ ∈ �, that

‖ψt+1 – �ξ ,ηφ‖2 = ‖πt(ψt – �ξ ,ηφ) + (1 – πt)(�ξ ,ηψt – �ξ ,ηφ)‖2

= πt‖ψt – �ξ ,ηφ‖ + (1 – πt)‖�ξ ,ηψt – �ξ ,ηφ‖2

–πt(1 – πt)‖ψt – �ξ ,ηψt‖2

≤ πt‖ψt – �ξ ,ηφ‖

+(1 – πt)
[
‖ψt – φ‖2 +

2
(1 – ξ )

〈ψt – �ξ ,ηψt ,φ – �ξ ,ηφ〉
]

. (3.17)

From

‖ψt – φ‖2 = ‖ψt – �ξ ,ηφ + �ξ ,ηφ – φ‖2

= ‖ψt – �ξ ,ηφ‖2 + ‖�ξ ,ηφ – φ‖2 + 2〈ψt – �ξ ,ηφ,�ξ ,ηφ – φ〉

and the last inequality we get

‖ψt+1 – �ξ ,ηφ‖2

≤ πt‖ψt – �ξ ,ηφ‖
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+ (1 – πt)‖ψt – �ξ ,ηφ‖2 + (1 – πt)‖�ξ ,ηφ – φ‖2

+ 2(1 – πt)〈ψt – �ξ ,ηφ,�ξ ,ηφ – φ〉 +
2(1 – πt)

(1 – ξ )
〈ψt – �ξ ,ηψt ,φ – �ξ ,ηφ〉

= ‖ψt – �ξ ,ηφ‖ + (1 – πt)‖�ξ ,ηφ – φ‖2

+ 2〈ψt – �ξ ,ηφ,�ξ ,ηφ – φ〉 – πt〈ψt – �ξ ,ηφ,�ξ ,ηφ – φ〉

+
2

(1 – ξ )
〈(1 – πt)(ψt – �ξ ,ηψt),φ – �ξ ,ηφ〉.

Equivalently,

‖ψt+1 – �ξ ,ηφ‖2 ≤ ‖ψt – �ξ ,ηφ‖ + ‖�ξ ,ηφ – φ‖2

+2〈ψt – �ξ ,ηφ,�ξ ,ηφ – φ〉 – πt〈ψt – �ξ ,ηφ,�ξ ,ηφ – φ〉
+

2
(1 – ξ )

〈(ψt – ψt+1,φ – �ξ ,ηφ〉. (3.18)

Summing (3.18) from t = 1 to t = n and dividing the outcome by n, we get

1
n

‖ψn+1 – �ξ ,ηφ‖2 ≤ 1
n

‖ψ1 – �ξ ,ηφ‖ +
2

(1 – ξ )
〈ψ1

n
–

ψn+1

n
,φ – �ξ ,ηφ〉

+‖�ξ ,ηφ – φ‖2 + 2〈φn – �ξ ,ηφ,�ξ ,ηφ – φ〉

–
2
n

n∑

t=1

πt〈ψt – �ξ ,ηφ,�ξ ,ηφ – φ〉. (3.19)

From the boundedness of {ψn} it obviously follows that {φn} is also bounded. Conse-
quently, we can find a subsequence {φnk } of {φn} such that φnk ⇀ ℘ as k → ∞. By using
nk for n in (3.19) we obtain

1
nk

‖ψnk +1 – �ξ ,ηφ‖2 ≤ 1
nk

‖ψ1 – �ξ ,ηφ‖ +
2

(1 – ξ )
〈ψ1

nk
–

ψnk +1

nk
,φ – �ξ ,ηφ〉

+‖�ξ ,ηφ – φ‖2 + 2〈φnk – �ξ ,ηφ,�ξ ,ηφ – φ〉

–
2
nk

nk∑

t=1

πt〈ψt – �ξ ,ηφ,�ξ ,ηφ – φ〉. (3.20)

Letting k → ∞ in (3.20), we deduce

0 ≤ ‖�ξ ,ηφ – φ‖2 + 2〈℘ – �ξ ,ηφ,�ξ ,ηφ – φ〉. (3.21)

Since φ ∈H was arbitrarily chosen, putting φ = ℘ in (3.21) yields

0 ≤ ‖�ξ ,η℘ – ℘‖2 – 2‖�ξ ,η℘ – ℘‖2,

so that ℘ ∈F (�ξ ,η) = F (�ξ ) = F (�).
Also, since � is (η,β)-ESPN with F (�) �= ∅, it follows from Proposition 3.3 that F (�) is

closed and convex. Consequently, we can define the projection PF (�) : H −→F (�). Since

‖ψn+1 – ϑ‖2 ≤ ‖ψn – ϑ‖2 ∀ϑ ∈F (�),

it follows from Lemma 2.2 that {PF (�)ψn} converges strongly.



Agwu et al. Fixed Point Theory Algorithms Sci Eng         (2024) 2024:14 Page 15 of 20

Let limn→∞ PF (�)ψn = �. Then it suffices to show that � = ℘ . Since ℘ ∈ F (�), by (2.1)
we have

〈℘ – �,ψt – PF (�)ψt〉 = 〈℘ – PF (�)ψt ,ψt – PF (�)ψt〉 + 〈PF (�)ψt – �,ψt – PF (�)ψt〉
≤ 〈PF (�)ψt – �,ψt – PF (�)ψt〉
≤ ‖PF (�)ψt – �‖‖ψt – PF (�)ψt‖
≤ Q‖PF (�)ψt – �‖, (3.22)

where such Q exists since {ψt} and {PF (�)ψt} are bounded, and thus ‖ψt –PF (�)ψt‖ ≤ Q,
t ≥ 1, for some Q > 0.

Summing (3.22) from t = 1 to t = nk and dividing the outcome by nk , we get

〈℘ – �,φnk –
1
nk

nk∑

t=1

PF (�)ψt〉 ≤ Q
nk

nk∑

t=1

‖PF (�)ψt – �‖.

Since φnk ⇀ ℘ as k → ∞ and PF (�)ψn → � as n → ∞, we get

〈℘ – �,℘ – �〉 = ‖℘ – �‖2 ≤ 0.

Therefore ℘ = �, as required.
Furthermore, by setting πn = 0 in (3.9) we infer

ψn+1 = �ξ ,ηψn = �n
ξ ,ηψ1,

φn =
1
n

n∑

t=1

ψt =
1
n

n∑

t=1

�t–1
ξ ,η ψ1, n ≥ 1.

Consequently, if for ψ = ψ1 ∈ �, we define

ðnψ =
1
n

n∑

t=1

�t–1
ξ ,η ψ1 = φn, n ≥ 1,

then {ðn} converges weakly to φ ∈F (�), where φ = limn→∞ PF (�)�n
ξ ,ηψ , as required. �

Remark 3.2 Taking η = 0 in Theorem 3.4, we get Theorem 3.1 of [2] as a corollary.

Theorem 3.5 Consider a real Hilbert space H, ∅ �= � ⊂ H, and an (η,β)-ESPN map � :
� −→ � such that F (�) �= ∅. Let ξ ∈ [β , 1) and {πn} be in [0, 1) such that (a) limn→∞ πn = 0
and (b)

∑∞
n=1 πn = ∞. Let u ∈ �, and let {ψn} and {φn} be sequences in � developed from

arbitrary ψ1 ∈ � by

⎧
⎨

⎩

ψn+1 = πnu + (1 – πn)φn,

φn =
1
n

∑n–1
t=0 �t

ξ ,ηψn, n ≥ 1.
(3.23)

Then {ψn} and {φn} converge strongly to PF (�)u, where PF (�) : H −→ F (�) is the metric
projection of H onto F (�).
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Proof Let ϑ ∈F (�). Then

‖φn – ϑ‖ =
∥
∥
∥

1
n

n–1∑

t=0

�t
ξ ,ηψn – ϑ

∥
∥
∥ ≤ 1

n

n–1∑

t=0

‖�t
ξ ,ηψn – ϑ‖

≤ 1
n

n–1∑

t=0

‖ψn – ϑ‖ = ‖ψn – ϑ‖. (3.24)

Consequently,

‖ψn+1 – ϑ‖ = ‖πnu + (1 – πn)φn – ϑ‖
= ‖πn(u – ϑ) + (1 – πn)(φn – ϑ)‖
= πn‖u – ϑ‖ + (1 – πn)‖φn – ϑ‖.

Considering

‖ψ1 – ϑ‖ ≤ max{‖u – ϑ‖,‖ψ1 – ϑ‖}

and

‖ψn – ϑ‖ ≤ max{‖u – ϑ‖,‖ψ1 – ϑ‖},

we obtain

‖ψn+1 – ϑ‖ ≤ πn‖u – ϑ‖ + (1 – πn) max{‖u – ϑ‖,‖ψ1 – ϑ‖}
≤ πn max{‖u – ϑ‖,‖ψ1 – ϑ‖} + (1 – πn) max{‖u – ϑ‖,‖ψ1 – ϑ‖}
= max{‖u – ϑ‖,‖ψ1 – ϑ‖}.

Hence

‖ψn – ϑ‖ ≤ max{‖u – ϑ‖,‖ψ1 – ϑ‖}.

Therefore {ψn} and {φn} are bounded. Also, since ‖�ξ ,ηψ – ϑ‖ ≤ ‖ψ – ϑ‖, it follows that
{�ξ ,ηψn} is bounded. Hence, for all ℘ ∈ � and t = 0, 1, 2, . . . , n – 1, we obtain

‖�t+1
ξ ,η ψn – �ξ ,η℘‖
= ‖�ξ ,η(�t

ξ ,η)ψn – �ξ ,η℘‖2

≤ ‖�t
ξ ,ηψn – ℘‖2 +

2
1 – ξ

〈�t
ξ ,ηψn – �t+1

ξ ,η ψn,℘ – �ξ .η℘〉

= ‖�t
ξ ,ηψn – �ξ ,η℘ + �ξ ,η℘ – ℘‖2 +

2
1 – ξ

〈�t
ξ ,ηψn – �t+1

ξ ,η ψn,℘ – �ξ .η℘〉

= ‖�t
ξ ,ηψn – �ξ ,η℘‖2 + ‖�ξ ,η℘ – ℘‖2 + 2〈�t

ξ ,ηψn – �ξ ,η℘,�ξ ,η℘ – ℘〉

+
2

1 – ξ
〈�t

ξ ,ηψn – �t+1
ξ ,η ψn,℘ – �ξ .η℘〉. (3.25)
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Summing (3.25) from t = 0 to t = n – 1 and dividing the outcome by n, we have

1
n

‖�n
ξ ,ηψn – �ξ ,η℘‖ ≤ 1

n
‖ψn – �ξ ,η℘‖2 + ‖�ξ ,ηφ – φ‖2 + 2〈φn – �ξ ,η℘,�ξ ,η℘ – ℘〉

+
2

n(1 – ξ )
〈ψn – �n

ξ ,ηψn,℘ – �ξ .η℘〉. (3.26)

From the boundedness of {φn} it follows that we can find a subsequence {φnk } of {φn} that
converges weakly to q ∈ �. Substituting nk for n in (3.26), we get

1
nk

‖�nk
ξ ,ηψn – �ξ ,η℘‖ ≤ 1

nk
‖ψnk – �ξ ,η℘‖2 + ‖�ξ ,ηφ – φ‖2 + 2〈φnk – �ξ ,η℘,�ξ ,η℘ – ℘〉

+
2

nk(1 – ξ )
〈ψnk – �nk

ξ ,ηψnk ,℘ – �ξ .η℘〉. (3.27)

Since {ψn} and {�n
ξ ,ηψn} are bounded, letting k → ∞, we deduce from (3.27) that

0 ≤ |�ξ ,η℘ – ℘‖2 + 2〈q – �ξ ,η℘,�ξ ,η℘ – ℘〉. (3.28)

Since ℘ ∈ � is arbitrary, setting ℘ = q in (3.28) yields q ∈F (�ξ ,η) = F (�ξ ) = F (�).
Again, since limn→∞ πn = 0, it follows from (3.23) and the boundedness of {φn} that

‖ψn+1 – φn‖ = πn‖u – φn‖ → 0 as n → ∞.

Assume, without loss of generality, that there is a subsequence {ψnk } of {ψn} such that

lim sup
n→∞

〈u – PF (�)u,ψn+1 – PF (�)u〉 = lim
k→∞

〈u – PF (�)u,ψnk +1 – PF (�)u〉

and ψnk +1 → φ and k → ∞. Since ‖ψn+1 – φn‖ → 0 as n → ∞, it follows that for arbitrary
bounded linear functional g on H,

‖g(φnk ) – g(φ)‖ ≤ |g(φnk ) – g(ψnk +1)| + |g(ψnk +1) – g(φ)|
≤ ‖g‖|φnk – ψnk +1| + |g(ψnk +1) – g(φ)| → 0 as n → ∞.

Consequently, φnk ⇀ φ as k → ∞, and hence φ ∈ F (�). Since PF (�) : H −→ F (�) is the
projection map, it follows that

lim
k→∞

〈u – PF (�)u,ψnk +1 – PF (�)u〉 = 〈u – PF (�)u,φ – PF (�)u〉 ≤ 0,

so that

lim sup
n→∞

〈u – PF (�)u,ψn+1 – PF (�)u〉 ≤ 0.

From Lemma 2.1(ii) and (3.24) we get

‖ψn+1 – PF (�)u‖2 = ‖πn(u – PF (�)u) + (1 – πn)(φn – PF (�)u)‖2

≤ (1 – πn)2‖φn – PF (�)u‖2 + 2πn〈u – PF (�)u,ψn+1 – PF (�)u〉
≤ (1 – πn)‖φn – PF (�)u‖2 + 2πn〈u – PF (�)u,ψn+1 – PF (�)u〉.
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Since limn→∞ πn = 0,
∑∞

n=1 πn = ∞, and lim supn→∞〈u – PF (�)u,ψn+1 – PF (�)u〉 ≤ 0, it
follows by Lemma 2.3 that ‖ψn – PF (�)u‖ = 0. In addition,

0 ≤ ‖φn – PF (�)u‖ ≤ ‖φn – ψn+1‖ + ‖ψn+1 – PF (�)u‖ → 0 as n → ∞.

Therefore limn→∞ ‖φn – PF (�)u‖ = 0. �

Remark 3.3 If we set η = 0 in Theorem 3.5, then Theorem 3.2 of [2] follows immediately.

Remark 3.4 The inclusion of an auxiliary map �ξ ,η in our theorems also produces the fol-
lowing strong convergence result of Halpan type for the class of (η,β)-ESPN maps, which
further gives an affirmative answer to the lingering open problem raised by Kurokawa and
Takahashi in their last remark in [1] for the case in which the operator � is averaged.

Theorem 3.6 Consider a real Hilbert space H, ∅ �= � ⊂ H, and an (η,β)-ESPN map � :
� −→ � such that F (�) �= ∅. Let ξ ∈ [β , 1), ω =

1
η + 1

for η ∈ [0,∞), and �ξ ,η = ξ I + (1 –

ξ )[(1 – ω)I + ω�]. Let {πn} be in [0, 1) such that (a) limn→∞ πn = 0 and (b)
∑∞

n=1 πn = ∞.
Let u ∈ � be fixed, and let {ψn} be a sequence in � developed from arbitrary ψ1 ∈ � by

ψn+1 = πnu + (1 – πn)�ξ ,ηψn, n ≥ 1. (3.29)

Then {ψn} converges strongly to ϑ ∈F (�).

Proof Let F (�ξ ,η) = F (�) �= ∅. Following the same technique as in the proof of Theorem
3.4, we obtain

‖�ξ ,ηψ – �ξ ,ηφ‖2

=
∥
∥
∥ξ (ψ – φ) + (1 – ξ )

[η + �
η + 1

ψ –
η + �
η + 1

φ
]∥
∥
∥

2

=
∥
∥
∥ξ (ψ – φ) + (1 – ξ )

[ η

η + 1
(ψ – φ) +

1
η + 1

(�ψ – �φ)
]∥
∥
∥

2

= ξ‖ψ – φ‖2 + (1 – ξ )
∥
∥
∥

η

η + 1
(ψ – φ) +

1
η + 1

(�ψ – �φ)
∥
∥
∥

2

– ξ (1 – ξ )
∥
∥
∥ψ – φ –

[ η

η + 1
(ψ – φ) +

1
η + 1

(�ψ – �φ)
]∥
∥
∥

2

= ξ‖ψ – φ‖2 +
(1 – ξ )

(η+)2

∥
∥
∥η(ψ – φ) + �ψ – �φ

∥
∥
∥

2

–
ξ (1 – ξ )

(η + 1)2

∥
∥
∥η(ψ – φ) + [ψ – (η + �)ψ – (φ – (η + �))φ]

∥
∥
∥

2

≤ ξ‖ψ – φ‖2 +
(1 – ξ )

(η+)2

∥
∥
∥η(ψ – φ) + �ψ – �φ

∥
∥
∥

2

–
ξ (1 – ξ )

(η + 1)2

∥
∥
∥ψ – (η + �)ψ – (φ – (η + �)φ)

∥
∥
∥

2

≤ ξ‖ψ – φ‖2 +
(1 – ξ )

(η + 1)2 [(η + 1)2‖ψ – φ‖2
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+ β‖ψ – �ψ – (φ – �φ)‖2 + 2〈ψ – �ψ ,φ – �φ〉]

–
ξ (1 – ξ )

(η + 1)2 ‖ψ – (η + �)ψ – (φ – (η + �)φ)‖2

= ξ‖ψ – φ‖2 + (1 – ξ )‖ψ – φ‖2

+
(1 – ξ )

(η + 1)2 β‖ψ – �ψ – (φ – �φ)‖2 + 2
(1 – ξ )

(η + 1)2 〈ψ – �ψ ,φ – �φ〉

–
ξ (1 – ξ )

(η + 1)2 ‖η(φ – ψ) + [ψ – �ψ – (φ – �φ)]‖2

≤ ξ‖ψ – φ‖2 + (1 – ξ )‖ψ – φ‖2

+
(1 – ξ )

(η + 1)2 β‖ψ – �ψ – (φ – �φ)‖2 + 2
(1 – ξ )

(η + 1)2 〈ψ – �ψ ,φ – �φ〉

–
ξ (1 – ξ )

(η + 1)2 ‖ψ – �ψ – (φ – �φ)‖2

= ξ‖ψ – φ‖2 + (1 – ξ )‖ψ – φ‖2 –
(1 – ξ )

(η + 1)2 (ξ – β)‖ψ – �ψ – (φ – �φ)‖2

+
2

(1 – ξ )
〈ψ – �ξ ,ηψ ,φ – �ξ ,ηφ〉. (3.30)

Therefore, for all ψ ∈ � and ϑ ∈F (�ξ ,η) = F (�), we get

‖�ξ ,ηψ – ϑ‖2 ≤ ‖ψ – φ‖2 –
(1 – ξ )

(η + 1)2 (ξ – β)‖ψ – �ψ‖2.

Consequently, {ψn} converges strongly to a point ϑ ∈F (�ξ ,η) = F (�). �

Remark 3.5 If η = 0 in Theorem 3.6, then Theorem 3.3 of [2] follows immediately.

4 Conclusions
In this paper, weak and strong convergence theorems have been established for new classes
of (η,β)-enriched strictly pseudononspreading maps in the setup of a real Hilbert space.
Further, by means of a robust auxiliary map incorporated in our theorems we proved a
strong convergence theorem of Halpern-type, thereby resolving in the affirmative the open
problem raised by Kurokawa and Takahashi [1] in their concluding remark for the case
in which the map � is averaged. Also, we constructed some examples of the classes of
maps studied to demonstrate their existence. The results obtained extend, improve, and
generalize several well-known results in [2, 14, 15] and others.
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