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Abstract
In this paper, we prove some existence theorems of fixed points of a monotone
nonexpansive mapping T in a Banach space E with the partial order ‘≤’, where a such
mapping may be discontinuous. In particular, in finite dimensional spaces, such a
mapping T has a fixed point in E if and only if the sequence {Tn0} is bounded in E. In
order to find a fixed point of such a mapping T , we prove the weak convergence of
the Mann iteration scheme under the condition

∑∞
n=1 βn(1 – βn) =∞, which entails

βn = 1
n+1 as a special case.
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1 Introduction
Let T be a mapping with domain D(T) and range R(T) in a Banach space E. Then T is
called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ D(T). The fixed point set of T is denoted by F(T) := {x ∈ K ; Tx = x}.
In , Aoyama et al. [] introduced a class of λ-hybrid mappings, that is, a mapping T

is called a λ-hybrid mapping in Hilbert space H if

‖Tx – Ty‖ ≤ ‖x – y‖ + ( – λ)〈x – Tx, y – Ty〉

for all x, y ∈ D(T). They showed a fixed point theorem and an ergodic theorem for such a
mapping. Clearly, a nonexpansive mapping is a -hybrid mapping. In , Aoyama and
Kohsaka [] also introduced the concept of α-nonexpansive mapping, that is, a mapping
T is called α-nonexpansive if α <  and

‖Tx – Ty‖ ≤ α‖Tx – y‖ + α‖Ty – x‖ + ( – α)‖x – y‖

for all x, y ∈ D(T). Obviously, a nonexpansive mapping is -nonexpansive and a λ-hybrid
mapping is –λ

–λ
-nonexpansive if λ <  in a Hilbert space H (for more details, see []).
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The following classical result for nonexpansive mappings was showed to still hold for
α-nonexpansive mappings in a uniformly convex Banach space E.

Theorem . ([]) Let C be a nonempty and closed convex subset of uniformly convex
Banach space E and T : C → C be an α-nonexpansive mapping. Then F(T) 	= ∅ if and
only if {Tnx} is bounded for some x ∈ C.

Very recently, Bachar and Khamsi [] introduced the concept of a monotone nonexpan-
sive mapping in a Banach space E endowed with the partial order ‘≤’ and investigated
common approximate fixed points of monotone nonexpansive semigroups. A mapping
T : D(T) → R(T) is called monotone nonexpansive if T is monotone (Tx ≤ Ty whenever
x ≤ y) and

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ D(T) with x ≤ y. Clearly, a monotone nonexpansive mapping may be discon-
tinuous.

In this paper, we show the following existence theorem of fixed points for a monotone
nonexpansive mapping T .

Theorem . Let K be a nonempty and closed convex subset of a uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that there
exists x ∈ K such that x ≤ Tx (or Tx ≤ x) and the sequence {Tnx} is bounded. Then F(T) 	= ∅
and x ≤ y∗ (or y∗ ≤ x) for some y∗ ∈ F(T).

In order to finding a fixed point of a nonexpansive mapping T , Mann [] introduced
the following iteration scheme which is referred to as the Mann iteration: for any x ∈
D(T),

xn+ = βnxn + ( – βn)Txn (.)

for each n ≥ , where βn ∈ [, ] is a sequence with some conditions. Subsequently, many
mathematical workers have been investigated the convergence of the Mann iteration
and its modified version for nonexpansive mappings and pseudo-contractions. For ex-
ample, see [–]. However, there are not many convergence theorems of such an itera-
tion in an ordered Banach space (E,≤). Recently, Dehaish and Khamsi [] obtained the
weak convergence of the Mann iteration for a monotone nonexpansive mapping provided
αn ∈ [a, b] ⊂ (, ). But their results do not entail βn = 

n+ .
Motivated by the above results, we consider the weak convergence of the Mann iteration

scheme for a monotone nonexpansive mapping T under the condition

∞∑

n=

βn( – βn) = ∞,

which contain βn = 
n+ as a special case.
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2 Preliminaries and basic results
Let P be a closed convex cone of a real Banach space E. A partial order ‘≤’ with respect to
P in E is defined as follows:

x ≤ y (x < y) if and only if y – x ∈ P (y – x ∈ P and x 	= y)

for all x, y ∈ E.
Throughout this paper, let E be a Banach space with the norm ‘‖ · ‖’ and the partial

order ‘≤’. Let F(T) = {x ∈ H : Tx = x} denote the set of all fixed points of a mapping T . An
order interval [x, y] for all x, y ∈ E is given by

[x, y] = {z ∈ E : x ≤ z ≤ y}. (.)

Obviously, the order interval [x, y] is closed and convex. In fact, let z, z ∈ [x, y]. Then
z – x ∈ P, z – x ∈ P, y – z ∈ P, and y – z ∈ P; and so, for any t ∈ (, ),

tz + ( – t)z – x = t(z – x) + ( – t)(z – x) ∈ P,

y –
(
tz + ( – t)z

)
= t(y – z) + ( – t)(y – z) ∈ P.

Thus tz + ( – t)z ∈ [x, y], that is, [x, y] is convex. Let {zn} ⊂ [x, y] with limn→∞ zn = z.
Then, for each n ≥ , zn – x ∈ P and y – zn ∈ P, and hence we have

lim
n→∞ zn – x = z – x ∈ P, lim

n→∞ y – zn = y – z ∈ P,

that is, x ≤ z ≤ y and so z ∈ [x, y], that is, [x, y] is closed. Then the convexity of the order
interval [x, y] implies that

x ≤ tx + ( – t)y ≤ y (.)

for all x, y ∈ E with x ≤ y.

Definition . Let K be a nonempty closed and convex subset of a Banach space E.
A mapping T : K → E is said to be:

() monotone [] if Tx ≤ Ty for all x, y ∈ K with x ≤ y;
() monotone nonexpansive [] if T is monotone and

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ K with x ≤ y.

A Banach space E is said to be:
() strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ E with ‖x‖ = ‖y‖ =  and x 	= y;
() uniformly convex if, for all ε ∈ (, ], there exists δ >  such that ‖x+y‖

 <  – δ for all
x, y ∈ E with ‖x‖ = ‖y‖ =  and ‖x – y‖ ≥ ε.

The following inequality was showed by Xu [] in a uniformly convex Banach space E,
which is known as Xu’s inequality.
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Lemma . (Xu [], Theorem ) For any real numbers q >  and r > , a Banach space E is
uniformly convex if and only if there exists a continuous strictly increasing convex function
g : [, +∞) → [, +∞) with g() =  such that

∥
∥tx + ( – t)y

∥
∥q ≤ t‖x‖q + ( – t)‖y‖q – ω(q, t)g

(‖x – y‖) (.)

for all x, y ∈ Br() = {x ∈ E;‖x‖ ≤ r} and t ∈ [, ], where ω(q, t) = tq( – t) + t( – t)q. In
particular, take q =  and t = 

 ,

∥
∥
∥
∥

x + y


∥
∥
∥
∥



≤ 

‖x‖ +



‖y‖ –




g
(‖x – y‖). (.)

The following conclusion is well known.

Lemma . (Takahashi [], Theorem ..) Let K be a nonempty closed convex sub-
set of a reflexive Banach space E. Assume that ϕ : K → R is a proper convex lower semi-
continuous and coercive function. Then the function ϕ attains its minimum on K , that is,
there exists x ∈ K such that

ϕ(x) = inf
y∈K

ϕ(y).

3 Main results
3.1 Existence of fixed points
In this section, we prove some existence theorems of fixed points of a monotone nonex-
pansive mapping in a uniformly convex Banach space (E,≤).

Theorem . Let K be a nonempty and closed convex subset of a uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that there
exists x ∈ K such that x ≤ Tx, the sequence {Tnx}∞n= is bounded. Then F(T) 	= ∅ and y′ ≥ x
for some y′ ∈ F(T).

Proof Let x = x and xn+ = Txn = Tnx. Then x = x ≤ Tx = x, and so,

x = Tx = Tx ≤ Tx = Tx = x.

By analogy, we must have

x = x ≤ x ≤ x ≤ · · · ≤ xn ≤ xn+ ≤ · · · .

Let Kn = {z ∈ K : xn ≤ z} for all n ≥ . Clearly, for each n ≥ , Kn is closed convex and
y ∈ Kn and so Kn is nonempty too. Let K∗ =

⋂∞
n= Kn. Then K∗ is a nonempty closed con-

vex subset of K . Since {xn} is bounded, we can define a function ϕ : K∗ → [, +∞) as
follows:

ϕ(z) = lim sup
n→∞

‖xn – z‖
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for all z ∈ K∗. From Lemma ., it follows that there exists y∗ ∈ K such that

ϕ
(
y∗) = inf

z∈K∗ ϕ(z). (.)

Now, we show y∗ = Ty∗. In fact, by the definition of K∗, we obtain

x ≤ x ≤ x ≤ · · · ≤ xn ≤ xn+ ≤ · · · ≤ y∗.

Then we have xn+ = Txn ≤ Ty∗ by the monotonicity of T and hence, for each n ≥ , xn ≤
Ty∗. So we have Ty∗ ∈ K∗. From the convexity of K∗, it follows that y∗+Ty∗

 ∈ K∗ and so, by
(.), we have

ϕ
(
y∗) ≤ ϕ

(
y∗ + Ty∗



)

, ϕ
(
y∗) ≤ ϕ

(
Ty∗). (.)

On the other hand, we have

ϕ
(
Ty∗) = lim sup

n→∞

∥
∥xn+ – Ty∗∥∥

= lim sup
n→∞

∥
∥Txn – Ty∗∥∥

≤ lim sup
n→∞

∥
∥xn – y∗∥∥

= ϕ
(
y∗). (.)

Combining (.) and (.), we have

ϕ
(
Ty∗) = ϕ

(
y∗). (.)

It follows from Lemma . (q =  and t = 
 ) and (.) that

ϕ

(
y∗ + Ty∗



)

= lim sup
n→∞

∥
∥
∥
∥xn –

y∗ + Ty∗



∥
∥
∥
∥



= lim sup
n→∞

∥
∥
∥
∥

xn – y∗


+

xn – Ty∗



∥
∥
∥
∥



≤ lim sup
n→∞

(


∥
∥xn – y∗∥∥ +



∥
∥xn – Ty∗∥∥ –




g
(∥
∥y∗ – Ty∗∥∥)

)

≤ 

ϕ
(
y∗) +



ϕ
(
Ty∗) –




g
(∥
∥y∗ – Ty∗∥∥)

= ϕ
(
y∗) –




g
(∥
∥y∗ – Ty∗∥∥)

.

Noticing (.), we have

g
(∥
∥y∗ – Ty∗∥∥) ≤ ϕ

(
y∗) – ϕ

(
y∗ + Ty∗



)

≤ 

and so g(‖y∗ –Ty∗‖) = . Thus we have y∗ = Ty∗ by the property of g . This yields the desired
conclusion. This completes the proof. �
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Theorem . Let K be a nonempty and closed convex subset of a uniformly convex Banach
space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that there
exists x ∈ K such that Tx ≤ x, the sequence {Tnx}∞n= is bounded and all n ≥ . Then F(T) 	=
∅ and y′ ≤ x for some y′ ∈ F(T).

Proof Let x = x, xn+ = Txn = Tnx, and let Kn = {z ∈ K : z ≤ xn} for all n ≥ . Using the
same proof technique of Theorem ., it is easy to obtain

xn+ ≤ xn

for all n ≥  and K∗ =
⋂∞

n= Kn is a nonempty closed convex subset of K . The remainder of
the proof is the same as ones of Theorem . and so we omit it. �

Theorem . Let E be a uniformly convex Banach space with the partial order ‘≤’ with re-
spect to closed convex cone P and T : P → P be a monotone nonexpansive mapping. Assume
that the sequence {Tn}∞n= is bounded. Then F(T) 	= ∅.

Proof It follows from the definition of the partial order ‘≤’ that  ≤ T. Then the conclu-
sions directly follow from Theorem .. �

Denote R
m = {(r, r, . . . , rm) : ri ∈ R, i = , , . . . , m} and R

m
+ = {(r, r, . . . , rm) : ri ≥ , i =

, , . . . , m}, where R is the set of all real numbers.

Theorem . Let T : Rm
+ → R

m
+ be a monotone nonexpansive mapping. Assume that the

sequence {Tn}∞n= is bounded. Then F(T) 	= ∅.

Proof Let Tn = (r(n)
 , r(n)

 , . . . , r(n)
m ) ∈ R

m
+ . It follows from the boundedness of the sequence

{Tn} that there exist a positive real number r such that r(n)
i ≤ r for all n and i = , , . . . , m.

Take y = (r, r, . . . , r). So the conclusions directly follow from Theorem .. �

Theorem . Let K be a nonempty and closed convex subset of a Banach space (E,≤) and
T : K → K be a monotone nonexpansive mapping. Assume that F(T) 	= ∅ and there exist
x ∈ K and p ∈ F(T) such that p ≤ x (or x ≤ p). Then the sequence {Tnx} is bounded.

Proof Let x = x and xn+ = Txn = Tnx. Then it follows from the conditions p = Tp and
p ≤ x (or x ≤ p) that p = Tp ≤ Txn = xn+ (or xn+ = Txn ≤ Tp = p) for all n ≥  and so

‖x – p‖ = ‖Tx – Tp‖ ≤ ‖x – p‖ = ‖x – p‖,

‖x – p‖ = ‖Tx – Tp‖ ≤ ‖x – p‖ ≤ ‖x – p‖,

. . . ,

‖xn – p‖ = ‖Txn– – Tp‖ ≤ ‖xn– – p‖ ≤ ‖x – p‖,

‖xn+ – p‖ = ‖Txn – Tp‖ ≤ ‖xn – p‖ ≤ ‖x – p‖,

. . .

and so ‖xn – p‖ ≤ ‖x – p‖ for all n ≥  and hence the sequence {Tnx} is bounded. This
completes the proof. �
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Theorem . Let E be a Banach space with the partial order ‘≤’ with respect to closed
convex cone P and T : P → P be a monotone nonexpansive mapping. Assume that F(T) 	= ∅.
Then the sequence {Tn} is bounded. Furthermore, the sequence {Tnx} is bounded for all
x ∈ P.

Proof It follows from the definition of T that  ≤ p for all p ∈ F(T). Then the conclusion
that {Tn} is bounded directly follows from Theorem .. For each x ∈ P, it is obvious that
 ≤ x and hence, by the monotonicity of T , we have

T ≤ Tx, T ≤ Tx, . . . , Tn ≤ Tnx, . . . .

It follows from the definition of a monotone nonexpansive mapping that

‖Tx – T‖ ≤ ‖x – ‖ = ‖x‖,
∥
∥Tx – T

∥
∥ ≤ ‖Tx – T‖ ≤ ‖x‖,

. . . ,
∥
∥Tnx – Tn

∥
∥ ≤ ∥

∥Tn–x – Tn–
∥
∥ ≤ ‖x‖,

∥
∥Tn+x – Tn+

∥
∥ ≤ ∥

∥Tnx – Tn
∥
∥ ≤ ‖x‖,

. . .

and so the sequence {Tnx} is bounded. The desired conclusion follows. This completes
the proof. �

Theorem . Let T : Rm
+ → R

m
+ be a monotone nonexpansive mapping. Then F(T) 	= ∅ if

and only if the sequence {Tn} is bounded.

Proof The conclusions directly follow from Theorems . and .. �

3.2 The convergence of the Mann iteration
In this section, for a monotone nonexpansive mapping T , we consider the Mann iteration
sequence defined by

xn+ = βnxn + ( – βn)Txn (.)

for each n ≥ , where {βn} in (, ) satisfies the following condition:

∞∑

n=

βn( – βn) = ∞.

Clearly, the above condition contains βn = 
n+ as a special case.

The following lemma is showed by Dehaish and Khamsi [], where the conclusion ()
is obtained from the proof of Lemma . in [].

Lemma . (Dehaish and Khamsi [], Lemmas . and .) Let K be a nonempty and
closed convex subset of a Banach space (E,≤) and T : K → K be a monotone nonexpansive
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mapping. Assume that the sequence {xn} is defined by (.) and x ≤ Tx (or Tx ≤ x). If
F(T) 	= ∅ and p ≤ x (or x ≤ p) for some p ∈ F(T), then

() {xn} is bounded and xn ≤ xn+ ≤ Txn (or Txn ≤ xn+ ≤ xn);
() limn→∞ ‖xn – p‖ exists;
() xn ≤ x (or x ≤ xn) for all n ≥  provided {xn} weakly converges to a point x ∈ K .

Theorem . Let K be a nonempty and closed convex subset of a uniformly convex Ba-
nach space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that the
sequence {xn} is defined by (.) and x ≤ Tx (or Tx ≤ x). If F(T) 	= ∅ and p ≤ x (or
x ≤ p) for some p ∈ F(T), then

lim
n→∞‖xn – Txn‖ = .

Proof It follows from Lemma . that

p ≤ x ≤ xn (or xn ≤ x ≤ p)

for all n ≥ . Then it follows from the nonexpansiveness of T , p = Tp, and an application
of Lemma . (q =  and t = βn) that

‖xn+ – p‖ =
∥
∥βn(xn – p) + ( – βn)(Txn – Tp)

∥
∥

≤ βn‖xn – p‖ + ( – βn)‖Txn – Tp‖ – βn( – βn)g
(‖xn – Txn‖

)

≤ ‖xn – p‖ – βn( – βn)g
(‖xn – Txn‖

)
,

and so

βn( – βn)g
(‖xn – Txn‖

) ≤ ‖xn – p‖ – ‖xn+ – p‖.

Therefore, we have

∞∑

n=

βn( – βn)g
(‖xn – Txn‖

) ≤ ‖x – p‖ < +∞. (.)

Now, we claim that there exists a subsequence {xnk } such that

lim
k→∞

g
(‖xnk – Txnk ‖

)
= . (.)

Suppose that the conclusion is not true. Then, for all subsequences {xnk } such that
limk→∞ g(‖xnk – Txnk ‖) > , we have

lim inf
n→∞ g

(‖xn – Txn‖
)

> .

Thus there exists a positive number a and a positive integer N such that g(‖xn – Txn‖) >
a >  for all n > N . Consequently, we have

βn( – βn)g
(‖xn – Txn‖

) ≥ aβn( – βn)
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and hence, by the condition
∑∞

n= βn( – βn) = +∞, we obtain

∞∑

n=

βn( – βn)g
(‖xn – Txn‖

)
= +∞.

This contradicts (.). So (.) holds and hence, by the property of g , we have

lim
k→∞

‖xnk – Txnk ‖ = .

On the other hand, we have

‖xn+ – Txn+‖ =
∥
∥βn(xn – Txn) + (Txn – Txn+)

∥
∥

≤ βn‖xn – Txn‖ + ‖xn+ – xn‖
= βn‖xn – xn – Txn‖ + ( – βn)‖xn – Txn‖
= ‖xn – Txn‖.

Therefore, the sequence {‖xn – Txn‖} is monotonically non-increasing and hence it fol-
lows that limn→∞ ‖xn – Txn‖ exists. This yields the desired conclusion. This completes the
proof. �

Recall that a Banach space E is said to satisfy Opial’s condition [] if a sequence {xn}
with {xn} weakly converges to a point x ∈ E implies

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

for all y ∈ E with y 	= x.
Next, we show the weak convergence of the sequence {xn} defined by (.). The proof is

similar to the ones of Dehaish and Khamsi [], but, for more details, we give the proof.

Theorem . Let K be a nonempty and closed convex subset of a uniformly convex
Banach space (E,≤) and T : K → K be a monotone nonexpansive mapping. Assume that
E satisfies Opial’s condition and the sequence {xn} is defined by (.) with x ≤ Tx (or
Tx ≤ x). If F(T) 	= ∅ and p ≤ x (or x ≤ p) for some p ∈ F(T), then {xn} weakly converges
to a fixed point x∗ of T .

Proof It follows from Lemma . and Theorem . that {xn} is bounded and

lim
n→∞‖xn – Txn‖ = .

Then there exists a subsequence {xnk } ⊂ {xn} such that {xnk } weakly converges to a point
x∗ ∈ K . Following Lemma ., we have x ≤ xnk ≤ x∗ (or x∗ ≤ xnk ≤ x) for all k ≥ . In
particular, we have

lim
k→∞

‖xnk – Txnk ‖ = .
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Now, we claim x∗ = Tx∗. In fact, suppose that this is not true. Then, from the nonexpan-
siveness of T and Opial’s condition, it follows that

lim sup
k→∞

∥
∥xnk – x∗∥∥ < lim sup

k→∞

∥
∥xnk – Tx∗∥∥

≤ lim sup
k→∞

(‖xnk – Txnk ‖ +
∥
∥Txnk – Tx∗∥∥)

≤ lim sup
k→∞

∥
∥xnk – x∗∥∥,

which is a contradiction. Thus, by Lemma .(), it follows that the limit limn→∞ ‖xn – x∗‖
exists.

Now, we show that {xn} weakly converges to the point x∗. Suppose that this is not true.
Then there exists a subsequence {xnj} that converges weakly to a point z ∈ K and z 	= x∗.
Similarly, it follows that z = Tz and limn→∞ ‖xn –z‖ exists. It follows from Opial’s condition
that

lim
n→∞‖xn – z‖ < lim

n→∞
∥
∥xn – x∗∥∥ = lim sup

i→∞

∥
∥xni – x∗∥∥ < lim

n→∞‖xn – z‖.

This is a contradiction and hence x∗ = z. This completes the proof. �
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