- Research Article
- Open access
- Published:
Fixed point theorems in locally convex spaces—the Schauder mapping method
Fixed Point Theory and Applications volume 2006, Article number: 57950 (2006)
Abstract
In the appendix to the book by F. F. Bonsal, Lectures on Some Fixed Point Theorems of Functional Analysis (Tata Institute, Bombay, 1962) a proof by Singbal of the Schauder-Tychonoff fixed point theorem, based on a locally convex variant of Schauder mapping method, is included. The aim of this note is to show that this method can be adapted to yield a proof of Kakutani fixed point theorem in the locally convex case. For the sake of completeness we include also the proof of Schauder-Tychonoff theorem based on this method. As applications, one proves a theorem of von Neumann and a minimax result in game theory.
References
Benyamini Y, Lindenstrauss J: Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications. Volume 48. American Mathematical Society, Rhode Island; 2000.
Bohnenblust HF, Karlin S: On a theorem of Ville. In Contributions to the Theory of Games, Annals of Mathematics Studies, no. 24. Princeton University Press, New Jersey; 1950:155–160.
Bonsal FF: Lectures on some Fixed Point Theorems and Functional Analysis, Notes by K. B. Vedak. Tata Institute of Fundamental Research, Bombay; 1962:iii+176.
Dunford N, Schwartz JT: Linear Operators. I. General Theory, Pure and Applied Mathematics. Volume 7. Interscience, New York; 1958.
Edwards RE: Functional Analysis. Theory and Applications, Corrected reprint of the 1965 original. Dover, New York; 1995:xvi+783.
Engelking R: General Topology, Sigma Series in Pure Mathematics. Volume 6. 2nd edition. Heldermann, Berlin; 1989.
Glicksberg IL: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proceedings of the American Mathematical Society 1952,3(1):170–174.
Goebel K, Kirk WA: Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics. Volume 28. Cambridge University Press, Cambridge; 1990.
Istrăţescu VI: Fixed Point Theory. An Introduction, Mathematics and Its Applications. Volume 7. D. Reidel, Dordrecht; 1981.
Kakutani S: A generalization of Brouwer's fixed point theorem. Duke Mathematical Journal 1941, 8: 457–459. 10.1215/S0012-7094-41-00838-4
Kantorovich LV, Akilov GP: Functional Analysis. 3rd edition. Nauka, Moscow; 1984. English translation of the 1959 edition: Macmillan, New York 1964
Khamsi MA, Kirk WA: An Introduction to Metric Spaces and Fixed Point Theory, Pure and Applied Mathematics (New York). Wiley-Interscience, New York; 2001.
Köthe G: Topological Vector Spaces. I., Translated from the German by D. J. H. Garling, Die Grundlehren der mathematischen Wissenschaften. Volume 159. Springer, New York; 1969.
Lusternik LA, Sobolev VJ: Elements of Functional Analysis, International Monographs on Advanced Mathematics Physics. Hindustan, Delhi; Halsted Press [John Wiley & Sons], New York; 1974.
Nikaidô H: Convex Structures and Economic Theory, Mathematics in Science and Engineering. Volume 51. Academic Press, New York; 1968.
Schauder J: Der Fixpunktsatz in Funktionalräume. Studia Mathematica 1930, 2: 171–180.
Smart DR: Fixed Point Theorems, Cambridge Tracts in Mathematics, no. 66. Cambridge University Press, London; 1974.
Tychonoff A: Ein Fixpunktsatz. Mathematische Annalen 1935,111(1):767–776. 10.1007/BF01472256
von Neumann J: Über ein ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. Ergebnisse eines Mathematischen Kolloquiums 1937, 8: 73–83.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Cobzaş, S. Fixed point theorems in locally convex spaces—the Schauder mapping method. Fixed Point Theory Appl 2006, 57950 (2006). https://doi.org/10.1155/FPTA/2006/57950
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/FPTA/2006/57950