- Research
- Open access
- Published:
A generalised fixed point theorem of presic type in cone metric spaces and application to markov process
Fixed Point Theory and Applications volume 2011, Article number: 85 (2011)
Abstract
A generalised common fixed point theorem of Presic type for two mappings f: X → X and T: Xk → X in a cone metric space is proved. Our result generalises many well-known results.
2000 Mathematics Subject Classification
47H10
1. Introduction
Considering the convergence of certain sequences, Presic [1] proved the following:
Theorem 1.1. Let (X, d) be a metric space, k a positive integer, T: Xk → X be a mapping satisfying the following condition:
where x1, x2, ..., xk+ 1are arbitrary elements in X and q1, q2, ..., q k are non-negative constants such that q1 + q2 + · · · + q k < 1. Then, there exists some x ∈ X such that x = T(x, x, ..., x). Moreover if x1, x2, ..., x k are arbitrary points in X and for n ∈ N x n+k = T(x n , xn+1, ..., xn+k-1), then the sequence < x n > is convergent and lim x n = T(lim x n , lim x n , ..., lim x n ).
Note that for k = 1 the above theorem reduces to the well-known Banach Contraction Principle. Ciric and Presic [2] generalising the above theorem proved the following:
Theorem 1.2. Let (X, d) be a metric space, k a positive integer, T: Xk → X be a mapping satisfying the following condition:
where x1, x2, ..., xk+1are arbitrary elements in X and λ ∈ (0,1). Then, there exists some x ∈ X such that x = T(x, x, ..., x). Moreover if x1, x2, ..., x k are arbitrary points in X and for n ∈ Nx n+k = T(x n , xn+1, ..., xn+k-1), then the sequence < x n > is convergent and lim x n = T(lim x n , lim x n , ..., lim x n ). If in addition T satisfies D(T(u, u, ... u), T(v, v, ... v)) < d(u, v), for all u, v ∈ X then x is the unique point satisfying x = T(x, x, ..., x).
Huang and Zang [3] generalising the notion of metric space by replacing the set of real numbers by ordered normed spaces, defined a cone metric space and proved some fixed point theorems of contractive mappings defined on these spaces. Rezapour and Hamlbarani [4], omitting the assumption of normality, obtained generalisations of results of [3]. In [5], Di Bari and Vetro obtained results on points of coincidence and common fixed points in non-normal cone metric spaces. Further results on fixed point theorems in such spaces were obtained by several authors, see [5–15].
The purpose of the present paper is to extend and generalise the above Theorems 1.1 and 1.2 for two mappings in non-normal cone metric spaces and by removing the requirement of D(T(u, u, ... u), T(v, v, ... v)) < d(u, v), for all u, v ∈ X for uniqueness of the fixed point, which in turn will extend and generalise the results of [3, 4].
2. Preliminaries
Let E be a real Banach space and P a subset of E. Then, P is called a cone if
-
(i)
P is closed, non-empty, and satisfies P ≠ {0},
-
(ii)
ax + by ∈ P for all x, y ∈ P and non-negative real numbers a, b
-
(iii)
x ∈ P and - x ∈ P ⇒ x = 0, i.e. P ∩ (-P) = 0
Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if y - x ∈ P. We shall write x < y if x ≤ y and x ≠ y, and x ≪ y if y - x ∈ intP, where intP denote the interior of P. The cone P is called normal if there is a number K > 0 such that for all x, y ∈ E, 0 ≤ x ≤ y implies || x || ≤ K || y || .
Definition 2.1. [3] Let X be a non empty set. Suppose that the mapping d: X × X → E satisfies:
(d1) 0 ≤ d (x, y) for all x, y ∈ X and d (x, y) = 0 if and only if x = y
(d2)d (x, y) = d (y, x) for all x, y ∈ X
(d3)d (x, y) ≤ d (x, z) + d (z, y) for all x, y, z ∈ X
Then, d is called a conemetric on X and (X, d) is called a conemetricspace.
Definition 2.2. [3] Let (X, d) be a cone metric space. The sequence {x n } in X is said to be:
-
(a)
A convergent sequence if for every c ∈ E with 0 ≪ c, there is n0 ∈ N such that for all n ≥ n0, d (x n , x) ≪ c for some x ∈ X. We denote this by limn→∞x n = x.
-
(b)
A Cauchy sequence if for all c ∈ E with 0 ≪ c, there is no ∈ N such that d (x m , x n ) ≪ c, for all m, n ≥ n0.
-
(c)
A cone metric space (X, d) is said to be complete if every Cauchy sequence in X is convergent in X.
-
(d)
A self-map T on X is said to be continuous if lim n→∞ x n = x implies that lim n→∞ T(x n ) = T(x), for every sequence {x n }in X.
Definition 2.3. Let (X, d) be a metric space, k a positive integer, T: Xk → X and f : X → X be mappings.
-
(a)
An element x ∈ X said to be a coincidence point of f and T if and only if f(x) = T(x, x, ..., x). If x = f(x) = T(x, x, ..., x), then we say that x; is a common fixed point of f and T. If w = f(x) = T(x, x, ..., x), then w is called a point of coincidence of f and T.
-
(b)
Mappings f and T are said to be commuting if and only if f(T(x, x, ... x)) = T(fx, fx, ... fx) for all x ∈ X.
-
(c)
Mappings f and T are said to be weakly compatible if and only if they commute at their coincidence points.
Remark 2.4. For k = 1, the above definitions reduce to the usual definition of commuting and weakly compatible mappings in a metric space.
The set of coincidence points of f and T is denoted by C(f, T).
3. Main results
Consider a function ϕ: Ek → E such that
-
(a)
ϕ is an increasing function, i.e x1 < y1, x2 < y2, ..., x k < y k implies ϕ(x1, x2, ..., x k ) < ϕ(y1, y2, ..., y k ).
-
(b)
ϕ(t, t, t, ...) ≤ t, for all t ∈ X
-
(c)
ϕ is continuous in all variables.
Now, we present our main results as follows:
Theorem 3.1. Let (X, d) be a cone metric space with solid cone P contained in a real Banach space E. For any positive integer k, let T: Xk → X and f: X → X be mappings satisfying the following conditions:
where x1, x2, ..., xk+1are arbitrary elements in X and and
there exist elements x1, x2, ..., x k in X such that
where . Then, f and T have a coincidence point, i.e. C(f, T) ≠ ∅.
Proof. By (3.1) and (3.4) we define sequence < y n > in f(X) as y n = fx n for n = 1, 2, ..., k and y n+k = f(x n+k ) = T(x n , xn+1, ..., xn+k-1), n = 1, 2, ... Let α n = d(y n , yn+1). By the method of mathematical induction, we will now prove that
for all n. Clearly by the definition of R, (3.5) is true for n = 1, 2, ..., k. Let the k inequalities α n ≤ Rθn, αn+1≤ Rθn+1, ..., αn+k-1≤ Rθn+k-1be the induction hypothesis. Then, we have
Thus inductive proof of (3.5) is complete. Now for n, p ∈ N, we have
Let 0 ≪ c be given. Choose δ > 0 such that c + N δ (0) ⊆ P where N δ (0) = {y ∈ E; || y || < δ}. Also choose a natural number N1 such that , for all n > N1. Then, for all n ≥ N1. Thus, for all n ≥ N1. Hence, sequence < y n > is a Cauchy sequence in f(X), and since f(X) is complete, there exists v, u ∈ X such that limn→∞y n = v = f(u). Choose a natural number N2 such that and for all n ≥ N 2 .
Then for all n ≥ N2
Thus, for all m ≥ 1.
So, for all m ≥ 1. Since as m → ∞ and P is closed, -d(fu, T(u, u, ... u)) ∈ P, but P ∩(-P) = /0/. Therefore, d(fu, T(u, u, ... u)) = 0. Thus, fu = T(u, u, u, ..., u), i.e. C(f, T) ≠ ∅. □
Theorem 3.2. Let (X, d) be a cone metric space with solid cone P contained in a real Banach space E. For any positive integer k, let T: Xk → X and f: X → X be mappings satisfying (3.1), (3.2), (3.3) and let there exist elements x1, x2, ... x k in X satisfying (3.4). If f and T are weakly compatible, then f and T have a unique common fixed point. Moreover if x1, x2, ...,x k are arbitrary points in X and for n ∈ N, y n+k = f(x n+k ) = T(x n , xn+1, ... xn+k-1), n = 1, 2, ..., then the sequence < y n > is convergent and lim y n = f(lim y n ) = T(lim y n , lim y n , ..., lim y n ).
Proof. As proved in Theorem 3.1, there exists v, u ∈ X such that limn→∞y n = v = f(u) = T(u, u, u ... u). Also since f and T are weakly compatible f(T(u, u, ... u) = T(fu, fu, fu ... fu). By (3.2) we have,
Repeating this process n times we get, d(f fu, fu) < kn λn d(f fu, fu). So kn λn d(f fu, fu) - d(f fu, fu) ∈ P for all n ≥ 1. Since kn λn → 0 as n → ∞ and P is closed, --d(f fu, fu) ∈ P, but P ∩ (-P) = {0}. Therefore, d(f fu, fu) = 0 and so f fu = fu. Hence, we have, fu = f fu = f(T(u, u, ... u)) = T(fu, fu, fu ... fu), i.e. fu is a common fixed point of f and T, and lim y n = f(lim y n ) = T(lim y n , lim y n , ... lim y n ). Now suppose x, y be two fixed points of f and T. Then,
Repeating this process n times we get as above, d(x, y) ≤ kn λn d(x, y) and so as n → ∞d(x, y) = 0, which implies x = y. Hence, the common fixed point is unique. □
Remark 3.3. Theorem 3.2 is a proper extension and generalisation of Theorems 1.1 and 1.2.
Remark 3.4. If we take k = 1 in Theorem, 3.2, we get the extended and generalised versions of the result of [3] and [4].
Example 3.5. Let E = R2, P = {(x, y) ∈ E\x, y ≥ 0}, X = [0, 2] and d: X × X → E such that d(x, y) = (|x - y |, |x - y |). Then, d is a cone metric on X. Let T: X2 → X and f: X → X be defined as follows:
T and f satisfies condition (3.2) as follows:
Case 1. x, y, z ∈ [0, 1]
Case 2. x, y ∈ [0, 1] and z ∈ [1, 2]
Case 3. x ∈ [0, 1] and y; z ∈ [1, 2]
Similarly in all other cases . Thus, f and T satisfy condition (3.2) with ϕ(x1, x2) = max{x1, x2}. We see that C(f, T) = 1, f and T commute at 1. Finally, 1 is the unique common fixed point of f and T.
4. An application to markov process
Let denote the n - 1 dimensional unit simplex. Note that any x ∈ Δn-1may be regarded as a probability over the n possible states. A random process in which one of the n states is realised in each period t = 1, 2, ... with the probability conditioned on the current realised state is called Markov Process. Let a ij denote the conditional probability that state i is reached in succeeding period starting in state j. Then, given the prior probability vector xt in period t, the posterior probability in period t + 1 is given by for each i = 1, 2, .... To express this in matrix notation, we let xt denote a column vector. Then, xt+1 = Axt. Observe that the properties of conditional probability require each a ij ≥ 0 and for each j. If for any period t, xt+ 1= xt then xt is a stationary distribution of the Markov Process. Thus, the problem of finding a stationary distribution is equivalent to the fixed point problem Axt = xt.
For each i, let ε i = min j a ij and define .
Theorem 4.1. Under the assumption a i,j > 0, a unique stationary distribution exist for the Markov process.
Proof. Let d: Δn-1× Δn-1→ R2 be given by for all x, y ∈ Δn-1and some α ≥ 0.
Clearly d(x, y) ≥ (0, 0) for all x, y ∈ Δn-1and for all i ⇒ x = y. Also x = y ⇒ x i = y i for all
So Δn-1is a cone metric space. For x ∈ Δn-1, let y = Ax. Then each . Further more, since each , we have , so y ∈ Δn-1. Thus, we see that A: Δn-1→ Δn-1. We will show that A is a contraction. Let A i denote the i th row of A. Then for any x, y ∈ Δn-1, we have
which establishes that A is a contraction mapping. Thus, Theorem 3.2 with k = 1 and f as identity mapping ensures a unique stationary distribution for the Markov Process. Moreover for any x0 ∈ Δn-1, the sequence < Anx0 > converges to the unique stationary distribution. □
References
Presic SB: Sur la convergence des suites, Comptes. Rendus. de 1'Acad des Sci de Paris 1965, 260: 3828–3830.
Ciric LjB, Presic SB: On Presic type generalisation of Banach contraction principle. Acta Math Univ Com 2007,LXXVI(2):143–47.
Huang LG, Zhang X: Cone metric spaces and fixed point theorems of contractive mappings. J Math Anal Appl 2007,332(2):1468–1476. 10.1016/j.jmaa.2005.03.087
Rezapour S, Hamlbarani R: Some notes on the paper cone metric spaces and fixed point theorems of contractive mappings. Math Anal Appl 2008,345(2):719–724. 10.1016/j.jmaa.2008.04.049
Di Bari C, Vetro P: ϕ -pairs and common fixed points in cone metric spaces. Rendiconti del circolo Matematico di Palermo 2008,57(2):279–285. 10.1007/s12215-008-0020-9
Abbas M, Jungck G: Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J Math Anal Appl 2008,341(1):416–420. 10.1016/j.jmaa.2007.09.070
Abbas M, Rhodades BE: Fixed and periodic point results in cone metric spaces. Appl Math Lett 2009,22(A):511–515.
Di Bari C, Vetro P: Weakly ϕ -pairs and common fixed points in cone metric spaces. Rendiconti del circolo Matematico di Palermo 2009,58(1):125–132. 10.1007/s12215-009-0012-4
Ilic D, Rakocevic V: Common fixed points for maps on cone metric space. Math Anal Appl 2008,341(2):876–882. 10.1016/j.jmaa.2007.10.065
Arandjelovic I, Kadelburg Z, Radenovic S: Boyd-Wong type common fixed point results in cone metric spaces. Appl Math Comput 2011, 217: 7167–7171.
Raja P, Vaezpour SM: Some extensions of Banch's contraction principle in complete cone metric spaces. Fixed Point Theory Appl 2008, 2008: 11. Article ID 768294
Jankovic S, Kadelburg Z, Radenovic S: On cone metric spaces: a survey. Nonlin Anal 2011, 74: 2591–2601. 10.1016/j.na.2010.12.014
Simic S: A note on Stone's, Baire's, Ky Fan's and Dugundj's theorem in tvs-cone metric spaces. Appl Math Lett 2011, 24: 999–1002. 10.1016/j.aml.2011.01.014
Vetro P: Common fixed points in Cone metric spaces. Rendiconti del circolo Matematico di Palermo, Serie II 2007,56(3):464–468. 10.1007/BF03032097
Kadelburg Z, Radenovic S, Rakocevic V: A note on the equivalence of some metric and cone fixed point results. Appl Math Lett 2011, 24: 370–374. 10.1016/j.aml.2010.10.030
Acknowledgements
The authors would like to thank the learned referees for their valuable comments which helped in bringing this paper to its present form. The first and third authors are supported by Ministry of Education, Kingdom of Saudi Arabia.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors' contributions
RG gave the idea of this work. All authors worked on the proofs and examples. KPR and RR drafted the manuscript. RG read the manuscript and made necessary corrections. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
George, R., Reshma, K. & Rajagopalan, R. A generalised fixed point theorem of presic type in cone metric spaces and application to markov process. Fixed Point Theory Appl 2011, 85 (2011). https://doi.org/10.1186/1687-1812-2011-85
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-1812-2011-85