
Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2009, Article ID 432130, 16 pages
doi:10.1155/2009/432130

Research Article
Fixed Point Results for Generalized Contractive
Multimaps in Metric Spaces

Abdul Latif1 and Afrah A. N. Abdou2

1 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2 Girls College of Education, King Abdulaziz University, P.O. Box 14884, Jeddah 21434, Saudi Arabia

Correspondence should be addressed to Abdul Latif, latifmath@yahoo.com

Received 17 May 2009; Accepted 10 August 2009

Recommended by Mohamed A. Khamsi

The concept of generalized contractive multimaps in the setting of metric spaces is introduced,
and the existence of fixed points for such maps is guaranteed under certain conditions.
Consequently, our results either generalize or improve a number of fixed point results including
the corresponding recent fixed point results of Ciric (2008), Latif-Albar (2008), Klim-Wardowski
(2007), and Feng-Liu (2006). Examples are also given.

Copyright q 2009 A. Latif and A. A. N. Abdou. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and Preliminaries

Let (X, d) be a metric space, 2X a collection of nonempty subsets of X, CB(X) a collection
of nonempty closed bounded subsets of X, Cl(X) a collection of nonempty closed subsets of
X, K(X) a collection of nonempty compact subsets ofX andH the Hausdorffmetric induced
by d. Then for any A,B ∈ CB(X),

H(A,B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d
(
y,A

)}
, (1.1)

where d(x, B) = infy∈Bd(x, y).
An element x ∈ X is called a fixed point of a multivalued map T : X → 2X if x ∈ T(x).

We denote Fix(T) = {x ∈ X : x ∈ T(x)}. A sequence {xn} in X is called an orbit of T at x0 ∈ X
if xn ∈ T(xn−1) for all n ≥ 1.

A map f : X → R is called lower semicontinuous if for any sequence {xn} ⊂ X with
xn → x ∈ X it implies that f(x) ≤ lim infn→∞f(xn).
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Using the concept of Hausdorff metric, Nadler [1] established the following fixed
point result for multivalued contraction maps, known as Nadler’s contraction principle
which in turn is a generalization of the well-known Banach contraction principle.

Theorem 1.1 (see [1]). Let (X, d) be a complete metric space and let T : X → CB(X) be a
contraction map. Then Fix(T)/= ∅.

Using the concept of the Hausdorff metric, many authors have generalized Nadler’s
contraction principle in many directions. But, in fact for most cases the existence part of the
results can be proved without using the concept of Hausdorff metric. Recently, Feng and Liu
[2] extended Nadler’s fixed point theorem without using the concept of Hausdorff metric.
They proved the following result.

Theorem 1.2. Let (X, d) be a complete metric space and let T : X → Cl(X) be a map such that for
any fixed constants h, b ∈ (0, 1), h < b, and for each x ∈ X there is y ∈ T(x) satisfying the following
conditions:

bd
(
x, y

) ≤ d(x, T(x)),

d
(
y, T

(
y
)) ≤ hd

(
x, y

)
.

(1.2)

Then Fix(T)/= ∅ provided a real-valued function g on X, g(x) = d(x, T(x)) is lower semicontinuous.

Recently, Klim and Wardowski [3] generalized Theorem 1.2 and proved the following
two results.

Theorem 1.3. Let (X, d) be a complete metric space and let T : X → Cl(X). Assume that the
following conditions hold:

(i) there exist a number b ∈ (0, 1) and a function k : [0,∞) → [0, b) such that for each
t ∈ [0,∞),

lim sup
r→ t+

k(r) < b, (1.3)

(ii) for any x ∈ X there is y ∈ T(x) satisfying

bd
(
x, y

) ≤ d(x, T(x)),

d
(
y, T

(
y
)) ≤ k

(
d
(
x, y

))
d
(
x, y

)
.

(1.4)

Then Fix(T)/= ∅ provided a real-valued function g on X, g(x) = d(x, T(x)) is lower semicontinuous.

Theorem 1.4. Let (X, d) be a complete metric space and let T : X → K(X). Assume that the
following conditions hold:

(i) there exists a function k : [0,∞) → [0, 1) such that for each t ∈ [0,∞),

lim sup
r→ t+

k(r) < 1, (1.5)
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(ii) for any x ∈ X there is y ∈ T(x) satisfying

d
(
x, y

)
= d(x, T(x)),

d
(
y, T

(
y
)) ≤ k

(
d
(
x, y

))
d
(
x, y

)
.

(1.6)

Then Fix(T)/= ∅ provided a real-valued function g on X, g(x) = d(x, T(x)) is lower semicontinuous.

Note that Theorem 1.3 generalizes Nadler’s contraction principle and Theorem 1.2.
Most recently, Ciric [4] obtained some interesting fixed point results which extend and
generalize the cited results. Namely, [4, Theorem 5] generalizes [5, Theorem 5], [4, Theorem
6] generalizes [4, Theorems 1.2, 1.3], and [3, theorem 7] generalizes Theorem 1.4.

In [6], Kada et al. introduced the concept of w-distance on a metric space as follows:
A function ω : X × X → [0,∞) is called w-distance on X if it satisfies the following

for each x, y, z ∈ X:

(w1) ω(x, z) ≤ ω(x, y) +ω(y, z);

(w2) a map ω(x, ·) : X → [0,∞) is lower semicontinuous; that is, if a sequence {yn} in
X with yn → y ∈ X, then ω(x, y) ≤ lim infn→∞ω(x, yn);

(w3) for any ε > 0, there exists δ > 0 such that ω(z, x) ≤ δ and ω(z, y) ≤ δ imply
d(x, y) ≤ ε.

Note that, in general for x, y ∈ X, ω(x, y)/=ω(y, x) and not either of the implications
ω(x, y) = 0 ⇔ x = y necessarily hold. Clearly, the metric d is a w-distance on X. Let (Y, ‖ · ‖)
be a normed space. Then the functionsω1, ω2 : Y ×Y → [0,∞) defined byω1(x, y) = ‖y‖ and
ω2(x, y) = ‖x‖+ ‖y‖ for all x, y ∈ Y arew-distances [6]. Many other examples and properties
of the w-distance can be found in [6, 7].

The following lemma is crucial for the proofs of our results.

Lemma 1.5 (see [8]). Let K be a closed subset of X and ω be a w-distance on X. Suppose that there
exists u ∈ X such that ω(u, u) = 0. Then ω(u,K) = 0 ⇔ u ∈ K, where ω(u,K) = infy∈Kω(u, y).

Most recently, the authors of this paper generalized Latif and Albar [9, Theorem 1.3]
as follows.

Theorem 1.6 (see [10]). Let (X, d) be a complete metric space with a w-distance ω. Let T : X →
Cl(X) be a multivalued map satisfying that for any constant b ∈ (0, 1) and for each x ∈ X there is
y ∈ Jx

b
such that

ω
(
y, T

(
y
)) ≤ k

(
ω
(
x, y

))
ω
(
x, y

)
, (1.7)

where Jxb = {y ∈ T(x) : bω(x, y) ≤ ω(x, T(x))} and k is a function from [0,∞) to [0, b) with
lim supr→ t+k(r) < b, for every t ∈ [0,∞). Suppose that a real-valued function g on X defined by
g(x) = ω(x, T(x)) is lower semicontinuous. Then there exists vo ∈ X such that g(vo) = 0. Further,
if ω(vo, vo) = 0, then v0 ∈ Fix(T).

The aim of this paper is to present some more general results on the existence of fixed
points for multivalued maps satisfying certain conditions. Our results unify and generalize
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the corresponding results of Mizoguchi and Takahashi [5], Klim and Wardowski [3], Latif
and Abdou [10], Ciric [4], Feng and Liu [2], Latif and Albar [9] and several others.

2. The Results

First we prove a theorem which is a generalization of Ciric [4, Theorem 5] and due to Klim
and Wardowski [3, Theorem 1.4].

Theorem 2.1. Let (X, d) be a complete metric space with a w-distance ω. Let T : X → Cl(X) be a
multivalued map. Assume that the following conditions hold:

(i) there exists a function ϕ : [0,∞) → [0, 1) such that for each t ∈ [0,∞)

lim sup
r→ t+

ϕ(r) < 1 (2.1)

(ii) for any x ∈ X, there exists y ∈ T(x) satisfying

ω
(
x, y

) ≤ (
2 − ϕ

(
ω
(
x, y

)))
ω(x, T(x)),

ω
(
y, T

(
y
)) ≤ ϕ

(
ω
(
x, y

))
ω
(
x, y

) (2.2)

(iii) the map f : X → R, defined by f(x) = ω(x, T(x)) is lower semicontinuous.

Then there exists v0 ∈ X such that f(v0) = 0. Further if ω(v0, v0) = 0, then v0 ∈ T(v0).

Proof. let x0 ∈ X be any initial point. Then there exists x1 ∈ T(x0) such that

ω(x0, x1) ≤
(
2 − ϕ(ω(x0, x1))

)
ω(x0, T(x0)),

ω(x1, T(x1)) ≤ ϕ(ω(x0, x1))ω(x0, x1).
(2.3)

From (2.3)we get

ω(x1, T(x1)) ≤ ϕ(ω(x0, x1))
(
2 − ϕ(ω(x0, x1))

)
ω(x0, T(x0)). (2.4)

Define a function ψ : [0,∞) → [0,∞) by

ψ(t) = ϕ(t)
(
2 − ϕ(t)

)
= 1 − (

1 − ϕ(t)
)2
. (2.5)

Using the facts that for each t ∈ [0,∞), ϕ(t) < 1 and limr→ t+ supϕ(r) < 1, we have

ψ(t) < 1 , (2.6)

lim sup
r→ t+

ψ(r) < 1 ∀t ∈ [0,∞) (2.7)
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From (2.4) and (2.5), we have

ω(x1, T(x1)) ≤ ψ(ω(x0, x1))ω(x0, T(x0)). (2.8)

Similarly, for x1 ∈ X, there exists x2 ∈ T(x1) such that

ω(x1, x2) ≤
(
2 − ϕ(ω(x1, x2))

)
ω(x1, T(x1)),

ω(x2, T(x2)) ≤ ϕ(ω(x1, x2))ω(x1, x2).
(2.9)

Thus

ω(x2, T(x2)) ≤ ψ(ω(x1, x2))ω(x1, T(x1)). (2.10)

Continuing this process we can get an orbit {xn} of T in X satisfying the following:

ω(xn, xn+1) ≤
(
2 − ϕ(ω(xn, xn+1))

)
ω(xn, T(xn)), (2.11)

ω(xn+1, T(xn+1)) ≤ ψ(ω(xn, xn+1))ω(xn, T(xn)), (2.12)

for each integer n ≥ 0. Since ψ(t) < 1 for each t ∈ [0,∞) and from (2.12), we have for all n ≥ 0

ω(xn+1, T(xn+1)) < ω(xn, T(xn)). (2.13)

Thus the sequence of nonnegative real numbers {ω(xn, T(xn))} is decreasing and bounded
below, thus convergent. Therefore, there is some δ ≥ 0 such that

lim
n→∞

ω(xn, T(xn)) = δ. (2.14)

From (2.11), as ϕ(t) < 1 for all t ≥ 0, we get

ω(xn, T(xn)) ≤ ω(xn, xn+1) < 2ω(xn, T(xn)), (2.15)

Thus, we conclude that the sequence of nonnegative reals {ω(xn, xn+1)} is bounded.
Therefore, there is some θ ≥ 0 such that

lim inf
n→∞

ω(xn, xn+1) = θ. (2.16)

Note that ω(xn, xn+1) ≥ ω(xn, T(xn)) for each n ≥ 0, so we have θ ≥ δ.Nowwe will show that
θ = δ. Suppose that δ = 0. Then we get

lim
n→∞

ω(xn, xn+1) = 0. (2.17)
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Now consider δ > 0. Suppose to the contrary, that θ > δ. Then θ − δ > 0 and so from (2.14)
and (2.16) there is a positive integer n0 such that

ω(xn, T(xn)) < δ +
θ − δ

4
∀n ≥ n0, (2.18)

θ − θ − δ

4
< ω(xn, xn+1) ∀n ≥ n0. (2.19)

Then from (2.19), (2.11) and (2.18), we get

θ − θ − δ

4
< ω(xn, xn+1)

≤ (
2 − ϕ(ω(xn, xn+1))

)
ω(xn, T(xn))

<
(
2 − ϕ(ω(xn, xn+1))

)[
δ +

θ − δ

4

]
.

(2.20)

Thus for all n ≥ n0,

(
2 − ϕ(ω(xn, xn+1))

)
>

3θ + δ

3δ + θ
, (2.21)

that is,

1 +
(
1 − ϕ(ω(xn, xn+1))

)
> 1 +

2(θ − δ)
3δ + θ

, (2.22)

and we get

−(1 − ϕ(ω(xn, xn+1))
)2

< −
[
2(θ − δ)
3δ + θ

]2
. (2.23)

Thus for all n ≥ n0,

ψ(ω(xn, xn+1)) = 1 − (
1 − ϕ(ω(xn, xn+1))

)2
< 1 −

[
2(θ − δ)
3δ + θ

]2
.

(2.24)

Thus, from (2.12) and (2.24), we get

ω(xn+1, T(xn+1)) ≤ hω(xn, T(xn)) ∀n ≥ n0, (2.25)
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where h = 1− [2(θ − δ)/(3δ + θ)]2. Clearly h < 1 as θ > δ. From (2.18) and (2.25), we have for
any k ≥ 1

ω(xn0+k, T(xn0+k)) ≤ hkω(xn0 , T(xn0)). (2.26)

Since δ > 0 and h < 1, there is a positive integer k0 such that hk0ω(xn0 , T(xn0)) < δ.Now, since
δ ≤ ω(xn, T(xn)) for each n ≥ 0, by (2.26) we have

δ ≤ ω(xn0+k0 , T(xn0+k0)) ≤ hk0ω(xn0 , T(xn0)) < δ. (2.27)

a contradiction. Hence, our assumption θ > δ is wrong. Thus δ = θ. Now we will show that
θ = 0. Since θ = δ ≤ ω(xn, T(xn)) ≤ ω(xn, xn+1), then from (2.16) we can read as

lim inf
n→∞

ω(xn, xn+1) = θ+, (2.28)

so, there exists a subsequence {ω(xnk , xnk+1)} of {ω(xn, xn+1)} such that

lim
k→∞

ω(xnk , xnk+1) = θ + . (2.29)

Now from (2.7)we have

lim sup
ω(xnk

,xnk+1)→ θ+
ψ(ω(xnk , xnk+1)) < 1, (2.30)

and from (2.12), we have

ω(xnk , T(xnk+1)) ≤ ψ(ω(xnk , xnk+1))ω(xnk , T(xnk)) (2.31)

Taking the limit as k → ∞ and using (2.14), we get

δ = lim sup
k→∞

ω(xnk+1 , T(xnk+1))

≤
(
lim sup
k→∞

ψ(ω(xnk+1 , xnk+1))

)(
lim sup
k→∞

ω(xnk , T(xnk))

)

=

⎛
⎝ lim sup

ω(xnk
,xnk+1)→ θ+

ψ(ω(xnk , xnk+1))

⎞
⎠δ.

(2.32)

If we suppose that δ > 0, then from last inequality, we have

lim sup
ω(xnk

,xnk+1)→ θ+
ψ(ω(xnk , xnk+1)) ≥ 1, (2.33)
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which contradicts with (2.30). Thus δ = 0. Then from (2.14) and (2.15), we have

lim
n→∞

ω(xn, T(xn)) = 0+, (2.34)

and thus

lim
n→∞

ω(xn, xn+1) = 0 + . (2.35)

Now, let

α = lim
ω(xnk

,xnk+1)→ 0+
supψ(ω(xnk , xnk+1)). (2.36)

Then by (2.7), α < 1. Let q be such that α < q < 1. Then there is some n0 ∈ N such that

ψ(ω(xn, xn+1)) < q ∀n ≥ n0. (2.37)

Thus it follows from (2.12),

ω(xn+1, T(xn+1)) ≤ qω(xn, T(xn)) ∀n ≥ n0. (2.38)

By induction we get

ω(xn+1, T(xn+1)) ≤ qn+1−n0ω(xn0 , T(xn0)) ∀n ≥ n0. (2.39)

Now, using (2.15) and (2.39), we have

ω(xn, xn+1) ≤ 2qn−n0ω(xn0 , T(xn0)) ∀n ≥ n0. (2.40)

Now, we show that {xn} is a Cauchy sequence, for all m > n ≥ n0, we get

ω(xn, xm) ≤
m−1∑
k=n

ω(xk, xk+1)

≤ 2
m−1∑
k=n

qk−n0ω(xn0 , T(xn0))

≤ 2
(
qn−n0

1 − q

)
ω(xn0 , T(xn0)).

(2.41)

Hence we conclude, as q < 1, that {xn} is Cauchy sequence. Due to the completeness of X,
there exists some v0 ∈ X such that limn→∞xn = v0. Since f is lower semicontinuous and from
(2.34), we have

0 ≤ f(v0) ≤ lim inf
n→∞

f(xn) = ω(xn, T(xn)) = 0, (2.42)
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and thus, f(v0) = ω(v0, T(v0)) = 0. Since ω(v0, v0) = 0, and T(v0) is closed, it follows from
Lemma 1.5 that v0 ∈ T(v0).

We also have the following interesting result by replacing the hypothesis (iii) of
Theorem 2.1 with another natural condition.

Theorem 2.2. Suppose that all the hypotheses of Theorem 2.1 except (iii) hold. Assume that

inf{ω(x, v) +ω(x, T(x)) : x ∈ X} > 0, (2.43)

for every v ∈ X with v /∈ T(v). Then Fix(T)/= ∅.

Proof. Following the proof of Theorem 2.1, there exists a Cauchy sequence {xn} with xn ∈
T(xn−1). Due to the completeness of X, there exists v0 ∈ X such that limn→∞xn = v0. Since
ω(x, ·) is lower semicontinuous and xm → v0 ∈ X, it follows for all n ≥ n0

ω(xn, v0) ≤ lim
m→∞

infω(xn, xm) ≤
(
2qn−n0

1 − q

)
ω(xn0 , T(xn0)),

ω(xn, T(xn)) ≤ ω(xn, xn+1) ≤ 2qn−n0ω(xn0 , T(xn0)).

(2.44)

Assume that v0 /∈ T(v0). Then, we have

0 < inf{ω(x, v0) +ω(x, T(x)) : x ∈ X}
≤ inf{ω(xn, v0) +ω(xn, T(xn)) : n ≥ n0}

≤ inf
{(

2qn−n0

1 − q

)
ω(xn0 , T(xn0)) + 2qn−n0ω(xn0 , T(xn0)) : n ≥ n0

}

=
2
(
2 − q

)
(
1 − q

)
qn0

ω(xn0 , T(xn0)) inf
{
qn : n ≥ n0

}
= 0,

(2.45)

which is impossible and hence v0 ∈ Fix(T).

Now, we present an improved version of Ciric [4, Theorem 6] and which also
generalizes due to Latif and Abdou [10, Theorem 1.6] and due to Klim and Wardowski [3,
Theorem 1.3].

Theorem 2.3. Let (X, d) be a complete metric space with a w-distance ω. Let T : X → Cl(X), be a
multivalued map. Assume that the following condition hold:

(i) there exist functions ϕ : [0,∞) → (0, 1) and μ : [0,∞) → [b, 1), with b > 0, μ
nondecreasing such that

ϕ(t) < μ(t), lim sup
r→ t+

ϕ(r) < lim sup
r→ t+

μ(r), (2.46)
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(ii) for any x ∈ X, there exists y ∈ T(x) satisfying the following conditions:

μ
(
ω
(
x, y

))
ω
(
x, y

) ≤ ω(x, T(x)),

ω
(
y, T

(
y
)) ≤ ϕ

(
ω
(
x, y

))
ω
(
x, y

)
,

(2.47)

(iii) the map f : X → R, defined by f(x) = ω(x, T(x)) is lower semicontinuous.

Then there exists v0 ∈ X such that f(v0) = 0. Further if ω(v0, v0) = 0, then v0 ∈ T(v0).

Proof. Let x0 be an arbitrary, then there exists x1 ∈ T(x0) such that

μ(ω(x0, x1))ω(x0, x1) ≤ ω(x0, T(x0)),

ω(x1, T(x1)) ≤ ϕ(ω(x0, x1))ω(x0, x1).
(2.48)

From (2.48) we have

ω(x1, T(x1)) ≤
ϕ(ω(x0, x1))
μ(ω(x0, x1))

ω(x0, T(x0)). (2.49)

Define a function ψ : [0,∞) → [0,∞) by

ψ(t) =
ϕ(t)
μ(t)

∀t ∈ [0,∞). (2.50)

Since ϕ(t) < μ(t),we have

ψ(t) < 1, (2.51)

lim sup
r→ t+

ψ(r) < 1 ∀t ∈ [0,∞). (2.52)

Thus from (2.49)

ω(x1, T(x1)) ≤ ψ(ω(x0, x1))ω(x0, T(x0)). (2.53)

Similarly, there exists x2 ∈ T(x1) such that

μ(ω(x1, x2))ω(x1, x2) ≤ ω(x1, T(x1)),

ω(x2, T(x2)) ≤ ϕ(ω(x1, x2))ω(x1, x2).
(2.54)

Then by definition of ψ, we get

ω(x2, T(x2)) ≤ ψ(ω(x1, x2))ω(x1, T(x1)). (2.55)
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Continuing this process, we get an orbit {xn} of T at x0 such that

μ(ω(xn, xn+1))ω(xn, xn+1) ≤ ω(xn, T(xn)), (2.56)

ω(xn+1, T(xn+1)) ≤ ϕ(ω(xn, xn+1))ω(xn, xn+1). (2.57)

Thus

ω(xn+1, T(xn+1)) ≤ ψ(ω(xn, xn+1))ω(xn, T(xn)). (2.58)

Since ψ(t) < 1 for all t ∈ [0,∞),we get

ω(xn+1, T(xn+1)) < ω(xn, T(xn)). (2.59)

Thus the sequence of nonnegative real numbers {ω(xn, T(xn))} is decreasing and bounded
below, thus convergent. Now, we want to show that the sequence {ω(xn, xn+1)} is also
decreasing. Suppose to the contrary, that ω(xn, xn+1) ≤ ω(xn+1, xn+2), then as μ(t) is
nondecreasing, we have

μ(ω(xn, xn+1)) ≤ μ(ω(xn+1, xn+2)), (2.60)

Now using (2.56), (2.57) and (2.60)with n = n + 1, we get

ω(xn+1, xn+2) ≤
ϕ(ω(xn, xn+1))
μ(ω(xn+1, xn+2))

ω(xn, xn+1)

≤ ϕ(ω(xn, xn+1))
μ(ω(xn, xn+1))

ω(xn, xn+1)

< ψ(ω(xn, xn+1))ω(xn, xn+1)

< ω(xn, xn+1),

(2.61)

a contradiction. Thus the sequences {ω(xn, xn+1)} is decreasing. Now let

lim sup
n→∞

ψ(ω(xn, xn+1)) = α. (2.62)

Thus by (2.52), α < 1. Then for any q ∈ (α, 1), there exists n0 ∈ N such that

ψ(ω(xn, xn+1)) < q ∀n ≥ n0. (2.63)

So, from (2.58), for all n ≥ n0,we get

ω(xn+1, T(xn+1)) < qω(xn, T(xn)). (2.64)
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Thus by induction we get for all n ≥ n0

ω(xn+1, T(xn+1)) ≤ qn+1−n0ω(xn0 , T(xn0)). (2.65)

Since μ(t) ≥ b, from (2.56) and (2.65), we have

ω(xn, xn+1) ≤ 1
b
ω(xn, T(xn)) ≤ 1

b
qn−n0ω(xn0 , T(xn0)), (2.66)

for all n ≥ n0. Note that ω(xn, T(xn)) → 0. Now, we show that {xn} is a Cauchy sequence.
For all m > n ≥ n0, we have

ω(xn, xm) ≤
m−1∑
k=n

ω(xk, xk+1)

≤ 1
b

m−1∑
k=n

qk−n0ω(xn0 , T(xn0))

≤ 1
b

(
qn−n0

1 − q

)
ω(xn0 , T(xn0)).

(2.67)

Thus we conclude that {xn} is a Cauchy sequence. Now, proceeding the proof of Theorem 2.1,
we get some v0 ∈ X such that f(v0) = ω(v0, T(v0)) = 0 and v0 ∈ T(v0).

Following the proof of Theorem 2.2, we can obtain the following result.

Theorem 2.4. Suppose that all the hypotheses of Theorem 2.3 except (iii) hold. Assume that

inf{ω(x, v) +ω(x, T(x)) : x ∈ X} > 0, (2.68)

for every v ∈ X with v /∈ T(v). Then Fix(T)/= ∅.

Now, we present a result which is a generalization of Theorem 1.4 due to Klim and
Wardowski [3] and Ciric [4, Theorem 7].

Theorem 2.5. Let (X, d) be a complete metric space with a w-distance ω. Let T : X → Cl(X) be a
multivalued map. Assume that the following conditions hold:

(i) there exists a function ϕ : [0,∞) → [0, 1) such that for each t ∈ [0,∞)

lim sup
r→ t+

ϕ(r) < 1, (2.69)
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(ii) for any x ∈ X, there exists y ∈ T(x) satisfying

ω
(
x, y

)
= ω(x, T(x)),

ω
(
y, T

(
y
)) ≤ ϕ

(
ω
(
x, y

))
ω
(
x, y

)
,

(2.70)

(iii) the map f : X → R defined by f(x) = ω(x, T(x)) is lower semicontinuous.

Then there exists v0 ∈ X such that f(v0) = 0. Further if ω(v0, v0) = 0, then v0 ∈ T(v0).

Proof. Let x0 ∈ X, be any initial point. Then from (ii) we can choose x1 ∈ T(x0) such that

ω(x0, x1) = ω(x0, T(x0))

ω(x1, T(x1)) ≤ ϕ(ω(x0, x1))ω(x0, x1) ϕ(ω(x0, x1)) < 1.
(2.71)

Using the analogous method like in the proof of Lemma 2.1 [10], we obtain the existence of
Cauchy sequence {xn} such that xn ∈ T(xn−1) and satisfying

ω(xn, xn+1) = ω(xn, T(xn)),

ω(xn+1, T(xn+1)) ≤ ϕ(ω(xn, xn+1))ω(xn, xn+1), ϕ(ω(xn, xn+1)) < 1.
(2.72)

Consequently, there exists v0 ∈ X such that limn→∞xn = v0. Since f is lower semicontinu-
ous, we have

0 ≤ f(v0) ≤ lim inf
n→∞

f(xn) = 0, (2.73)

thus, f(v0) = ω(v0, T(v0)) = 0. Further by closedness of T(v0) and since ω(v0, v0) = 0, it
follows from Lemma 1.5 that v0 ∈ T(v0).

3. Examples

The following example shows that Theorem 2.1 is a genuine generalization of Ciric [4,
Theorem 5].

Example 3.1. Let X = [0, 1] with the usual metric d. Define a function ω : X ×X → [0,∞), by

ω
(
x, y

)
= y ∀x, y ∈ X. (3.1)

Clearly, ω is a w-distance on X and ω/=d. Let T : X → Cl(X) be such that

T(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{
1
2
x2
}
, for x ∈

[
0,

15
32

)
∪
(
15
32

, 1
]
,

{
17
96

,
1
4

}
, for x =

15
32

.

(3.2)
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Define now ϕ : [0,∞) → [0, 1) as follows

ϕ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8
5
t, for t ∈

[
0,

1
2

)
,

4
5
, for t ∈

[
1
2
,∞

)
.

(3.3)

Note that

f(x) = ω(x, T(x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
x2, for x ∈

[
0,

15
32

)
∪
(
15
32

, 1
]
,

17
96

, for x =
15
32

(3.4)

and f is lower semicontinuous. Moreover for each x ∈ [0, 15/32)∪ (15/32, 1]we have T(x) =
{(1/2)x2}. Take y = (1/2)x2, then we have

ω
(
x, y

)
= ω(x, T(x)) = ω

(
x,

1
2
x2
)

=
1
2
x2. (3.5)

Further, note that

ω
(
x, y

)
=

1
2
x2 ≤ [

2 − ϕ
(
ω
(
x, y

))]1
2
x2 =

[
2 − ϕ

(
ω
(
x, y

))]
ω(x, T(x)),

ω
(
y, T

(
y
))

= ω

(
1
2
x2,

1
8
x4
)

=
(
1
4
x2
)
ω
(
x, y

)
<

8
5

(
1
2
x2
)
ω
(
x, y

)
= ϕ

(
ω
(
x, y

))
ω
(
x, y

)
.

(3.6)

Hence, for all x ∈ [0, 1], x /= 15/32, T satisfies all the conditions of Theorem 2.1. Now, if x =
15/32, then we have T(x) = {17/96, 1/4}, and

ω(x, T(x)) = ω

(
15
32

,

{
17
96

,
1
4

})
= inf

{
17
96

,
1
4

}
=

17
96

. (3.7)

Note that for x = 15/32 there is y = 17/96 ∈ T(x) such that

ω
(
x, y

)
=

17
96

<

[
2 − 8

5

(
17
96

)]
17
96

=
[
2 − ϕ

(
ω
(
x, y

))]
ω
(
x, y

)
,

ω
(
y, T

(
y
))

= ω

(
17
96

,
1
2

(
17
96

)2
)

=
1
2

(
17
96

)2

<
8
5

(
17
96

)(
17
96

)
= ϕ

(
ω
(
x, y

))
ω
(
x, y

)
.

(3.8)
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Thus, T also satisfies all the conditions of Theorem 2.1 for x = 15/32. Hence it follows from
Theorem 2.1 that Fix(T)/= ∅.Note that Fix(T) = {0}. Clearly, T does not satisfy the hypotheses
of Ciric [4, Theorem 5] because ω is not the metric d.

Finally, we present an example which shows that Theorem 2.5 is a genuine
generalization of Theorem 1.4 due to Klim-Wardowski [3].

Example 3.2. LetX = [0,∞)with the usual metric d. Define a function ω : X ×X → [0,∞), by

ω
(
x, y

)
= x + y ∀x, y ∈ X. (3.9)

Thenω is aw-distance onX.Note thatω/=d. Now, for any real number a > 1, define T : X →
Cl(X) by

T(x) =
{x
a

}
∪ [(1 + 2x),∞), ∀x ∈ [0,∞), (3.10)

and define a constant function ϕ : [0,∞) → [0, 1) by

ϕ(t) =
1
a
, ∀t ∈ [0,∞). (3.11)

Note that ϕ(t) < 1 for all t ∈ [0,∞). And for each x ∈ X we have

f(x) = ω(x, T(x)) = x +
x

a
=
(
a + 1
a

)
x. (3.12)

Thus, f is continuous. Now for each x ∈ [0,∞) there exists y = (x/a) ∈ T(x) satisfying

ω
(
x, y

)
= ω

(
x,

x

a

)
= ω(x, T(x))

ω
(
y, T

(
y
))

=
x

a
+

x

a2
=

1
a

(
a + 1
a

)
x = ϕ

(
ω
(
x, y

))
ω
(
x, y

)
.

(3.13)

Therefore, all assumptions of Theorem 2.5 are satisfied and Fix(T) = {0}. Note that T(x) is
not compact for all x ∈ X and the w-distance ω is not a metric d, so T do not satisfy the
hypotheses of Theorem 1.4.
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