Skip to main content
  • Research Article
  • Open access
  • Published:

Approximating fixed points of total asymptotically nonexpansive mappings

Abstract

We introduce a new class of asymptotically nonexpansive mappings and study approximating methods for finding their fixed points. We deal with the Krasnosel'skii-Mann-type iterative process. The strong and weak convergence results for self-mappings in normed spaces are presented. We also consider the asymptotically weakly contractive mappings.

[1234567891011121314151617181920212223242526272829303132333435363738]

References

  1. Alber YaI: On the solution of equations and variational inequalities with maximal monotone operators. Soviet Mathematics Doklady 1979,20(4):871–876.

    MathSciNet  Google Scholar 

  2. Alber YaI: Metric and generalized projection operators in Banach spaces: properties and applications. In Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math.. Volume 178. Edited by: Kartsatos AG. Dekker, New York; 1996:15–50.

    Google Scholar 

  3. Alber YaI, Guerre-Delabriere S: Problems of fixed point theory in Hilbert and Banach spaces. Functional Differential Equations. Israel Seminar 1994, 2: 5–10 (1995).

    MathSciNet  MATH  Google Scholar 

  4. Alber YaI, Guerre-Delabriere S: Principle of weakly contractive maps in Hilbert spaces. In New Results in Operator Theory and Its Applications, Oper. Theory Adv. Appl.. Volume 98. Birkhäuser, Basel; 1997:7–22.

    Chapter  Google Scholar 

  5. Alber YaI, Guerre-Delabriere S: On the projection methods for fixed point problems. Analysis. International Mathematical Journal of Analysis and its Applications 2001,21(1):17–39.

    MathSciNet  MATH  Google Scholar 

  6. Alber YaI, Iusem AN: Extension of subgradient techniques for nonsmooth optimization in Banach spaces. Set-Valued Analysis. An International Journal Devoted to the Theory of Multifunctions and its Applications 2001,9(4):315–335. 10.1023/A:1012665832688

    MathSciNet  MATH  Google Scholar 

  7. Alber YaI, Iusem AN, Solodov MV: Minimization of nonsmooth convex functionals in Banach spaces. Journal of Convex Analysis 1997,4(2):235–255.

    MathSciNet  MATH  Google Scholar 

  8. Alber YaI, Reich S: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panamerican Mathematical Journal 1994,4(2):39–54.

    MathSciNet  MATH  Google Scholar 

  9. Alber YaI, Reich S, Yao J-C: Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces. Abstract and Applied Analysis 2003,2003(4):193–216. 10.1155/S1085337503203018

    Article  MathSciNet  MATH  Google Scholar 

  10. Bose SC: Weak convergence to the fixed point of an asymptotically nonexpansive map. Proceedings of the American Mathematical Society 1978,68(3):305–308. 10.1090/S0002-9939-1978-0493543-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruck RE, Kuczumow T, Reich S: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloquium Mathematicum 1993,65(2):169–179.

    MathSciNet  MATH  Google Scholar 

  12. Chang SS, Cho YJ, Zhou H: Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings. Journal of the Korean Mathematical Society 2001,38(6):1245–1260.

    MathSciNet  MATH  Google Scholar 

  13. Chidume CE: Nonexpansive mappings, generalizations and iterative algorithms. to appear in Nonlinear Anal

  14. Chidume CE, Ofoedu EU, Zegeye H: Strong and weak convergence theorems for asymptotically nonexpansive mappings. Journal of Mathematical Analysis and Applications 2003,280(2):364–374. 10.1016/S0022-247X(03)00061-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Chidume CE, Shahzad N, Zegeye H: Strong convergence theorems for nonexpansive mappings in arbitrary Banach spaces. to appear in Nonlinear Anal

  16. Diestel J: Geometry of Banach Spaces—Selected Topics, Lecture Notes in Mathematics. Volume 485. Springer, Berlin; 1975:xi+282.

    Google Scholar 

  17. Figiel T: On the moduli of convexity and smoothness. Polska Akademia Nauk. Instytut Matematyczny. Studia Mathematica 1976,56(2):121–155.

    MathSciNet  MATH  Google Scholar 

  18. Goebel K, Kirk WA: A fixed point theorem for asymptotically nonexpansive mappings. Proceedings of the American Mathematical Society 1972, 35: 171–174. 10.1090/S0002-9939-1972-0298500-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Górnicki J: Nonlinear ergodic theorems for asymptotically nonexpansive mappings in Banach spaces satisfying Opial's condition. Journal of Mathematical Analysis and Applications 1991,161(2):440–446. 10.1016/0022-247X(91)90343-X

    Article  MathSciNet  MATH  Google Scholar 

  20. Ishikawa S: Fixed points by a new iteration method. Proceedings of the American Mathematical Society 1974, 44: 147–150. 10.1090/S0002-9939-1974-0336469-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Ishikawa S: Fixed points and iteration of a nonexpansive mapping in a Banach space. Proceedings of the American Mathematical Society 1976,59(1):65–71. 10.1090/S0002-9939-1976-0412909-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim GE, Kim TH: Mann and Ishikawa iterations with errors for non-Lipschitzian mappings in Banach spaces. Computers & Mathematics with Applications. An International Journal 2001,42(12):1565–1570. 10.1016/S0898-1221(01)00262-0

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirk WA: Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type. Israel Journal of Mathematics 1974, 17: 339–346. 10.1007/BF02757136

    Article  MathSciNet  MATH  Google Scholar 

  24. Lindenstrauss J, Tzafriri L: Classical Banach Spaces. II. Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. Volume 97. Springer, Berlin; 1979:x+243.

    Google Scholar 

  25. Mann W: Mean value methods in iteration. Proceedings of the American Mathematical Society 1953, 4: 506–510. 10.1090/S0002-9939-1953-0054846-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bulletin of the Australian Mathematical Society 1967, 73: 591–597. 10.1090/S0002-9904-1967-11761-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Osilike MO, Aniagbosor SC: Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings. Mathematical and Computer Modelling 2000,32(10):1181–1191. 10.1016/S0895-7177(00)00199-0

    Article  MathSciNet  MATH  Google Scholar 

  28. Passty GB: Construction of fixed points for asymptotically nonexpansive mappings. Proceedings of the American Mathematical Society 1982,84(2):212–216. 10.1090/S0002-9939-1982-0637171-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Reich S: Weak convergence theorems for nonexpansive mappings in Banach spaces. Journal of Mathematical Analysis and Applications 1979,67(2):274–276. 10.1016/0022-247X(79)90024-6

    Article  MathSciNet  MATH  Google Scholar 

  30. Rhoades BE: Fixed point iterations for certain nonlinear mappings. Journal of Mathematical Analysis and Applications 1994,183(1):118–120. 10.1006/jmaa.1994.1135

    Article  MathSciNet  MATH  Google Scholar 

  31. Schu J: Iterative construction of fixed points of asymptotically nonexpansive mappings. Journal of Mathematical Analysis and Applications 1991,158(2):407–413. 10.1016/0022-247X(91)90245-U

    Article  MathSciNet  MATH  Google Scholar 

  32. Schu J: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bulletin of the Australian Mathematical Society 1991,43(1):153–159. 10.1017/S0004972700028884

    Article  MathSciNet  MATH  Google Scholar 

  33. Senter HF, Dotson WG Jr.: Approximating fixed points of nonexpansive mappings. Proceedings of the American Mathematical Society 1974, 44: 375–380. 10.1090/S0002-9939-1974-0346608-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Tan K-K, Xu HK: A nonlinear ergodic theorem for asymptotically nonexpansive mappings. Bulletin of the Australian Mathematical Society 1992,45(1):25–36. 10.1017/S0004972700036972

    Article  MathSciNet  MATH  Google Scholar 

  35. Tan K-K, Xu HK: The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces. Proceedings of the American Mathematical Society 1992,114(2):399–404. 10.1090/S0002-9939-1992-1068133-2

    Article  MathSciNet  MATH  Google Scholar 

  36. Tan K-K, Xu HK: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. Journal of Mathematical Analysis and Applications 1993,178(2):301–308. 10.1006/jmaa.1993.1309

    Article  MathSciNet  MATH  Google Scholar 

  37. Tan K-K, Xu HK: Fixed point iteration processes for asymptotically nonexpansive mappings. Proceedings of the American Mathematical Society 1994,122(3):733–739. 10.1090/S0002-9939-1994-1203993-5

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu HK: Existence and convergence for fixed points of mappings of asymptotically nonexpansive type. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 1991,16(12):1139–1146. 10.1016/0362-546X(91)90201-B

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaI Alber.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Alber, Y., Chidume, C. & Zegeye, H. Approximating fixed points of total asymptotically nonexpansive mappings. Fixed Point Theory Appl 2006, 10673 (2006). https://doi.org/10.1155/FPTA/2006/10673

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/FPTA/2006/10673

Keywords