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Abstract
The purpose of this paper is to study the split feasibility problem with multiple output
sets and fixed point problem in the class of demicontractive mappings and propose
relaxed inertial self-adaptive algorithms that do not use the least squares method.
Under some appropriate assumptions, we establish a strong convergence result for
the sequence generated by the proposed algorithm. Our result generalizes and
extends several results existing in the literature. Finally, we illustrate the convergence
of the proposed algorithm by using a numerical example.
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1 Introduction
Let C be a nonempty, closed, and convex subset of a real Hilbert space H , S : C → C be a
mapping, and Fix(S) := {x ∈ C : Sx = x}. Then S is said to be

(a) nonexpansive if

‖Sx – Sy‖ ≤ ‖x – y‖,

∀x, y ∈ C.
(b) quasi-nonexpansive if Fix(S) �= ∅ and

‖Sx – y‖ ≤ ‖x – y‖,

∀x ∈ C and y ∈ Fix(S).
(c) k-strictly pseudo-contractive if there exists a constant k ∈ [0, 1) such that

‖Sx – Sy‖2 ≤ ‖x – y‖2 + k‖(I – S)x – (I – S)y‖2,

∀x, y ∈ C.
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(d) demicontractive if Fix(S) �= ∅ and there exists a constant k ∈ [0, 1) such that

‖Sx – y‖2 ≤ ‖x – y‖2 + k‖(I – S)x‖2,

∀x ∈ C and y ∈ Fix(S).
Observe that the class of demicontractive mappings include various types of nonlinear
mappings such as nonexpansive mappings, quasi-nonexpansive mappings, and strictly
pseudo-contractive mappings.

A fixed point problem for a demicontractive mapping S : C → C : Find x ∈ C such that

Sx = x. (1)

The split feasibility problem (SFP) is to find a point

x∗ ∈ C such that Ax∗ ∈ Q, (2)

where C and Q are nonempty, closed, and convex subsets of real Hilbert spaces H and H1,
respectively and A : H → H1 is a bounded linear operator. Let the solution set of the SFP
(2) is given by SFP(C, Q) := {x ∈ C : Ax ∈ Q}.

The SFP in finite-dimensional Hilbert spaces was first introduced by Censor and Elfv-
ing [7] for modeling various inverse problems that have many real life applications such
as medical image reconstruction and signal processing (see [5, 6]). The SFP attracts the
attention of many authors due to its wide range of applications and several generaliza-
tions of the SFP have been studied by many authors, see, for instance, the multiple-sets
SFP [8, 20, 21], the SFP with multiple output sets (SFPMOS) [12, 15, 17, 18, 23, 24], the
split variational inequality problem [9, 10, 15], the multiple-sets split variational inequal-
ity problem [25], the split variational inequality problem with multiple output sets [1], and
the multiple-sets split feasibility problem with multiple output sets [13, 22].

In 2024, Berinde [4] introduced an inertial self-adaptive viscosity algorithm for solving
split feasibility and fixed point problems in the class of demicontractive mappings, which
is shown below.

vn := zn + μn(zn – zn–1)

wn := pC
(
(1 – βn)(vn – ζnA∗(I – PQ)Avn) + βnSλvn

)
,

zn+1 := σng(zn) + θnvn + αnwn,

with Sλ := (1 – λ)I + λS,λ ∈ (0, 1),

μn =

⎧
⎪⎨

⎪⎩

min
{
μ,

τn

||zn – zn–1||
}

if zn �= zn–1,

μ otherwise,
(3)

μ ≥ 0 is a given number, ζn := δnf (vn)
‖∇f (vn)‖2 where f (vn) := 1

2‖(I – PQ)Avn‖2, δn ∈ (0, 4) and
{σn}, {θn}, {αn}, {βn} are sequences in (0, 1) and τn is a positive sequence satisfying some
suitable conditions, and S : C → C is a k-demicontractive mapping. He proved the strong
convergence of the sequence generated by his algorithm to some x∗ ∈ Fix(S) ∩ SFP(C, Q).
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The SFPMOS which was introduced by Kim et al. [13] in general Hilbert spaces is to
find a point x∗ such that

x∗ ∈ C ∩
(

∩p
j=1 T–1

j

(
∩rj

k=1 Qjk

))
�= ∅, (4)

where C and Qjk , j = 1, 2, . . . , p, k = 1, . . . , rj are nonempty, closed and convex subsets of
real Hilbert spaces H and Hj, respectively, and Tj : H → Hj are bounded linear operators.

In order to approximate a solution to the SFP (2), many algorithms first transform this
problem into an equivalent unconstrained convex minimization problem and obtain a
minimizing element using the least squares method. In 2023, Reich and Tuyen [19] ex-
tended the Fermat-Torricelli problem and showed that the SFPMOS can be considered
as a special case of this problem. Moreover, they provide a new approach for solving the
SFPMOS in Hilbert spaces. The generalized Fermat-Torricelli problem is stated as follows:

f (x) → min,

subject to x ∈ C,

where f (x) =
∑p

j=1
∑rj

k=1 βjk fjk(Tjx),βjk , j = 1, 2, · · · , p, k = 1, 2, · · · , rj, are given positive real
numbers, and fjk(y) = ‖(IHj – PHj

Qjk
)y‖ for all y ∈ Hj and j = 1, 2, · · · , p, k = 1, 2, · · · , rj.

As a continuation of the aforementioned work, Reich and Tuyen [16] developed self-
adaptive algorithms for solving the split feasibility problem with multiple output sets that
do not use the least square method and proved strong and weak convergence theorems.

Motivated by the above works specially that of Berinde [4], Riech and Tuyen [16], and
Kim et al. [13], we propose relaxed inertial self-adaptive algorithm for solving the SFP-
MOS and fixed-point problem in the class of demicontractive mappings. The main con-
tributions of our paper are summarized as follows.

• The problem considered is a general problem as it combines the SFPMOS and fixed
point problem.

• The proposed algorithm incorporates the relaxation method in order to speed up its
convergence.

• The proposed method does not use the least squares method.
• Our result generalizes and extends several related results existing in the literature as

demicontractive mappings include various types of nonlinear mappings.
This work is structured as follows. In Sect. 2, we state some notations, basic definitions,

and lemmas that we will need in the proof of our main result. In Sect. 3, we give conver-
gence analysis of our proposed algorithm. In Sect. 4, we provide a numerical experiment
to validate our proposed algorithm. Finally, in Sect. 5, we give a concluding remark.

2 Preliminaries
The weak ω-limit set of {tn} is given by ωω(tn) =

{
t ∈ H : ∃{tnk } ⊆ {tn} such that tnk ⇀ t

}
.

It is well known that for every element x ∈ H , there exists a unique nearest point in C,
denoted by PC(x) such that

‖x – PC(x)‖ = min{‖x – z‖ : z ∈ C}.
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The operator PC : H → C is called a metric projection of H onto C. It has got important
characterization shown below:

〈x – PCx, z – PCx〉 ≤ 0, (5)

for all x ∈ H and z ∈ C. We can deduce from (5) that the operator PC is a nonexpansive
mapping.

Lemma 1 (see [2]) For all x, y ∈ H and z ∈ C, the following inequalities hold.
(i) ‖PCx – PCy‖2 ≤ 〈PCx – PCy, x – y〉;
(ii) 〈x – y, (I – PC)x – (I – PC)y〉 ≥ ‖(I – PC)x – (I – PC)y‖2;
(iii) ‖PCx – z‖2 ≤ ‖x – z‖2 – ‖PCx – x‖2.

Definition 1 Let f : H → (–∞, +∞] be a given function. Then,
(1) The function f is proper if

{x ∈ H : f (x) < +∞} �= ∅.

(2) A proper function f is convex if for each σ ∈ (0, 1),

f (σx + (1 – σ )y) ≤ σ f (x) + (1 – σ )f (y),∀x, y ∈ H .

(3) f is σ -strongly convex, where σ > 0, if

f (δx + (1 – δ)y) +
σ

2
δ(1 – δ)‖x – y‖2 ≤ δf (x) + (1 – δ)f (y),∀δ ∈ (0, 1) and ∀x, y ∈ H .

Moreover, f is σ -strongly convex if f (x) – (σ /2)‖x‖2 is convex.

Definition 2 Let f : H → (–∞, +∞] be a proper function.
(1) A vector ξ ∈ H is a subgradient of f at a point x if

f (y) ≥ f (x) + 〈ξ , y – x〉, ∀y ∈ H .

(2) The set of all subgradients of f at x ∈ H , denoted by ∂f (x), is called the
subdifferential of f , and is defined by

∂f (x) = {ξ ∈ H : f (y) ≥ f (x) + 〈ξ , y – x〉, for each y ∈ H}.

(3) If ∂f (x) �= ∅, f is said to be subdifferentiable at x. If the function f is continuously
differentiable then ∂f (x) = {∇f (x)}.

Definition 3 Let f : H → (–∞, +∞] be a proper function. Then, f is lower semi-
continuous (lsc) at x if xn → x implies

f (x) ≤ lim inf
k→∞

f (xn).
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Definition 4 Let C be a closed and convex subset of a real Hilbert space H and S : C → C
is a mapping. If, for any sequence {xk} in C, such that xk ⇀ x, and Sxk → 0, we have Sx = 0,
then S is said to be demiclosed at 0 in C.

Lemma 2 [3] Let H be a real Hilbert space, C ⊂ H be a closed and convex set. If T : C → C
is k-demicontractive, then for any λ ∈ (0, 1 – k), Tλ := (1 –λ)I +λT is a quasi-nonexpansive.

Lemma 3 (see [11]) Let {sn} be a non-negative real sequence, such that

sn+1 ≤ (1 – σn)sn + σnμn, n ≥ 1,
sn+1 ≤ sn – φn + ϕn, n ≥ 1,

where {σn} ⊂ (0, 1), {φn} ⊂ [0,∞), and {μn}, {ϕn} ⊂ (–∞,∞). In addition, suppose the fol-
lowing conditions hold.

(i)
∑∞

n=1 σn = ∞;
(ii) lim

n→∞ϕn = 0;
(iii) lim

k→∞
φnk = 0 implies lim sup

k→∞
μnk ≤ 0 for every subsequence {nk} of {n}.

Then, lim
n→∞ sn = 0.

3 Main results
Let C and Qjk , j = 1, 2, . . . , p, k = 1, . . . , rj be nonempty, closed and convex subsets of real
Hilbert spaces H and Hj, respectively, and Tj : H → Hj are bounded linear operators. Let
S : C → C be a demicontractive mapping. Assuming that

x∗ ∈ � := C ∩
(

∩p
j=1 T–1

j

(
∩rj

k=1 Qjk

))
∩ Fix(S) �= ∅, (6)

we consider the problem of finding an element x∗ ∈ �.
In this section, we state our algorithms and analyze their convergence.
For simplicity, let � := C ∩

(
∩p

j=1 T–1
j

(
∩rj

k=1 Qjk

))
, J1 := {1, 2, . . . , p}, and J2 := {1, 2, . . . , rj}.

We take the following assumptions to undergo the analysis.
(C1) The nonempty level sets C and Qjk in the Problem (6) are defined as follows

C = {x ∈ H : c(x) ≤ 0} and Qjk = {y ∈ Hj : qjk(y) ≤ 0}, (7)

where c : H → (–∞, +∞] and qjk : Hj → (–∞, +∞] for all j ∈ J1, k ∈ J2 are � -strongly
and ωj-strongly convex subdifferentiable functions, respectively. Then c and qjk are
also lower semicontinuous (See, [2] Theorem 9.1)

The projections onto C and Qjk are not easily implemented in general. To avoid this
difficulty, we adopted a technique of projecting on to the half spaces and construct the
relaxed sets (half-spaces) Cn and Qn

jk(j ∈ J1, k ∈ J2 (see [14] for more).
(C2) Let c and qjk be as defined in (7). Assume that at least one subgradient ξn ∈ ∂c(x)

and ηjk,n ∈ ∂qjk(y) can be computed for any x ∈ H and y ∈ Hj. Moreover, both ∂c and
∂qjk(j ∈ J1, k ∈ J2) are bounded operators (bounded on bounded sets). The sets Cn and
Qn

jk (j ∈ J1, k ∈ J2) are constructed as follows:

Cn =
{

x ∈ H : c(xn) + 〈ξn, x – xn〉 +
�

2
‖x – xn‖2 ≤ 0

}
, (8)



Gebregiorgis et al. Fixed Point Theory Algorithms Sci Eng         (2024) 2024:15 Page 6 of 19

where ξn ∈ ∂c(xn) and

Qn
jk =

{
y ∈ Hj : qjk(Tjxn) + 〈ηjk,n, y – Tjxn〉 +

ωj

2
‖y – Tjxn‖2 ≤ 0

}
, (9)

where ηjk,n ∈ ∂qjk(Tjxn). It is not difficult to show that C ⊂ Cn and Qjk ⊂ Qn
jk .

(C3) Let the sequence {ρn} ∈ (0, 2), the sequences {δn}, {σn}, {γn}, and {αn} in (0, 1), and
the sequence {εn} ∈ (0,∞) satisfying the following conditions.
(i) lim infn→∞ γn > 0;
(ii) lim

n→∞
εn
σn

= 0;
(iii) limn→∞ σn = 0 and

∑∞
n=1 σn = ∞;

(iv) 0 < lim infn→∞ δn ≤ lim supn→∞ δn < 1;
(v) σn + αn + γn = 1,∀n ≥ 1.

Now, we delve into the details of the convergence analysis of Algorithm 1.

Proposition 1 In Algorithm 1, if
∑p

j=1
∑rj

k=1 βjkT∗
j dn

jk = 0 and wn = yn, then yn is a solution
of Problem (6).

Proof Pick t∗ ∈ �. For each n, let �n = {(j, k) : dn
jk �= 0}.

By using an argument similar to the one used in the proof of Proposition 6 of [16], we
get yn ∈ �. Moreover, since

∑p
j=1
∑rj

k=1 βjkT∗
j dn

jk = 0 and wn = yn, and using (14), we have
yn ∈ Fix(S). Consequently, yn ∈ � = � ∩ Fix(S). �

Lemma 4 Let � �= ∅ and {tn} be a sequence generated by Algorithm 1 such that Assumption
C(3) holds. Then the sequence {tn} is bounded.

Proof Let t∗ ∈ �, then we have

‖wn – t∗‖2 =

∥
∥∥
∥∥
∥

(1 – δn)

(

yn – τn

p∑

j=1

rj∑

k=1

βjkT∗
j dn

jk

)

+ δnSλyn – t∗

∥
∥∥
∥∥
∥

2

=

∥∥
∥∥
∥∥

(1 – δn)

(

(yn – t∗) – τn

p∑

j=1

rj∑

k=1

βjkT∗
j dn

jk

)

+ δn(Sλyn – t∗)

∥∥
∥∥
∥∥

2

= (1 – δn)

∥∥
∥∥
∥∥

(yn – t∗) – τn
∑

(j,k)∈�n

βjkT∗
j dn

jk

∥∥
∥∥
∥∥

2

+ δn‖Sλyn – t∗‖2 –

δn(1 – δn)

∥∥∥
∥∥
∥

Sλyn – yn + τn
∑

(j,k)∈�n

βjkT∗
j dn

jk

∥∥∥
∥∥
∥

2

. (17)

Estimating
∥∥
∥(yn – t∗) – τn

∑
(j,k)∈�n βjkT∗

j dn
jk

∥∥
∥

2
, we get

∥
∥∥∥
∥∥

(yn – t∗) – τn
∑

(j,k)∈�n

βjkT∗
j dn

jk

∥
∥∥∥
∥∥

2

= ‖yn – t∗‖2 + τ 2
n

∥∥
∥∥
∥∥

∑

(j,k)∈�n

βjkT∗
j dn

jk

∥∥
∥∥
∥∥

2

– 2τn

〈
∑

(j,k)∈�n

βjkT∗
j dn

jk , yn – t∗
〉
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Algorithm 1 A strongly convergent algorithm for solving problem (6)
Step 0. Choose the sequences {ρn}, {δn}, {σn} {αn}, {εn}, and {γn} in such away that they
satisfy Assumption (C3) and a positive constant τ .

Step 1. Select arbitrary points t0, t1 ∈ C and choose θ ∈ (0, 1) such that 0 ≤ θn ≤ θ̂n

where

θ̃n =

⎧
⎪⎨

⎪⎩

min
{
θ ,

εn

||tn – tn–1||
}

if tn �= tn–1

θ otherwise
. (10)

Step 2. Compute

yn = tn + θn(tn – tn–1). (11)

Step 3. Compute

dn
jk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
IHj – PHj

Qn
jk

)
Tjyn

∥
∥∥
∥

(
IHj – PHj

Qn
jk

)
Tjyn

∥
∥∥
∥

if Tjyn /∈ Qn
jk

0 if Tjyn ∈ Qn
jk

, (12)

for all j ∈ J1 and k ∈ J2.
Step 4. If

∑p
j=1
∑rj

k=1 βjkT∗
j dn

jk = 0 and wn = yn, then stop. If not, compute zn via

zn = PCn wn, (13)

where

wn := (1 – δn)

(

yn – τn

p∑

j=1

rj∑

k=1

βjkT∗
j dn

jk

)

+ δnSλyn, (14)

Sλ := (1 – λ)I + λS where λ ∈ (0, 1), Cn, and Qn
jk are defined as in (8) and (9), respectively,

and

τn :=
ρn
∑p

j=1
∑rj

k=1 βjk fjk(Tjyn)

�2
n

, (15)

where fjk(y) =
∥
∥∥
∥

(
IHj – PHj

Qn
jk

)
(y)

∥
∥∥
∥ for all y ∈ Hj and for all j ∈ J1, k ∈ J2 and �n :=

max{τ ,‖∑p
j=1
∑rj

k=1 βjkT∗
j dn

jk‖}.

Step 5. Compute

tn+1 = σnv(tn) + αnyn + γnzn, (16)

where v : H → C is a μ-contraction mapping such that μ ∈ (0, 1).
Step 6. Set n := n + 1 and return to Step 1.
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= ‖vn – t∗‖2 + τ 2
n

∥
∥∥
∥∥
∥

p∑

j=1

rj∑

k=1

βjkT∗
j dn

jk

∥
∥∥
∥∥
∥

2

– 2τn
∑

(j,k)∈�n

βjk

〈
dn

jk , Tjyn – Tjt∗
〉

= ‖yn – t∗‖2 + τ 2
n

∥
∥∥
∥∥∥

p∑

j=1

rj∑

k=1

βjkT∗
j dn

jk

∥
∥∥
∥∥∥

2

– 2τn
∑

(j,k)∈�n

βjk

〈
(

IHj – PHj
Qn

jk

)
Tjyn

∥∥
∥∥

(
IHj – PHj

Qn
jk

)
Tjyn

∥∥
∥∥

, Tjyn – Tjt∗
〉

= ‖yn – t∗‖2 + τ 2
n

∥∥∥
∥∥
∥

p∑

j=1

rj∑

k=1

βjkT∗
j dn

jk

∥∥∥
∥∥
∥

2

– 2τn
∑

(j,k)∈�n

βjk

〈
(

IHj – PHj
Qn

jk

)
Tjyn –

(
IHj – PHj

Qn
jk

)
Tjt∗

∥
∥∥∥

(
IHj – PHj

Qn
jk

)
Tjyn

∥
∥∥∥

, Tjyn – Tjt∗
〉

≤ ‖yn – t∗‖2 + τ 2
n

∥∥
∥∥
∥∥

p∑

j=1

rj∑

k=1

βjkT∗
j dn

jk

∥∥
∥∥
∥∥

2

– 2τn
∑

(j,k)∈�n

βjk

∥
∥∥
∥

(
IHj – PHj

Qn
jk

)
Tjyn

∥
∥∥
∥ . (18)

Substituting (15) into (18) and simplifying, we get

∥∥
∥∥∥
∥

(yn – t∗) – τn
∑

(j,k)∈δn

βjkT∗
j dn

jk

∥∥
∥∥∥
∥

2

≤ ‖yn – t∗‖2 – ρn(2 – ρn)gjk(yn) (19)

≤ ‖yn – t∗‖2, (20)

where

gjk(yn) :=

(∑
(j,k)∈�n βjk fjk(Tjyn)

�n

)2

. (21)

Again, substituting (19) into (17) and simplifying, we get

‖wn – t∗‖2 ≤ ‖yn – t∗‖2 – (1 – δn)ρn(2 – ρn)gjk(yn) –

δn(1 – δn)

∥∥
∥∥
∥∥

Sλyn – yn + τn
∑

(j,k)∈�n

βjkT∗
j dn

jk

∥∥
∥∥
∥∥

2

. (22)

Using the definition of zn, we have

‖zn – t∗‖2 =
∥∥PCn wn – t∗∥∥2

≤ ‖wn – t∗‖2 – ‖(I – PCn )wn‖2 . (23)
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Substituting (22) into (23), we get

‖zn – t∗‖2 ≤ ‖yn – t∗‖2 – (1 – δn)ρn(2 – ρn)gjk(yn) –

δn(1 – δn)

∥∥∥
∥∥
∥

Sλyn – yn + τn
∑

(j,k)∈�n

βjkT∗
j dn

jk

∥∥∥
∥∥
∥

2

–

‖(I – PCn )wn‖2 (24)

≤ ‖yn – t∗‖2. (25)

Now, denote

un :=
1

1 – σn

(
αnyn + γnzn

)
. (26)

It follows that

‖un – t∗‖2 =
∥
∥∥
∥

αn

1 – σn
yn +

γn

1 – σn
zn – t∗

∥
∥∥
∥

2

=
∥
∥∥
∥

αn

1 – σn
(yn – t∗) +

γn

1 – σn
(zn – t∗)

∥
∥∥
∥

2

≤ αn

1 – σn
‖yn – t∗‖2 +

γn

1 – σn
‖zn – t∗‖2. (27)

Substituting (24) into (27) and simplifying, we get

‖un – t∗‖2 ≤ ‖yn – t∗‖2 – (1 – δn)ρn(2 – ρn)
γn

1 – σn
gjk(yn) –

δn(1 – δn)
γn

1 – σn

∥∥
∥∥
∥∥

Sλyn – yn + τn
∑

(j,k)∈�n

βjkT∗
j dn

jk

∥∥
∥∥
∥∥

2

–

γn

1 – σn
‖(I – PCn )wn‖2 (28)

≤ ‖yn – t∗‖2. (29)

Using the definition of yn, we have

‖yn – t∗‖ = ‖tn + θn(tn – tn–1) – t∗‖
≤ ‖tn – t∗‖ + θn‖tn – tn–1‖

= ‖tn – t∗‖ + σn

[
θn

σn
‖tn – tn–1‖

]
(30)

Using the definition of tn and (29), we obtain

‖tn+1 – t∗‖ =‖σn(v(tn) – t∗) + (1 – σn)(un – t∗)‖
=σn‖v(tn) – t∗‖ + (1 – σn)‖un – t∗‖
≤σn‖v(tn) – v(t∗)‖ + σn‖v(t∗) – t∗‖ + (1 – αn)‖un – t∗‖ (31)
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≤μσn‖tn – t∗‖ + σn‖v(t∗) – t∗‖ + (1 – σn)‖un – t∗‖
≤μσn‖tn – t∗‖ + σn‖v(t∗) – t∗‖ + (1 – σn)‖yn – t∗‖

Now, combining (30) and (31), we have

‖tn+1 – t∗‖ ≤ [1 – (1 – μ)σn]‖tn – t∗‖ + σn

[
θn

σn
‖tn – tn–1‖ + ‖v(t∗) – t∗‖

]
. (32)

Using C(3)(ii) and (10), we have limn→∞ θn
σn

‖tn – tn–1‖ = 0. Hence, we can find a constant
M ≥ 0 such that

θn

σn
‖tn – tn–1‖ ≤ M.

Now, (32) becomes

‖tn+1 – t∗‖ ≤[1 – (1 – η)σn]‖tn – t∗‖ + σn
[
M + ‖v(t) – t∗‖]

=[1 – (1 – η)σn]‖tn – t∗‖ + σn(1 – η)

[
M + ‖v(t) – t∗‖

1 – η

]
.

Proceeding inductively, we arrive at

‖tn+1 – t∗‖ ≤ max
{
‖t1 – t∗‖,

M + ‖v(t∗) – t∗‖
1 – η

}
,

for all n ≥ 1, which proves that {tn} is bounded. �

Lemma 5 Let � �= ∅, S : C → C be a demicontractive mapping such that I – S is demiclosed
at zero, v : C → C be a μ-contraction, and suppose that {σn}, {ρn}, {αn}, {γn}, {δn}, and {εn}
are sequences satisfying Assumption C(3).

Let t∗ ∈ �, t∗ = p�v(t∗), {tn} be the sequence generated by Algorithm 1, the function gjk(yn)

and the sequence un be given as in (21) and (26), respectively.
For n ≥ 1, let us denote

�n := 2(1 – μ)σn;

�n := 2σn〈tn+1 – t∗, v(tn) – t∗〉;

�n :=
1

2(1 – μ)

(
2((1 – σn)2 + μσn)

εn

σn
‖yn – t∗‖ + σn‖v(tn) – t∗‖2 +

2σn‖v(tn) – t∗‖‖un – t∗‖ + σn‖tn – t∗‖2 + 2〈v(t∗) – t∗, un – t∗〉 + σn‖tn – t∗‖2
)

;

and

�n : = (1 – δn)ρn(4 – ρn)
γn

1 – σn
gjk(yn) +

δn(1 – δn)
γn

1 – σn

∥∥
∥∥
∥∥

Sλyn – yn + τn
∑

(j,k)∈�n

βjkT∗
j dn

jk

∥∥
∥∥
∥∥

2

+
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γn

1 – σn
‖(I – PCn )wn‖2 .

Then, for any subsequence {nl} of n, we have

lim sup
l→∞

�nl ≤ 0, (33)

whenever,

lim
l→∞

�nl = 0. (34)

Proof Suppose (34) holds. It follows that

lim
l→∞

gjk(ynl ) = 0, (35)

and based on the assumptions listed under C(3), it follows that

lim
l→∞

∑
(j,k)∈�nl

βjk fjk(Tjynl )

�nl

= 0, (36)

for all (j, k) ∈ �nl .
Let � := max{τ ,

∑
(j,k)∈�nl

βjk‖T∗
j ‖}. By using ‖dnl

jk ‖ = 1 for all (j, k) ∈ �nl , we get

0 ≤
∑

(j,k)∈�nl
βjk fjk(Tjynl )

�
≤
∑

(j,k)∈�nl
βjk fjk(Tjynl )

�nl

. (37)

Combining (36) and (37), we have

lim
l→∞

∑

(j,k)∈�nl

βjk fjk(Tjynl ) = 0, (38)

or equivalently

lim
l→∞

‖(IHj – PHj

Qnl
jk

)Tjynl‖ = 0,

for all (j, k) ∈ �nl .
Note that from the definition of �nl and dnl

jk , we have Tjynl ∈ Qnl
jk when (j, k) /∈ �nl and

hence ‖(IHj – PHj

Qnl
jk

)Tjynl‖ = 0. As a result, we get

lim
l→∞

‖(IHj – PHj

Qnl
jk

)Tjynl‖ = 0, (39)

for all j ∈ J1 and k ∈ J2.
By (34), we also get

lim
l→∞

∥
∥∥∥
∥∥

Sλynl – ynl + τnl

∑

(j,k)∈�nl

βjkT∗
j dnl

jk

∥
∥∥∥
∥∥

2

= 0,
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and due to (38), we obtain

lim
l→∞

∥∥Sλynl – ynl

∥∥ = 0. (40)

On the other hand, by (34) and using the definition of zn, we also obtain

lim
l→∞

∥
∥(I – PCnl )wnl

∥
∥

= lim
l→∞

∥∥wnl – PCn wnl

∥∥

= lim
l→∞

∥
∥∥∥
∥∥

⎛

⎝(1 – δnl )

(

ynl – τnl

∑

(j,k)∈�nl

βjkT∗
j dnl

jk

)

+ δnl Sλynl

⎞

⎠ – znl

∥
∥∥∥
∥∥

= lim
l→∞

∥∥
∥∥
∥∥

(1 – δnl )ynl + δnl Sλynl – znl – (1 – δnl )τnl

∑

(j,k)∈�nl

βjkT∗
j dnl

jk

∥∥
∥∥
∥∥

= 0. (41)

Using (38) and (41), we get

lim
l→∞

∥∥(1 – δnl )ynl + δnl Sλynl – znll

∥∥ = lim
l→∞

∥∥ynl – znll + δnl

(
Sλynl – ynl

)∥∥ = 0. (42)

Similarly, using (40) and (42), we get

lim
l→∞

‖ynl – znl‖ = 0. (43)

By using the definition of un, we have

‖unl – ynl‖ =
∥∥
∥∥

αnl

1 – σnl

ynl +
γnl

1 – σnl

znl – ynl

∥∥
∥∥

≤ γnl

1 – σnl

∥
∥znl – ynl

∥
∥ ,

which, by (43), yields

lim
l→∞

‖unl – ynl‖ = 0. (44)

Next, we need to show that ωw(yn) ⊂ �. Since {yn} is bounded, ωw(yn) �= ∅. Let ȳ ∈ ωw(yn).
It follows that there exists a subsequence {ynl } of {yn} such that ynl ⇀ ȳ.

Now, due to the linearity and boundedness of Tj, we have Tjynl ⇀ Tjȳ.
We claim that ȳ ∈ �. To show this, it is suffices to show that ȳ ∈ Cn and Tj(ȳ) ∈ Qn

jk for
all j ∈ J1, k ∈ J2.

From the assumption (C2), we can see that ∂qjk is bounded on bounded sets for each
j ∈ J1, k ∈ J2. It follows that we can find a constant η > 0 such that ‖ηjk,nl‖ ≤ η, where ηjk,nl ∈
∂qjk(Tjynl ) for each j ∈ J1, k ∈ J2.
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Now, using (9), (39), and the fact that Pnl
Qjk

(
Tjynl

)
∈ Qnl

jk , we get

qjk

(
Tjynl

)
≤
〈
ηjk,nl , Tjynl – PQnl

jk

(
Tjynl

)〉
–

ωj

2

∥
∥∥Tjynl – PQnl

jk

(
Tjynl

)∥∥∥
2

≤
〈
ηjk,nl , Tjynl – PQnl

jk

(
Tjynl

)〉

≤
∥∥
∥ηjk,nl

∥∥
∥
∥∥
∥
(

I – PQnl
jk

)
Tjynl

∥∥
∥

≤ η

∥∥∥
(

I – PQnl
jk

)
Tjynl

∥∥∥→ 0. (45)

Noting qjk is weakly lower semi-continuous, it follows that

qjk(Tjȳ) ≤ lim inf
l→∞

qjk

(
Tjynl

)
≤ lim

l→∞
η

∥∥
∥
(

I – PQnl
jk

)
Tjynl

∥∥
∥ = 0,

for all j ∈ J1, k ∈ J2. It turns out that, Tjȳ ∈ Qjk for all j ∈ J1, k ∈ J2.
Again, from the assumption (C2), we can see that ∂c is bounded on bounded sets. It

follows that there is a constant ξ > 0 such that ‖ξnl‖ ≤ ξ , where ξnl ∈ ∂c(ynl ).
By using (8) and (44), we have as l → ∞ that

c(ynl ) ≤
〈
ξnl , unl – ynl 〉 –

�

2
‖unl – ynl‖2

≤ ‖ξnl‖‖unl – ynl‖
≤ ξ‖unl – ynl‖ → 0. (46)

Noting c is weakly lower semi-continuous, it follows that

c(ȳ) ≤ lim inf
l→∞

c(ynl ) ≤ lim
l→∞

ξ

∥
∥∥ynl – unl

∥
∥∥ = 0.

Thus, ȳ ∈ Cn. Consequently, ωω(ynl ) ⊂ �.
Since Sλ = (I – λ)I + λS and I – S is demiclosed at zero, we see that I – Sλ is demiclosed

at zero. Now, taking {ynl } ⇀ ȳ and (40) into account, we deduce that ωω(ynl ) ⊂ Fix(S).
Putting the above results together, we see that ωω(ynl ) ⊂ � = Fix(S) ∩ �.

Since the mapping P�v is a strict contraction on H , there exists a unique point t∗ ∈ H
such that t∗ = P�v(t∗). It then follows from (5) that

〈v(t∗) – t∗, z – t∗〉 ≤ 0, (47)

for all z ∈ �.
Next, we choose a subsequence {ynlm } of {ynl } such that

lim sup
l→∞

〈v(t∗) – t∗, ynl – t∗〉 = lim
m→∞〈v(t∗) – t∗, ynlm – t∗〉. (48)

We may assume, without any loss of generality, that ynlm ⇀ ȳ as m → ∞.
Now, using (44), (47), and (48), we get

lim sup
l→∞

〈v(t∗) – t∗, unl – t∗〉
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= lim sup
l→∞

〈v(t∗) – t∗, unl – ynl + ynl – t∗〉

= lim sup
l→∞

〈v(t∗) – t∗, unl – ynl 〉 + lim sup
l→∞

〈v(t∗) – t∗, ynl – t∗〉

≤ lim sup
l→∞

‖v(t∗) – t∗‖‖unl – ynl‖ + lim sup
l→∞

〈v(t∗) – t∗, ynl – t∗〉

= lim
m→∞〈v(t∗) – t∗, ynlm – t∗〉

= 〈v(t∗) – t∗, ȳ – t∗〉
≤ 0, (49)

which shows that (33) holds. �

Theorem 6 Let � �= ∅, S : C → C be a demicontractive mappings such that I – S is demi-
closed at zero, v : C → C be a μ-contraction, and suppose that {ρn}, {εn}, {σn}, {αn}, {γn},
and {δn} are sequences satisfying Assumption C(3). Then, the sequence generated by Algo-
rithm 1 converges to t∗ = P�v(t∗).

Proof Using the definition of yn, we have

‖yn – t∗‖2 = ‖tn + θn(tn – tn–1) – t∗‖2

= ‖(tn – t∗) + θn(tn – tn–1)‖2

≤ ‖tn – t∗‖2 + 2θn〈yn – t∗, tn – tn–1〉
≤ ‖tn – t∗‖2 + 2θn‖tn – tn–1‖‖yn – t∗‖
≤ ‖tn – t∗‖2 + 2εn‖yn – t∗‖. (50)

Using (29) and (50), we get

‖un – t∗‖2 ≤ ‖tn – t∗‖2 + 2εn‖yn – t∗‖. (51)

Using the definition of tn, we have

‖tn+1 – t∗‖2

= ‖σn(v(tn) – t∗) + (1 – σn)(un – t∗)‖2

= σ 2
n ‖v(tn) – t∗‖2 + (1 – σn)2‖un – t∗‖2 + 2σn(1 – σn)〈v(tn) – t∗, un – t∗〉

= σ 2
n ‖v(tn) – t∗‖2 + (1 – σn)2‖un – t∗‖2 + 2σn〈v(tn) – t∗, un – t∗〉–

2σ 2
n 〈v(t∗) – t∗, un – t∗〉

≤ σ 2
n ‖v(tn) – t∗‖2 + (1 – σn)2‖un – t∗‖2 + 2σ 2

n ‖v(tn) – t∗‖‖un – t∗‖+

2σn〈v(tn) – t∗, un – t∗〉
= σ 2

n ‖v(tn) – t∗‖2 + (1 – σn)2‖un – t∗‖2 + 2σ 2
n ‖v(tn) – t∗‖‖un – t∗‖+ (52)

2σn〈v(tn) – v(t∗), un – t∗〉 + 2σn〈v(t∗) – t∗, un – t∗〉
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≤ σ 2
n ‖v(tn) – t∗‖2 + (1 – σn)2‖un – t∗‖2 + 2σ 2

n ‖v(tn) – t∗‖‖un – t∗‖+

2σn‖v(tn) – v(t∗)‖‖un – t∗‖ + 2σn〈v(t∗) – t∗, un – t∗〉
≤ σ 2

n ‖v(tn) – t∗‖2 + (1 – σn)2‖un – t∗‖2 + 2σ 2
n ‖v(tn) – t∗‖‖un – t∗‖+

2μσn‖tn – t∗‖‖un – t∗‖ + 2σn〈v(t∗) – t∗, un – t∗〉
≤ σ 2

n ‖v(tn) – t∗‖2 + (1 – σn)2‖un – t∗‖2 + 2σ 2
n ‖v(tn) – t∗‖‖un – t∗‖+

μσn(‖tn – t∗‖2 + ‖un – t∗‖2) + 2σn〈v(t∗) – t∗, un – t∗〉.

Substituting (51) into (52), we get

‖tn+1 – t∗‖2 ≤σ 2
n ‖v(tn) – t∗‖2 + [(1 – σn)2 + 2μσn]‖tn – t∗‖2+

[2εn(1 – σn)2 + 2μσnεn]‖yn – t∗‖ + 2σ 2
n ‖v(tn) – t∗‖‖un – t∗‖+

2σn〈v(t∗) – t∗, un – t∗〉
≤[1 – 2σn(1 – μ)]‖tn – t∗‖2 + σ 2

n ‖v(tn) – t∗‖+

2μσnεn‖yn – t∗‖ + 2σ 2
n ‖v(tn) – t∗‖‖un – t∗‖+

2σn〈v(t∗) – t∗, un – t∗〉 + σ 2
n ‖tn – t∗‖2

≤[1 – 2σn(1 – μ)]‖tn – t∗‖2 + 2σn(1 – μ)
1

2(1 – μ)

[
σn‖v(tn) – t∗‖+

2[(1 – σn)2 + μσn]
εn

σn
‖yn – t∗‖ + 2σn‖v(tn) – t∗‖‖un – t∗‖+

2〈v(t∗) – t∗, un – t∗〉 + σn‖tn – t∗‖2
]
.

(53)

Again, using the definition of tn and (28), we get

‖tn+1 – t∗‖2 = ‖σn(v(tn) – t∗) + (1 – σn)(un – t∗)‖2

≤ ‖un – t∗‖2 + σn〈v(tn) – t∗, tn+1 – t∗〉
≤ ‖yn – t∗‖2 – (1 – δn)ρn(4 – ρn)

γn

1 – σn
gjk(yn) –

δn(1 – δn)
γn

1 – σn

∥∥
∥∥∥
∥

Sλyn – yn + τn
∑

(j,k)∈�n

βjkT∗
j dn

jk

∥∥
∥∥∥
∥

2

–

γn

1 – σn

∥∥(I – PCn )yn
∥∥2 + 2σn〈tn+1 – t∗, un – t∗〉. (54)

According to the notations, we introduced in Lemma 5, inequalities (53) and (54) can be
briefly expressed as

‖tn+1 – t∗‖2 ≤ (1 – �n)‖tn – t∗‖2 + �n�n,∀n ≥ 1,

‖tn+1 – t∗‖2 ≤ ‖tn – t∗‖2 – �n + �n,∀n ≥ 1,

respectively.
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Applying the conditions listed under C(3), we immediately obtain

∞∑

n=1

�n = ∞ and lim
n→∞�n = 0.

All is now set to give the strong convergence of {tn}. From the results we obtained above
and in Lemma 5, we can see that all the hypotheses of Lemma 3 are satisfied. Hence

lim
n→∞‖tn – t∗‖ = 0,

which shows that the sequence {tn} converges strongly to t∗ = P�v(t∗). �

4 Numerical experiment
In this section, we illustrate the convergence of Algorithm 1 using a numerical example.

Example 1 Let H = R
S , H1 = R

R, H2 = R
N , H3 = R

M , H4 = R
L.

Let C = {x ∈R
S : ‖x – o‖2 ≤ r2} where o ∈R

S and r ∈R. Clearly C is a nonempty closed
and convex subsets of H .

Let Q11 = {T1x ∈ R
R : ‖T1x – a1‖2 ≤ �2

1}, Q21 = {T2x ∈ R
N : ‖T2x – a2‖2 ≤ �2

2}, Q31 =
{T3x ∈ R

M : ‖T3x – a3‖2 ≤ �2
3}, and Q41 = {T4x ∈ R

L : ‖T4x – a4‖2 ≤ �2
4} where a1 ∈ R

R,
a2 ∈R

N , a3 ∈R
M , a4 ∈ R

L and �1,�2,�3,�4 ∈ R.
Let T1 : RS → R

R, T2 : RS → R
N , T3 : RS → R

M , T4 : RS → R
L where their entries are

randomly generated in the closed interval [–5, 5].
Now, we construct the balls Cn and Qn

j1 (j = 1, 2, 3, 4) given in (8) and (9) of the sets C
and Qj1, respectively, as follows.

For any x ∈R
S , we have c(x) = ‖x – o‖2 – r2 and qj1(Tjx) = ‖Tjx – aj‖2 –�2

j for j = 1, 2, 3, 4.
In what follows, the subgradients ξn and ηj1,n of respectively c(yn) and qj1(Tjyn) can be
calculated respectively at the points yn and Tjyn by ξn(yn) = 2(yn – o) and ηj1,n(Tjyn) =
2T∗

j (Tjyn – cj). The metric projections onto the balls Cn (i = 1, 2, 3, 4) and Qn
j1 (j = 1, 2, 3, 4),

can be easily calculated.
We randomly generate the coordinates of o and aj in [–1, 1] and, r and �j in [S, 2S],

[R, 2R], [N , 2N], [M, 2M], and [L, 2L], respectively. We take the initial points as t0 =
100(1, 1, . . . , 1)T ∈ R

S and t1 = –10(1, 1, . . . , 1)T ∈ R
S . We take a 1

6 -demicontractive map-
ping S(x) = – 7

5 x, x ∈R
S and v(x) = 0.95x, x ∈R

S , respectively. Now, using Lemma 2, taking
λ = 1

3 , we get Sλ(x) = 1
5 x, x ∈R

S which is a quasi-nonexpansive mapping.
We take � = 0.5. For j = 1, 2, 3, 4, we take βj = j

10 and ωj = 1.5, θ = 0.3, εn = 1
20n30+1 ,

δn = 0.4, αn = 0.5, ρn = n
40n+1 , σn = 1

n+1 , αn = 0.6, τ = 2, and γn = 1 – αn – σn. We use
Errorn = ‖tn+1 – tn‖2 < 10–8 as a stopping criterion in this example. The algorithms are
coded in MATLAB 2023b on a personal computer (13th Gen Intel(R) Core(TM) i7-1355U
1.70 GHz, and a 16.0 GB RAM). All results are reported in Table 1 and Fig. 1.

5 Conclusion
In this paper, we study the split feasibility problem with multiple output sets and fixed
point problem in the class of demicontractive mappings. We propose relaxed inertial self-
adaptive algorithm and prove strong convergence result for the sequence generated by
the proposed algorithm. The proposed method combines the SFPMOS and fixed point
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Table 1 Numerical results of Algorithm 1 (when k = 1) for different choices of S,R,N,M, L

Dimensions Iter. (n) CPU(s) Errorn

S = 5,R = 10,N = 15,M = 20, L = 25 16 0.000870 9.9308e-09
S = 15,R = 30,N = 45,M = 60, L = 75 118 0.003496 9.9658e-09
S = 30,R = 60,N = 90,M = 120, L = 150 178 0.009372 9.9704e-09
S = 100,R = 200,N = 300,M = 400, L = 500 323 0.202976 9.9841e-09

Figure 1 Iter. (n) vs Errorn , experimental results of Algorithm 1 (when k = 1) for different choices of S,R,N,M, L

problem of demicontractive mappings. So, it generalizes a number of related works as the
two problems are larger classes of problems. The proposed algorithm also incorporates
the relaxation method in order to speed up its convergence. We adopted a new approach
for solving the SFPMOS which does not use the least squares method. Finally, we illustrate
the convergence of the proposed algorithm using a numerical example.
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