Skip to main content
  • Research Article
  • Open access
  • Published:

A base-point-free definition of the Lefschetz invariant


In classical Lefschetz-Nielsen theory, one defines the Lefschetz invariant of an endomorphism of a manifold . The definition depends on the fundamental group of , and hence on choosing a base point and a base path from to . At times, it is inconvenient or impossible to make these choices. In this paper, we use the fundamental groupoid to define a base-point-free version of the Lefschetz invariant.



  1. Bass H: Euler characteristics and characters of discrete groups. Inventiones Mathematicae 1976,35(1):155–196. 10.1007/BF01390137

    Article  MathSciNet  MATH  Google Scholar 

  2. Bass H: Traces and Euler characteristics. In Homological Group Theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser.. Volume 36. Cambridge University Press, Cambridge; 1979:1–26.

    Google Scholar 

  3. Brown RF: The Lefschetz Fixed Point Theorem. Scott, Foresman, Illinois; 1971.

    MATH  Google Scholar 

  4. Geoghegan R: Nielsen fixed point theory. In Handbook of Geometric Topology. North-Holland, Amsterdam; 2002:499–521.

    Google Scholar 

  5. Hatcher A: Algebraic Topology. Cambridge University Press, Cambridge; 2002.

    MATH  Google Scholar 

  6. Jiang BJ: Lectures on Nielsen Fixed Point Theory, Contemporary Mathematics. Volume 14. American Mathematical Society, Rhode Island; 1983.

    Book  Google Scholar 

  7. Lück W: Transformation Groups and Algebraic K-Theory, Lecture Notes in Mathematics. Volume 1408. Mathematica Gottingensis, Springer, Berlin; 1989.

    Google Scholar 

  8. Lück W: The universal functorial Lefschetz invariant. Fundamenta Mathematicae 1999,161(1–2):167–215.

    MathSciNet  MATH  Google Scholar 

  9. Stallings J: Centerless groups—an algebraic formulation of Gottlieb's theorem. Topology. An International Journal of Mathematics 1965,4(2):129–134. 10.1016/0040-9383(65)90060-1

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vesta Coufal.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Coufal, V. A base-point-free definition of the Lefschetz invariant. Fixed Point Theory Appl 2006, 34143 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: