Skip to main content

Ishikawa-hybrid proximal point algorithm for NSVI system

Abstract

A nonlinear set-valued inclusions system framework for an Ishikawa-hybrid proximal point algorithm is developed and studied using the notion of an (A,η)-accretive mapping. Convergence analysis for the algorithm of solving the nonlinear set-valued inclusions system and existence analysis of solution for the system are explored along with some results on the resolvent operator corresponding to the (A,η)-accretive mapping in a Banach space. The result that the sequence generated by the algorithm converges linearly to a solution of the system with the convergence rate Ψ is proved.

MSC:49J40, 47H06.

1 Introduction

The nonlinear set-valued inclusions system, which was introduced and studied by Hassouni and Moudafi [1], is a useful and important extension of the variational inequality and variational inclusions system. In recent years, various variational inclusions systems and nonlinear set-valued inclusions systems have been intensively studied. For example, Kassay and Kolumbán [2], Chen, Deng and Tan [3], Yan, Fang and Huang [4], Fang, Huang and Thompson [5], Jin [6], Verma [7], Li, Xu and Jin [8], Kang, Cho and Liu [9]et al. introduced and studied various set-valued variational inclusions systems. For the past few years, many existence results and iterative algorithms for various variational inclusions systems have been studied. For details, please see [128] and the references therein.

Example 1.1 In 2001, Chen, Deng and Tan [3] have studied the problem associated with the following system of variational inequalities, which is finding (x,y)H×H (H, Hilbert space) such that

{ ρ T ( y ) + x y , w x ρ φ 1 ( x ) ρ φ 1 ( w ) , t S ( x ) + y x , w y t φ 2 ( y ) ρ φ 2 ( w ) ( w H ) ,
(1)

where φ i :HR is a proper, convex, lower semicontinuous functional and φ i () denotes the subdifferential operator of φ i (i=1,2).

Example 1.2 Let X be a real q-uniformly smooth Banach space, and S,T, M 1 , M 2 :XX be four single-valued mappings. Find x,yX such that

{ 0 x y + ρ T ( y ) + ρ M 1 ( x ) , 0 y x + t S ( x ) + t M 2 ( y ) ,
(2)

which is studied by Jin in [6].

Inspired and motivated by Examples 1.1-1.2 and recent research work in this field (see [7, 8]), in this paper, we will introduce and discuss the problem associated with the following class of new nonlinear set-valued inclusions systems (NSVI Systems), which is finding (x,y)X×X for any f,g:XX such that zS(x), wT(y), and

{ f ( x ) F ( z , y ) + M ( y ) , g ( y ) G ( w , x ) + N ( x ) ,
(3)

where X is a real q-uniformly smooth Banach space, A,B:XX, η 1 , η 2 :X×XX, and F,G:X×XX are single-valued mappings; M:X 2 X is a set-valued (A, η 1 )-accretive mapping and N:X 2 X is a set-valued (B, η 2 )-accretive mapping, and S,T:XCB(X) are two set-valued mappings.

If f(x)=x, g(y)=y, F(w,y)=ρT(y)y, G(y,x)=tS(x)x, N=t M 2 and M=ρ M 1 (), then the problem (3) reduces to Example 1.1. If M 1 = M 2 =φ, φ i :HR is a proper, convex, lower semicontinuous functional and φ i () denotes the subdifferential operator of φ i (X=H, Hilbert space, and i=1,2), then the problem (3) changes to Example 1.2.

If X is a real q-uniformly smooth Banach space, and G(,)=N(y,g(x)), f(u)=u and S(u)=Q(u)(uX), then the problem (3) reduces to the problem associated with the following variational inclusions:

For any uX, find xX and y=Q(x) such that

uN ( y , g ( x ) ) +M(y),
(4)

which is developed by Li in 2010 [8].

The main purpose of this paper is to introduce and study a generalized nonlinear set-valued inclusions system framework for an Ishikawa-hybrid proximal point algorithm using the notion of (A,η)-accretive due to Lan-Cho-Verma [10] in a Banach space, to analyse convergence for the algorithm of solving the system and existence of a solution for the system and to prove the result that sequence { ( x n , y n ) } n = 0 generated by the algorithm converges linearly to a solution of the nonlinear set-valued inclusions system with the convergence rate Ψ.

2 Preliminaries

Let X be a real q-uniformly smooth Banach space with a dual space X , , be the dual pair between X and X , 2 X denote the family of all the nonempty subsets of X, and CB(X) denote the family of all nonempty closed bounded subsets of X. The generalized duality mapping J q :X 2 X is defined by

J q (x)= { f X : x , f = x q , f = x q 1 } ,xX,

where q>1 is a constant. Let us recall the following results and concepts.

Definition 2.1 A single-valued mapping η:X×XX is said to be τ-Lipschitz continuous if there exists a constant τ>0 such that

η ( x , y ) τxy,x,yX.

Definition 2.2 A single-valued mapping A:XX is said to be

  1. (i)

    accretive if

    A ( x 1 ) A ( x 2 ) , J q ( x 1 x 2 ) 0, x 1 , x 2 X;
  2. (ii)

    strictly accretive if A is accretive and A( x 1 )A( x 2 ), J q ( x 1 x 2 )=0 if and only if x 1 = x 2 , x 1 , x 2 X;

  3. (iii)

    r-strongly η-accretive if there exists a constant r>0 such that

    A ( x 1 ) A ( x 2 ) , J q ( η ( x 1 , x 2 ) ) r x 1 x 2 q , x 1 , x 2 X;
  4. (iv)

    γ-Lipschitz continuous if there exists a constant γ>0 such that

    A ( x 1 ) A ( x 2 ) γ x 1 x 2 , x 1 , x 2 X;
  5. (v)

    Let f:XX be a single-valued mapping. A is said to be (σ,φ)-relaxed cocoercive with respect to f if for any x 1 , x 2 X, there exist two constants σ,φ>0 such that

    A ( x 1 ) A ( x 2 ) , J q ( f ( x 1 ) f ( x 2 ) ) σ A ( x 1 ) A ( x 2 ) q +φ x 1 x 2 q .

Definition 2.3 A set-valued mapping S:XCB(X) is said to be

  1. (i)

    D-Lipschitz continuous if there exists a constant α>0 such that

    D ( S ( x ) , S ( y ) ) αxy,x,yX,

where D(,) is the Hausdorff metric on CB(X).

  1. (ii)

    β-strongly η-accretive if there exists a constant β>0 such that

    u 1 u 2 , J q ( η ( x , y ) ) β x y q ,x,yX, u 1 S(x), u 2 S(y).

Definition 2.4 Let A:XX and η:X×XX be single-valued mappings. A set-valued mapping M:X 2 X is said to be

  1. (i)

    accretive if

    u 1 u 2 , J q ( x , y ) 0,x,yX, u 1 M(x), u 2 M(y);
  2. (ii)

    η-accretive if

    u 1 u 2 , J q ( η ( x , y ) ) 0,x,yX, u 1 M(x), u 2 M(y);
  3. (iii)

    m-relaxed η-accretive, if there exists a constant m>0 such that

    u 1 u 2 , J q ( η ( x , y ) ) m x y q ,x,yX, u 1 M(x), u 2 M(y);
  4. (iv)

    A-accretive if M is accretive and (A+ρM)(X)=X for all ρ>0;

  5. (v)

    (A,η)-accretive if M is m-relaxed η-accretive and (A+ρM)(X)=X for every ρ>0.

Based on [10], we can define the resolvent operator R ρ , M A , η as follows.

Lemma 2.5 ([10])

Let η:X×XX be a τ-Lipschitz continuous mapping, A:XX be an r-strongly η-accretive mapping, and M:X 2 X be a set-valued (A,η)-accretive mapping. Then the generalized resolvent operator R ρ , M A , η :XX is τ q 1 /(rmρ)-Lipschitz continuous; that is,

R ρ , M A , η ( x ) R ρ , M A , η ( y ) τ q 1 r m ρ xy for all x,yX,

where ρ(0,r/m), q>1.

Remark 2.6 The (A,η)-accretive mappings are more general than (H,η)-monotone mappings, A-monotone operators and η-subdifferential operators in a Banach space or a Hilbert space, and the resolvent operators associated with (A,η)-accretive mappings include as special cases the corresponding resolvent operators associated with them, respectively [36, 9, 25].

In the study of characteristic inequalities in q-uniformly smooth Banach spaces X, Xu [14] proved the following result.

Lemma 2.7 ([14])

Let X be a real uniformly smooth Banach space. Then X is q-uniformly smooth if and only if there exists a constant c q >0 such that for all x,yX,

x + y q x q +q y , J q ( x ) + c q y q .

Lemma 2.8 ([8])

Let a,b,c>0 be real, for any real q1, if a q b q + c q , then

ab+c.

3 Existence theorem of solutions

Let us study the existence theorem of solutions for the inclusions system (3).

Theorem 3.1 Let X be a Banach space, f,g:XX be two single-valued mappings, F:X×XX be a ( μ 1 , ν 1 )-Lipschitz continuous mapping and G:X×XX be a ( μ 2 , ν 2 )-Lipschitz continuous mapping, η i :X×XX be a τ i -Lipschitz continuous mapping (i=1,2), A:XX be an r 1 -strongly η 1 -accretive mapping, B:XX be an r 2 -strongly η 2 -accretive mapping, M:X 2 X be a set-valued (A, η 1 )-accretive mapping and N:X 2 X be a set-valued (B, η 2 )-accretive mapping. Then the following statements are mutually equivalent:

  1. (i)

    An element (x,y) is a solution of the problem (3);

  2. (ii)

    For (x,y)X×X, zS(x) and wT(y), the following relations hold:

    { x = R ρ 1 , M A , η 1 ( A ( x ) + ρ 1 f ( x ) ρ 1 F ( z , y ) ) , y = R ρ 2 , N B , η 2 ( B ( y ) + ρ 2 g ( y ) ρ 2 G ( w , x ) ) ,
    (5)

where ρ i >0 is a constant (i=1,2);

  1. (iii)

    For (x,y)X×X, zS(x), wT(y), and any 1>λ>0, the following relations hold:

    { x = ( 1 λ ) x + λ R ρ 1 , M A , η 1 ( A ( x ) + ρ 1 f ( x ) ρ 1 F ( z , y ) ) , y = ( 1 λ ) y + λ R ρ 2 , N B , η 2 ( B ( y ) + ρ 2 g ( y ) ρ 2 G ( w , x ) ) ,
    (6)

where ρ i >0 is a constant (i=1,2);

Proof This directly follows from the definition of R ρ 1 , M A , η 1 , R ρ 2 , N B , η 2 , and the problem (3) for i=1,2. □

Theorem 3.2 Let X be a q-uniformly smooth Banach space. Let f,g:XX be two single-valued κ 1 or κ 2 -Lipschitz continuous mappings, respectively, η i :X×XX be a single-valued τ i -Lipschitz continuous mapping (i=1,2), F,G:X×XX be two single-valued ( μ 1 , ν 1 ) or ( μ 2 , ν 2 )-Lipschitz continuous mappings, respectively. Let A:XX be single-valued r 1 -strongly η 1 -accretive, ω 1 -Lipschitz continuous, ( σ 1 , φ 1 )-relaxed cocoercive with respect to f, and B:XX be single-valued r 2 -strongly η 2 -accretive, ω 2 -Lipschitz continuous, ( σ 2 , φ 2 )-relaxed cocoercive with respect to g. Let S,T:XX be two set-valued γ 1 or γ 2 -Lipschitz continuous mappings, respectively. If M:X 2 X is a set-valued (A, η 1 )-accretive mapping and N:X 2 X is a set-valued (B, η 2 )-accretive mapping, and the following condition holds:

{ τ q ( ρ 1 μ 1 γ 1 + l 1 ) < τ ( r 1 m 1 ρ 1 ) , τ q ( ρ 2 μ 2 γ 2 + l 2 ) < τ ( r 2 m 2 ρ 2 ) , l 1 = ω 1 q + c q ρ 1 q κ 1 q + q σ 1 ω 1 q q φ 1 q , l 2 = ω 2 q + c q ρ 2 q κ 2 q + q σ 2 ω 2 q q φ 2 q ,
(7)

where c q >0 is the same as in Lemma  2.7 and ρ i (0, r i m i ) (i=1,2), then the problem (3) has a solution x , y X, z S( x ), w T( y ).

Proof Define two mappings Q 1 , Q 2 :XX as follows:

{ Q 1 ( x ) = ( 1 λ ) x + λ R ρ 1 , M A , η 1 ( A ( x ) + ρ 1 f ( x ) ρ 1 F ( z , y ) ) , Q 2 ( y ) = ( 1 λ ) y + λ R ρ 2 , N B , η 2 ( B ( y ) + ρ 2 g ( y ) ρ 2 G ( w , x ) ) ( x , y X , z S ( x ) , w T ( y ) ) .
(8)

For elements x 1 , x 2 , y 1 , y 2 X, if letting

Ω i =A( x i ) ρ 1 f( x i ) ρ 1 F( z i , y i )(i=1,2),

then by (8), Lemma 2.5 and Lemma 2.7, we have

Q 1 ( x 1 ) Q 1 ( x 2 ) = ( 1 λ ) x 1 + λ R ρ 1 , M A , η 1 ( Ω 1 ) ( 1 λ ) x 2 λ R ρ 1 , M A , η 1 ( Ω 2 ) ( 1 λ ) x 1 x 2 + λ R ρ 1 , M A , η 1 ( Ω 1 ) R ρ 1 , M A , η 1 ( Ω 2 ) ( 1 λ ) x 1 x 2 + λ τ q 1 r 1 m 1 ρ 1 [ ρ 1 ( F ( z 2 , y 2 ) F ( z 1 , y 1 ) ) + A ( x 1 ) A ( x 2 ) ρ 1 ( f ( x 1 ) f ( x 2 ) ) ] ,
(9)

and by ( μ 1 , ν 1 )-Lipschitz continuity of F(,) and γ 1 -Lipschitz continuity of S, we obtain

F ( z 2 , y 2 ) F ( z 1 , y 1 ) μ 1 z 2 z 1 + ν 1 y 2 y 1 μ 1 γ 1 x 2 x 1 + ν 1 y 2 y 1 .
(10)

Since A is ω 1 -Lipschitz continuous and ( σ 1 , φ 1 )-relaxed cocoercive with respect to f, and f is κ 1 -Lipschitz continuous so that for z 1 S( x 1 ), z 2 S( x 2 ), we have

(11)

Combining (9), (10) and (11), we can get

(12)

where

θ 1 = τ q 1 r 1 m 1 ρ 1 ( ρ 1 μ 1 γ 1 + ω 1 q + c q ρ 1 q κ 1 q + q σ 1 ω 1 q q φ 1 q ) .

For elements x 1 , x 2 , y 1 , y 2 X, z i S( x i ), y i T( y i ) (i=1,2), if letting

Θ i =B( y i )+ ρ 2 g( y i ) ρ 2 G( w i , x i )(i=1,2),

then by using the same method as the one used above,

Q 2 ( y 1 ) Q 2 ( y 2 ) = ( 1 λ ) y 1 + λ R ρ 2 , N B , η 2 ( Θ 1 ) ( 1 λ ) y 2 λ R ρ 2 , N B , η 2 ( Θ 2 ) ( 1 λ ) y 1 y 2 + λ R ρ 2 , N B , η 2 ( Θ 1 ) R ρ 2 , N B , η 2 ( Θ 2 ) ( 1 λ ) y 1 y 2 + λ τ q 1 r 2 m 2 ρ 2 ( ρ 2 G ( w 2 , x 2 ) G ( w 1 , x 1 ) + B ( y 1 ) B ( y 2 ) ρ 2 ( g ( y 1 ) g ( y 2 ) ) ) λ τ q 1 r 2 m 2 ρ 2 ρ 2 ν 2 x 2 x 1 + [ ( 1 λ ) + λ θ 2 ] y 2 y 1
(13)

hold, where

θ 2 = τ q 1 r 2 m 2 ρ 2 ( ρ 2 μ 2 γ 2 + ω 2 q + c q ρ 2 q κ 2 q + q σ 2 ω 2 q q φ 2 q ) .

If setting

Γ 11 = θ 1 , Γ 12 = τ q 1 r 1 m 1 ρ 1 ρ 1 ν 1 , Γ 21 = τ q 1 r 2 m 2 ρ 2 ρ 2 ν 2 , Γ 22 = θ 2 ,
(14)

a = ( Q 1 ( x 1 ) Q 1 ( x 2 ) , Q 2 ( y 1 ) Q 2 ( y 2 ) ) T and b = ( x 1 x 2 , y 1 y 2 ) T , then from (12), (13) and (14), we have a (1λ)E+λΨ b , where

E=( 1 0 0 1 ),Ψ=( Γ 11 Γ 12 Γ 21 Γ 22 ),0<λ<1,
(15)

where Ψ is called the matrix for nonlinear set-valued inclusions system. By using [16], we have

a (1λ)+λΨ b .
(16)

Letting

Ψ=max{ Γ 11 , Γ 12 , Γ 21 , Γ 22 }.

It follows from (16), the assumption of the condition (7) and S(x),T(y)CB(X) that 0<Ψ<1, (1λ)+λΨ<1, and there exist x , y X and z S( x ), w T( y ) such that

{ Q 1 ( x ) = x , Q 2 ( y ) = y .

Therefore, the following relations hold for Theorem 3.1(ii)-(iii):

{ x = R ρ 1 , M A , η 1 ( A ( x ) + ρ 1 f ( x ) ρ 1 F ( z , y ) ) , y = R ρ 2 , N B , η 2 ( B ( y ) + ρ 2 g ( y ) ρ 2 G ( w , x ) ) ,
(17)

where ρ i >0 is a constant (i=1,2). Thus, by Theorem 3.1, we know that ( x , y , z , w ) is a solution of the problem (3). This completes the proof. □

4 Ishikawa-hybrid proximal algorithm

In 2008, Verma developed a hybrid version of the Eckstein-Bertsekas [11] proximal point algorithm, introduced the algorithm based on the (A,η)-maximal monotonicity framework [7] and studied convergence of the algorithm, and so did Li, Xu and Jin in [12]. Based on Theorem 3.1, we develop an Ishikawa-hybrid proximal point algorithm for finding an iterative sequence solving the problem (3) as follows.

Algorithm 4.1 Let X be a q-uniformly smooth Banach space. Let f,g:XX be two single-valued κ 1 or κ 2 -Lipschitz continuous mappings, respectively, η i :X×XX be a single-valued τ i -Lipschitz continuous mapping (i=1,2), F,G:X×XX be two single-valued ( μ 1 , ν 1 ) or ( μ 2 , ν 2 )-Lipschitz continuous mappings, respectively. Let A:XX be single-valued r 1 -strongly η 1 -accretive, ω 1 -Lipschitz continuous, ( σ 1 , φ 1 )-relaxed cocoercive with respect to f, and B:XX be single-valued r 2 -strongly η 2 -accretive, ω 2 -Lipschitz continuous, ( σ 2 , φ 2 )-relaxed cocoercive with respect to g. Let S,T:XX be two set-valued γ 1 or γ 2 -Lipschitz continuous mappings, respectively, M:X 2 X be a set-valued (A, η 1 )-accretive mapping and N:X 2 X be a set-valued (B, η 2 )-accretive mapping. Suppose that { α i n } n = 0 , { β i n } n = 0 , { ξ i n } n = 0 , { ζ i n } n = 0 and { ρ i n } n = 0 (i=1,2) are ten nonnegative sequences such that

then we can get x 1 , y 1 X and z 1 S( x 1 ), w 1 T( y 1 ) as follows.

Step 1: For arbitrarily chosen initial points x 0 X, y 0 X, we choose suitable z 0 S( x 0 ), w 0 T( y 0 ), setting

{ u 0 = ( 1 α 1 0 ) x 0 + α 1 0 e 1 0 , x 1 = ( 1 β 1 0 ) x 0 + β 1 0 d 1 0 ,

where e 1 0 , d 1 0 satisfy

{ e 1 0 R ρ 1 0 , M A , η 1 ( A ( x 0 ) + ρ 1 0 f ( x 0 ) + ρ 1 0 F ( z 0 , y 0 ) ) ξ 1 0 e 1 0 x 0 ( z 0 S ( x 0 ) ) , d 1 0 R ρ 1 0 , M A , η 1 ( A ( u 0 ) + ρ 1 0 f ( u 0 ) + ρ 1 0 F ( z 1 0 , y 0 ) ) ζ 1 0 d 1 0 u 0 ( z 1 0 S ( u 0 ) ) ,

and

{ v 0 = ( 1 α 2 0 ) y 0 + α 2 0 e 2 0 , y 1 = ( 1 β 2 0 ) y 0 + β 2 0 d 2 0 ,

where e 2 0 , d 2 0 satisfy

{ e 2 0 R ρ 2 0 , N B , η 2 ( B ( y 0 ) + ρ 2 0 g ( y 0 ) ρ 2 0 G ( w 0 , x 0 ) ) ξ 2 0 e 2 0 y 0 ( w 0 T ( y 0 ) , d 2 0 R ρ 2 0 , N B , η 2 ( B ( v 0 ) + ρ 2 0 g ( v 0 ) ρ 2 0 G ( w 2 0 , x 0 ) ) ζ 2 0 d 2 0 v 0 ( w 2 0 T ( v 0 ) ) .

By using Nadler [15], we can choose suitable z 1 S( x 1 ), w 1 T( y 1 ) such that

{ z 0 z 1 ( 1 + 1 1 ) D ( S ( x 0 ) , S ( x 1 ) ) , w 0 w 1 ( 1 + 1 1 ) D ( T ( y 0 ) , T ( y 1 ) ) , z 1 0 z 1 1 ( 1 + 1 1 ) D ( S ( U 0 ) , S ( U 1 ) ) , w 2 0 w 2 1 ( 1 + 1 1 ) D ( T ( V 0 ) , T ( V 1 ) ) .

Therefore, we obtain x 1 , y 1 X and z 1 S( x 1 ), w 1 T( y 1 ) and give the next step for generating sequences { x n } n = 2 , { y n } n = 2 , { z n } n = 2 and { w n } n = 2 .

Step 2: From x 1 , y 1 X and z 1 S( x 1 ), w 1 T( y 1 ), the sequences { x n } n = 2 , { y n } n = 2 , { z n } n = 2 and { w n } n = 2 are generated by the iterative procedure

{ u n = ( 1 α 1 n ) x n + α 1 n e 1 n , x n + 1 = ( 1 β 1 n ) x n + β 1 n d 1 n , e 1 n R ρ 1 n , M A , η 1 ( A ( x n ) + ρ 1 n f ( x n ) + ρ 1 n F ( z n , y n ) ) ξ 1 n e 1 n x n ( z n S ( x n ) ) , d 1 n R ρ 1 n , M A , η 1 ( A ( u n ) + ρ 1 n f ( u n ) ρ 1 n F ( z 1 n , y n ) ) ζ 1 n d 1 n u n ( z 1 n S ( u n ) ) ,
(18)

and

{ v n = ( 1 α 2 n ) y n + α 2 n e 2 n , y n + 1 = ( 1 β 2 n ) y n + β 2 n d 2 n , e 2 n R ρ 2 n , N B , η 2 ( B ( y n ) + ρ 2 n g ( y n ) ρ 2 n G ( w n , x n ) ) ξ 2 n e 2 n y n ( w n T ( y n ) ) , d 2 n R ρ 2 n , N B , η 2 ( B ( v n ) + ρ 2 n g ( v n ) ρ 2 n G ( w 2 n , x n ) ) ζ 2 n d 2 n v n ( w 2 n T ( v n ) ) .
(19)

By using Nadler [15], we can choose suitable z n + 1 S( x n + 1 ), w n + 1 T( y n + 1 ) such that

{ z n z n + 1 ( 1 + 1 1 + n ) D ( S ( x n ) , S ( x n + 1 ) ) , w n w n + 1 ( 1 + 1 1 + n ) D ( T ( y n ) , T ( y n + 1 ) ) ,
(20)

for n=0,1,2, .

Remark 4.2 If we choose some suitable operators A, B, η 1 , η 1 , F, G, S, T, M, N, f, g and a space X, then Algorithm 4.1 can degenerate to a number of known algorithms for solving the system of variational inequalities and variational inclusions (see [26, 810, 25]).

5 Convergence of Ishikawa-hybrid proximal Algorithm 4.1

In this section, we prove that { ( x n , y n , z n , w n ) } n = 0 generated by Ishikawa-hybrid proximal Algorithm 4.1 converges linearly to a solution ( x , y , z , w ) of the problem (3) as the convergence rate Ψ.

Theorem 5.1 Let X be a q-uniformly smooth Banach space. Let f,g:XX be two single-valued κ 1 or κ 2 -Lipschitz continuous mappings, respectively, η i :X×XX be a single-valued τ i -Lipschitz continuous mapping (i=1,2), F,G:X×XX be two single-two valued ( μ 1 , ν 1 ) or ( μ 2 , ν 2 )-Lipschitz continuous mappings, respectively. Let A:XX be a single-valued r 1 -strongly η 1 -accretive and ω 1 -Lipschitz continuous mapping, and let B:XX be a single-valued r 2 -strongly η 2 -accretive and ω 2 -Lipschitz continuous mapping. Let S,T:XX be two set-valued γ 1 or γ 2 -Lipschitz continuous mappings, respectively, A be ( σ 1 , φ 1 )-relaxed cocoercive with respect to f and B be ( σ 2 , φ 2 )-relaxed cocoercive with respect to g. Suppose that M:X 2 X is a set-valued (A, η 1 )-accretive mapping and N:X 2 X is a set-valued (B, η 2 )-accretive mapping, and the following conditions hold:

{ max { ρ 1 μ 1 γ 1 + l 1 , α 1 β 1 ν 1 θ 1 ( 1 + ρ 1 β 1 ρ 1 ) , β 2 ρ 2 ν 2 ( 1 + 2 α 2 θ 2 ) , ( ρ 2 μ 2 γ 2 + l 2 ) } < τ 1 q ( r 1 m 1 ρ 1 ) , 2 β 1 ( 1 α 1 ) α 1 + β 1 θ 1 + α 1 β 1 α 1 + β 1 θ 1 2 < 1 θ 1 , ( 1 β 2 + β 2 θ 2 ) + 3 ( 1 α 2 + α 2 θ 2 ) β 2 θ 2 + β 2 θ 2 < 1 , l 1 = ω 1 q + c q ρ 1 q κ 1 q + q σ 1 ω 1 q q φ 1 q , l 2 = ω 2 q + c q ρ 2 q κ 2 q + q σ 2 ω 2 q q φ 2 q , θ 1 = τ q 1 r 1 m 1 ρ 1 ( ρ 1 μ 1 γ 1 + l 1 ) , θ 2 = τ q 1 r 2 m 2 ρ 2 ( ρ 2 μ 2 γ 2 + l 2 ) ,
(21)

and eight nonnegative sequences { α i n } n = 0 , { β i n } n = 0 , { ξ i n } n = 0 , { ζ i n } n = 0 and { ρ i n } n = 0 (i=1,2) satisfy the following conditions:

(22)
(23)

Then the problem (3) has a solution ( x , y , z , w ) z S( x ), w T( y ), and the sequence { x n , y n } n = 0 generated by Ishikawa-hybrid proximal Algorithm 4.1 converges linearly to a solution ( x , y ) of the problem (3) as the convergence rate

Ψ = max { 1 ( α 1 + β 1 ) + ( α 1 + β 1 ) θ 1 + ( 2 2 α 1 + α 1 θ 1 ) β 1 θ 1 , α 1 β 1 ν 1 θ 1 τ q 1 r 1 m 1 ρ 1 ( 1 + ρ 1 β 1 ρ 1 ) , 1 β 2 + 2 β 2 θ 2 ( 2 α 2 + α 2 θ 2 ) + β 2 θ 2 ( 1 α 2 + α 2 θ 2 ) , ( 1 β 2 + β 2 θ 2 ) + 3 ( 1 α 2 + α 2 θ 2 ) β 2 θ 2 + β 2 θ 2 } ,
(24)

where c q >0 is the same as in Lemma  2.5, ρ i (0, r i m i ) (i=1,2).

Proof Let ( x , y , z , w ) ( z S( x ), w T( y )) be the solution of the problem (3), then for any λ>0,

{ x = ( 1 λ ) x + λ R ρ 1 , M A , η 1 ( A ( x ) + ρ 1 f ( x ) ρ 1 F ( z , y ) ) , y = ( 1 λ ) y + λ R ρ 2 , N B , η 2 ( B ( y ) + ρ 2 g ( y ) ρ 2 G ( w , x ) ) .
(25)

For n0, we write

{ s 1 n = ( 1 α 1 n ) x n + α 1 n R ρ 1 n , M A , η 1 ( A ( x n ) + ρ 1 n f ( x n ) + ρ 1 n F ( z n , y n ) ) , t 1 n + 1 = ( 1 β 1 n ) x n + β 1 n R ρ 1 n , M A , η 1 ( A ( s 1 n ) + ρ 1 n f ( s 1 n ) + ρ 1 n F ( z 2 n , y n ) ) ( z 2 n S ( s 1 n ) ) .
(26)

It follows from the hypotheses of the mappings A, f, F, S, M, η 1 and R ρ 1 n , M A , η 1 in Algorithm 4.1 that

that is,

(27)

where θ 1 (n)= τ q 1 r 1 m 1 ρ 1 n ( ρ 1 n μ 1 γ 1 + ω 1 q + c q ( ρ 1 n ) q κ 1 q + q σ 1 ω 1 q q φ 1 q ), z n S( x n ) and x S( x ).

From (24)-(27) and (13), we have

t 1 n + 1 x ( 1 β 1 n ) x n x + β 1 n R ρ 1 n , M A , η 1 ( A ( x ) + ρ 1 n f ( x ) ρ 1 n F ( z , y ) ) R ρ 1 n , M A , η 1 ( A ( s 1 n ) + ρ 1 n f ( s 1 n ) + ρ 1 n F ( z 2 n , y n ) ) ( ( 1 β 1 n ) + β 1 n τ q 1 r 1 m 1 ρ 1 n ( ρ 1 n μ 1 γ 1 + ω 1 q + c q ( ρ 1 n ) q κ 1 q + q σ 1 ω 1 q q φ 1 q ) ) s 1 n x + β 1 n τ q 1 r 1 m 1 ρ 1 n ν 1 y n y ( ( 1 β 1 n ) + β 1 n θ 1 ( n ) ) s 1 n x + β 1 n τ q 1 r 1 m 1 ρ 1 n ν 1 y n y .
(28)

By Algorithm 4.1, x n + 1 x n = β 1 n ( d 1 n x n ) and u n x n = α 1 n ( e 1 n x n ), we have

x n + 1 t 1 n + 1 ( 1 β 1 n ) x n + β 1 n d 1 n ( 1 β 1 n ) x n β 1 n R ρ 1 n , M A , η 1 ( A ( s 1 n ) + ρ 1 n f ( s 1 n ) ρ 1 n F ( z 2 n , y n ) ) β 1 n d 1 n R ρ 1 n , M A , η 1 ( A ( s 1 n ) + ρ 1 n f ( s 1 n ) ρ 1 n F ( z 2 n , y n ) ) β 1 n ( d 1 n R ρ 1 n , M A , η 1 ( A ( u n ) + ρ 1 n f ( u n ) ρ 1 n F ( z 1 n , y n ) ) + R ρ 1 n , M A , η 1 ( A ( u n ) + ρ 1 n f ( u n ) ρ 1 n F ( z 1 n , y n ) ) R ρ 1 n , M A , η 1 ( A ( s 1 n ) + ρ 1 n f ( s 1 n ) ρ 1 n F ( z 2 n , y n ) ) ) β 1 n ζ 1 n d 1 n u n + β 1 n R ρ 1 n , M A , η 1 ( A ( u n ) + ρ 1 n f ( u n ) ρ 1 n F ( z 1 n , y n ) ) R ρ 1 n , M A , η 1 ( A ( s 1 n ) + ρ 1 n f ( s 1 n ) ρ 1 n F ( z 2 n , y n ) ) β 1 n ζ 1 n d 1 n u n + β 1 n τ q 1 r 1 m 1 ρ 1 n [ ρ 1 n μ 1 γ 1 s 1 n u n + ν 1 y n y n + ω 1 q + c q ( ρ 1 n ) q κ 1 q + q σ 1 ω 1 q q φ 1 q s 1 n u n ] ζ 1 n x n + 1 x n + β 1 n ζ 1 n u n x n + β 1 n τ q 1 r 1 m 1 ρ 1 n [ ρ 1 n μ 1 γ 1 s 1 n u n + ν 1 y n y n + ω 1 q + c q ( ρ 1 n ) q κ 1 q + q σ 1 ω 1 q q φ 1 q s 1 n u n ] + β 1 n τ q 1 r 1 m 1 ρ 1 n [ ρ 1 n μ 1 γ 1 + ω 1 q + c q ( ρ 1 n ) q κ 1 q + q σ 1 ω 1 q q φ 1 q ] s 1 n u n ζ 1 n x n + 1 x + ζ 1 n x n x + β 1 n ζ 1 n u n x n + β 1 n τ q 1 r 1 m 1 ρ 1 n [ ρ 1 n μ 1 γ 1 + ω 1 q + c q ( ρ 1 n ) q κ 1 q + q σ 1 ω 1 q q φ 1 q ] × ( s 1 n x + x x n + x n u n ) ζ 1 n x n + 1 x + ( ζ 1 n + β 1 n θ 1 ( n ) ) x n x + β 1 n ( ζ 1 n + θ 1 ( n ) ) ( u n x + x n x ) + β 1 n θ 1 s 1 n x ζ 1 n x n + 1 x + ( ζ 1 n + 2 β 1 n θ 1 ( n ) + β 1 n ζ 1 n ) x n x + β 1 n ( ζ 1 n + θ 1 ( n ) ) u n x + β 1 n θ 1 ( n ) s 1 n x .
(29)

It follows from (26)-(29) that

x n + 1 x x n + 1 t 1 n + 1 + t 1 n + 1 x ζ 1 n x n + 1 x + [ ζ 1 n + 2 β 1 n θ 1 ( n ) + β 1 n ζ 1 n + β 1 n ( ζ 1 n + θ 1 ( n ) ) 1 1 ξ 1 n ( 1 α 1 n + ξ 1 n + α 1 n θ 1 ( n ) ) + ( 1 β 1 n ) ( 1 α 1 n + α 1 n θ 1 ( n ) ) ] x n x + [ β 1 n ( ζ 1 n + θ 1 ( n ) ) 1 1 ξ 1 n α 1 n τ q 1 r 1 m 1 ρ 1 n ν 1 + ( 1 β 1 n ) β 1 n α 1 n θ 1 ( n ) ρ 1 n ν 1 τ q 1 r 1 m 1 ρ 1 n ] y n y ,

and

x n + 1 x 1 1 ζ 1 n [ ζ 1 n + 2 β 1 n θ 1 ( n ) + β 1 n ζ 1 n + β 1 n ( ζ 1 n + θ 1 ( n ) ) 1 1 ξ 1 n ( 1 α 1 n + ξ 1 n + α 1 n θ 1 ( n ) ) + ( 1 β 1 n ) ( 1 α 1 n + α 1 n θ 1 ( n ) ) ] x n x + 1 1 ζ 1 n [ β 1 n ( ζ 1 n + θ 1 ( n ) ) 1 1 ξ 1 n α 1 n τ q 1 r 1 m 1 ρ 1 n ν 1 + ( 1 β 1 n ) β 1 n α 1 n θ 1 ( n ) ρ 1 n ν 1 τ q 1 r 1 m 1 ρ 1 n ] y n y ,
(30)

where

θ 1 (n)= τ q 1 r 1 m 1 ρ 1 n ( ρ 1 n μ 1 γ 1 + ω 1 q + c q ( ρ 1 n ) q κ 1 q + q σ 1 ω 1 q q φ 1 q ) .

For n0, we write

{ s 2 n = ( 1 α 2 n ) y n + α 2 n R ρ 2 n , N B , η 2 ( B ( y n ) + ρ 2 n g ( y n ) ρ 2 n G ( w n , x n ) ) ( w n T ( y n ) ) , t 2 n + 1 = ( 1 β 2 n ) y n + β 2 n R ρ 2 n , N B , η 2 ( B ( s 2 n ) + ρ 2 n g ( s 2 n ) ρ 2 n G ( w 2 n , x n ) ) ( w 2 n T ( s 2 n ) ) .
(31)

By using the hypotheses of the mappings B, g, G, T, N, η 2 and R ρ 2 n , N B , η 2 in Theorem 5.1, and the same method as the one above, we can get

that is,

(32)

where α 2 n ( e 2 n y n )= v n y n , and θ 2 (n)= τ q 1 r 2 m 2 ρ 2 n ( ρ 2 n μ 2 γ 2 + ω 2 q + c q ( ρ 2 n ) q κ 2 q + q σ 2 ω 2 q q φ 2 q ).

Moreover, we have

t 2 n + 1 y ( 1 β 2 n ) y n + β 2 n d 2 n ( 1 β 2 n ) y β 2 n R ρ 2 n , N B , η 2 ( B ( y ) + ρ 2 n g ( y ) ρ 2 n G ( w , x ) ) ( 1 β 2 n ) y n y + β 2 n d 2 n R ρ 2 n , N B , η 2 ( B ( v n ) + ρ 2 n g ( v n ) ρ 2 n G ( w 2 n , x n ) ) + β 2 n R ρ 2 n , N B , η 2 ( B ( v n ) + ρ 2 n g ( v n ) ρ 2 n G ( w 2 n , x n ) ) R ρ 2 n , N B , η 2 ( B ( y ) + ρ 2 n g ( y ) ρ 2 n G ( w , x ) ) ( 1 β 2 n ) y n y + ζ 2 n β 2 n d 2 n y n + β 2 n ζ 2 n y n s 2 n + β 2 n τ q 1 r 2 m 2 ρ 2 n ρ 2 n ν 2 x n x + β 2 n θ 2 ( n ) v n y ( 1 β 2 n + ζ 2 n + β 2 n ζ 2 n ) y n y + β 2 n τ q 1 r 2 m 2 ρ 2 n ρ 2 n ν 2 x n x + ζ 2 n y n + 1 y + β 2 n ζ 2 n s 2 n y + β 2 n θ 2 ( n ) v n y ,

for (19) y n + 1 y n = β 2 n ( d 2 n y n ).

It follows from (26) that

y n + 1 t 2 n + 1 ( 1 β 2 n ) y n + β 2 n d 2 n ( 1 β 2 n ) y n β 2 n R ρ 2 n , N B , η 2 ( B ( s 2 n ) + ρ 2 n g ( s 2 n ) ρ 2 n G ( w 2 n , x n ) ) β 2 n d 2 n R ρ 2 n , N B , η 2 ( B ( s 2 n ) + ρ 2 n g ( s 2 n ) ρ 2 n G ( w 2 n , x n ) ) β 2 n ζ 2 n d 2 n v n + β 2 n τ q 1 r 2 m 2 ρ 2 n ρ 2 n ν 2 x n x n + β 2 n θ 2 ( n ) s 2 n v n ζ 2 n ( y n + 1 y + y n y ) + ζ 2 n β 2 n ( y n y + v n y ) + β 2 n θ 2 ( n ) ( s 2 n y + y v n ) ζ 2 n y n + 1 y + ( ζ 2 n + ζ 2 n β 2 n ) y n y + ( ζ 2 n β 2 n + β 2 n θ 2 ( n ) ) v n y + β 2 n θ 2 ( n ) s 2 n y .
(33)

Combining (30), (31), (32), (33) and (19), we have

y n + 1 y 1 1 2 ζ 2 n [ ( 1 β 2 n + 2 β 2 n ζ 2 n + 2 ζ 2 n ) y n y + β 2 n τ q 1 r 2 m 2 ρ 2 n ρ 2 n ν 2 x n x + ( 2 β 2 n θ 2 ( n ) + ζ 2 n β 2 n ) v n y + β 2 n ( ζ 2 n + θ 2 ( n ) ) s 2 n y ] 1 1 2 ζ 2 n ( 1 β 2 n + 2 β 2 n ζ 2 n + 2 ζ 2 n + ( 2 β 2 n θ 2 ( n ) + ζ 2 n β 2 n ) 1 1 ξ 2 n ( 2 α 2 n + α 2 n θ 2 ( n ) ) + β 2 n ( ζ 2 n + θ 2 ( n ) ) [ ( 1 α 2 n ) + α 2 n θ 2 ( n ) ] ) y n y + 1 1 2 ζ 2 n ( β 2 n τ q 1 r 2 m 2 ρ 2 n ρ 2 n ν 2 + β 2 n ( ζ 2 n + θ 2 ( n ) ) α 2 n τ q 1 r 2 m 2 ρ 2 n ρ 2 n ν 2 + ( 2 β 2 n θ 2 ( n ) + ζ 2 n β 2 n ) 1 1 ξ 2 n α 2 n ρ 2 n ν 2 τ q 1 r 2 m 2 ρ 2 n ) x n x .
(34)

By using (22) and (23), let

(35)

where

Let A = ( x n + 1 x , y n + 1 y ) T and B = ( x n x , y n y ) T , then from (33), (34) and (35), we have a Ψ b , where

Ψ=( a 11 a 12 a 21 a 22 ),
(36)

which is called the matrix for a nonlinear set-valued inclusions system involving (A,η)-accretive mappings. By using [16], we have

A Ψ B .
(37)

Let

Ψ=max{ a 11 , a 12 , a 21 , a 22 }.

It follows from (21)-(23), Theorem 3.1 and [15] that 0<Ψ<1 and there exist x , y X and z S( x ), w T( y ) [17] such that

{ Q 1 ( x ) = x , Q 2 ( y ) = y ;

and the sequence { x n , y n } n = 0 generated by Ishikawa-hybrid proximal Algorithm 4.1 converges linearly to a solution ( x , y ) of the problem (3) as the convergence rate

Ψ = max { 1 ( α 1 + β 1 ) + ( α 1 + β 1 ) θ 1 + ( 2 2 α 1 + α 1 θ 1 ) β 1 θ 1 , α 1 β 1 ν 1 θ 1 τ q 1 r 1 m 1 ρ 1 ( 1 + ρ 1 β 1 ρ 1 ) , 1 β 2 + 2 β 2 θ 2 ( 2 α 2 + α 2 θ 2 ) + β 2 θ 2 ( 1 α 2 + α 2 θ 2 ) , ( 1 β 2 + β 2 θ 2 ) + 3 ( 1 α 2 + α 2 θ 2 ) β 2 θ 2 + β 2 θ 2 } ,

where c q >0 is the same as in Lemma 2.7, ρ i (0, r i m i ) (i=1,2). This completes the proof. □

Remark 5.2 For a suitable choice of the mappings A, B, η i , F, G, M, N, S, T, f, g and X, we can obtain several known results in [7, 9, 11, 12] as special cases of Theorem 5.1.

References

  1. Hassouni A, Moudafi A: A perturbed algorithms for variational inequalities. J. Math. Anal. Appl. 2001, 185: 706–712.

    Article  MathSciNet  Google Scholar 

  2. Kassay G, Kolumbán J: System of multi-valued variational inequalities. Publ. Math. (Debr.) 1999, 54: 267–279.

    Google Scholar 

  3. Chen XF, Deng CX, Tan MY: New approximation algorithm for a system of generalized nonlinear variational inequalities. J. Sichuan Univ. Nat. Sci. Ed. 2001, 38(6):813–817.

    MathSciNet  Google Scholar 

  4. Yan WY, Fang YP, Huang NJ: A new system of set-valued variational inclusions with H -monotone operators. Math. Inequal. Appl. 2005, 8(3):537–546.

    MathSciNet  Google Scholar 

  5. Fang YP, Huang NJ, Thompson HB: A new system of variational inclusions with (H,η)-monotone operators in Hilbert spaces. Comput. Math. Appl. 2005, 49: 365–374. 10.1016/j.camwa.2004.04.037

    Article  MathSciNet  Google Scholar 

  6. Jin MM: Approximation algorithm for a class of generalized nonlinear set-valued variational inclusions systems. J. Sichuan Norm. Univ. Nat. Sci. 2006, 29: 1–4.

    Google Scholar 

  7. Verma RU: A hybrid proximal point algorithm based on the (A,η)-maximal monotonicity framework. Appl. Math. Lett. 2008, 21: 142–147. 10.1016/j.aml.2007.02.017

    Article  MathSciNet  Google Scholar 

  8. Li HG, Xu AJ, Jin MM: A hybrid proximal point three-step algorithm for nonlinear set-valued quasi-variational inclusions system involving (A,η)-accretive mappings. Fixed Point Theory Appl. 2010., 2010: Article ID 635382. doi:10.1155/2010/635382

    Google Scholar 

  9. Kang SM, Cho SY, Liu Z: Convergence of iterative sequences for generalized equilibrium problems involving inverse-strongly monotone mappings. J. Inequal. Appl. 2010., 2010: Article ID 827082

    Google Scholar 

  10. Lan HY, Cho YJ, Verma RU: On nonlinear relaxed cocoercive inclusions involving (A,η)-accretive mappings in Banach spaces. Comput. Math. Appl. 2006, 51: 1529–1538. 10.1016/j.camwa.2005.11.036

    Article  MathSciNet  Google Scholar 

  11. Eckstein J, Bertsekas DP: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55: 293–318. 10.1007/BF01581204

    Article  MathSciNet  Google Scholar 

  12. Li HG, Xu AJ, Jin MM: A Ishikawa-hybrid proximal point algorithm for nonlinear set-valued inclusions problem based on (A,η)-accretive framework. Fixed Point Theory Appl. 2010., 2010: Article ID 501293. doi:10.1155/2010/501293

    Google Scholar 

  13. Zou YZ, Huang NJ: A new system of variational inclusions involving H(,)-accretive operator in Banach spaces. Appl. Math. Comput. 2009, 212: 135–144. 10.1016/j.amc.2009.02.007

    Article  MathSciNet  Google Scholar 

  14. Xu HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16(12):1127–1138. 10.1016/0362-546X(91)90200-K

    Article  MathSciNet  Google Scholar 

  15. Nadler SB: Multi-valued contraction mappings. Pac. J. Math. 1969, 30: 475–488. 10.2140/pjm.1969.30.475

    Article  MathSciNet  Google Scholar 

  16. Horn RA, Johnson CR: Matrix Analysis. Cambridge University Press, Cambridge; 1986.

    Google Scholar 

  17. Li HG: Iterative algorithm for a new class of generalized nonlinear fuzzy set-valued variational inclusions involving (H,η)-monotone mappings. Adv. Nonlinear Var. Inequal. 2007, 10(1):41–50.

    Google Scholar 

  18. Peng JW, Zhu DL: Three-step iterative algorithm for a system of set-valued variational inclusions with (H,η)-monotone operators. Nonlinear Anal. 2008, 68: 139–153. 10.1016/j.na.2006.10.037

    Article  MathSciNet  Google Scholar 

  19. Cohen G, Chaplais F: Nested monotony for variational inequalities over a product of spaces and convergence of iterative algorithms. J. Optim. Theory Appl. 1988, 59: 360–390.

    Article  MathSciNet  Google Scholar 

  20. Ansari QH, Yao JC: A fixed point theorem and its applications to a system of variational inequalities. Bull. Aust. Math. Soc. 1999, 59: 433–442. 10.1017/S0004972700033116

    Article  MathSciNet  Google Scholar 

  21. Allevi E, Gnudi A, Konnov IV: Generalized vector variational inequalities over product sets. Nonlinear Anal. 2001, 47: 573–582. 10.1016/S0362-546X(01)00202-4

    Article  MathSciNet  Google Scholar 

  22. Kassay G, Kolumbán J: System of multi-valued variational inequalities. Publ. Math. (Debr.) 1999, 54: 267–279.

    Google Scholar 

  23. Kim JK, Kim DS: A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces. J. Convex Anal. 2004, 11(1):235–243.

    MathSciNet  Google Scholar 

  24. Li HG: Approximation solutions for generalized multi-valued variational-like inclusions with (G,η)-monotone mappings. J. Jishou Univ. Nat. Sci. Ed. 2009, 30(4):7–12.

    Google Scholar 

  25. Cho SY, Kang SM: Approximation of fixed points of pseudocontraction semigroups based on a viscosity iterative process. Appl. Math. Lett. 2011, 24: 224–228. 10.1016/j.aml.2010.09.008

    Article  MathSciNet  Google Scholar 

  26. Ye J, Huang J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces. J. Math. Comput. Sci. 2011, 1: 1–18.

    Article  MathSciNet  Google Scholar 

  27. Yang S, Li W: Iterative solutions of a system of equilibrium problems in Hilbert spaces. Adv. Fixed Point Theory 2011, 1: 15–26.

    Google Scholar 

  28. Chang SS, Chan CK, Lee HWJ, Yang L: A system of mixed equilibrium problems, fixed point problems of strictly pseudo-contractive mappings and nonexpansive semi-groups. Appl. Math. Comput. 2010, 216: 51–60. 10.1016/j.amc.2009.12.060

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Gang Li.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

HGL presided over and drafted the manuscript, MQ participated in the revisions of the manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Li, H.G., Qiu, M. Ishikawa-hybrid proximal point algorithm for NSVI system. Fixed Point Theory Appl 2012, 195 (2012). https://doi.org/10.1186/1687-1812-2012-195

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2012-195

Keywords