Skip to main content

Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses

Abstract

In this paper, we study a new type of a Langevin equation involving two different fractional orders and impulses. Sufficient conditions are formulated for the existence and uniqueness of solutions of the given problems.

MSC:34A08, 34B10, 34B37, 46N10.

1 Introduction

Fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes. These characteristics of the fractional derivatives make the fractional-order models more realistic and practical than the classical integer-order models. In fact, fractional differential equations appear naturally in a number of fields such as physics, geophysics, polymer rheology, regular variation in thermodynamics, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of complex medium, viscoelasticity, Bode’s analysis of feedback amplifiers, capacitor theory, electrical circuits, electron-analytical chemistry, biology, control theory, fitting of experimental data, nonlinear oscillation of earthquake, the fluid-dynamic traffic model, etc. For more details and applications, we refer the reader to the books [1–3]. For some recent development on the topic, see [4–15] and the references therein.

It is well known that a Langevin equation is widely used to describe the evolution of physical phenomena in fluctuating environments [16–18]. However, for the systems in complex media, an integer-order Langevin equation does not provide the correct description of the dynamics. One of the possible generalizations of a Langevin equation is to replace the integer-order derivative by a fractional-order derivative in it. This gives rise to a fractional Langevin equation, see [19–22] and the references therein.

In 2008, Lim, Li and Teo [23] firstly introduced a new type of a Langevin equation with two different fractional orders. The solution to this new version of a fractional Langevin equation gives a fractional Gaussian process parametrized by two indices, which provides a more flexible model for fractal processes as compared with the usual one characterized by a single index. In 2009, Lim and Teo [24] discussed the fractional oscillator process with two indices. In 2010, by using the contraction mapping principle and Krasnoselskii’s fixed point theorem, Ahmad and Nieto [25] studied a Langevin equation involving two fractional orders with Dirichlet boundary conditions. Recently, the existence of solutions for a three-point boundary value problem of a Langevin equation with two different fractional orders has also been studied in [26].

Motivated by the above-mentioned works, in this paper, we consider the following nonlinear Langevin equation with two different fractional orders and impulses in a Banach space E:

{ D β C ( C D α + λ ) u ( t ) = f ( t , u ( t ) ) , 0 < t < 1 , 0 < α , β ≤ 1 , △ u ( t k ) = I k ( u ( t k ) ) , k = 1 , 2 , … , p , △ C D α u ( t k ) = I k ∗ ( u ( t k ) ) , k = 1 , 2 , … , p ,
(1.1)

with one of the following three boundary conditions:

(1.2)
(1.3)
(1.4)

where CD is the Caputo fractional derivative, J=[0,1], f∈C(J×E,E), I k , I k ∗ , g 1 , g 2 ∈C(E,E), λ∈R, 0= t 0 < t 1 <⋯< t k <⋯< t p < t p + 1 =1, J ′ =J∖{ t 1 , t 2 ,…, t p }, γ 1 , γ 2 ∈E, â–³u( t k )=u( t k + )−u( t k − ), where u( t k + ) and u( t k − ) denote the right and the left limits of u(t) at t= t k (k=1,2,…,p), respectively. â–³ C D α u( t k ) has a similar meaning for D α C u(t). Let PC(J,E)={u:J→E|u(t) is continuous at t≠ t k , left continuous at t= t k  and u( t k + ) exists,k=1,2,…,p}. Evidently, PC(J,E) is a Banach space endowed with the sup-norm ∥ â‹… ∥ P C .

Nonlocal conditions were initiated by Byszewski [27] when he proved the existence and uniqueness of mild and classical solutions of nonlocal Cauchy problems. Many authors since then have considered the existence and multiplicity of solutions (or positive solutions) of nonlocal problems. The recent results on nonlocal problems of fractional differential equations can be found in [29–40]. As remarked by Byszewski [28], the nonlocal condition can be more useful than the standard initial (boundary) condition to describe some physical phenomena. For example, g 1 (u) may be given by

g 1 (u)= ∑ i = 1 p c i u( τ i ),

where c i , i=1,…,p, are given constants and 0< τ 1 <⋯< τ p ≤T.

Impulsive differential equations, which provide a natural description of observed evolution processes, are regarded as important mathematical tools for the better understanding of several real world problems in applied sciences. The theory of impulsive differential equations of integer order has found its extensive applications in realistic mathematical modeling of a wide variety of practical situations and has emerged as an important area of investigation. The impulsive differential equations of fractional order have also attracted a considerable attention and a variety of results can be found in the papers [41–51].

To the best knowledge of the authors, no paper has considered nonlinear Langevin equations involving two different fractional orders and impulses, i.e., problems (2.1), (3.1) and (3.2). This paper fills this gap in the literature.

This paper is organized as follows. In Section 2, we present some preliminary results. Consequently, problem (2.1) is reduced to an equivalent integral equation. Then, by using the fixed point theory, we study the existence and uniqueness of a Dirichlet boundary value problem for nonlinear Langevin equations involving two different fractional orders and impulses. In Section 3, we indicate some generalizations to nonlocal Dirichlet boundary value problems. The last section is devoted to an example illustrating the applicability of the imposed conditions. These results can be considered as a contribution to this emerging field.

2 Dirichlet boundary value problem

In this section, we consider the following Dirichlet boundary value problem:

{ D β C ( C D α + λ ) u ( t ) = f ( t , u ( t ) ) , 0 < t < 1 , 0 < α , β ≤ 1 , △ u ( t k ) = I k ( u ( t k ) ) , k = 1 , 2 , … , p , △ C D α u ( t k ) = I k ∗ ( u ( t k ) ) , k = 1 , 2 , … , p , u ( 0 ) = γ 1 , u ( 1 ) = γ 2 .
(2.1)

For the sake of convenience, we introduce the following notations:

J 0 =[0, t 1 ], J 1 =( t 1 , t 2 ],…, J p − 1 =( t p − 1 , t p ], J p =( t p ,1].

Definition 2.1 A function u∈PC(J,E) with its Caputo derivative of fractional order existing on J ′ is a solution of (2.1) if it satisfies (2.1).

Lemma 2.1 [1]

Let α>0, then the fractional differential equation

D α C u(t)=0

has a solution

u(t)= C 0 + C 1 t+ C 2 t 2 +⋯+ C n − 1 t n − 1 , c i ∈R,i=0,1,2,…,n−1,n=[α]+1.

Lemma 2.2 [1]

Let α>0, then

I α C D α u(t)=u(t)+ C 0 + C 1 t+ C 2 t 2 +⋯+ C n − 1 t n − 1

for some C i ∈R, i=1,2,…,n, n=[α]+1.

2.1 Existence result

Lemma 2.3 For any y∈C[0,1], a function u is a solution of the following Dirichlet boundary value problem:

{ D β C ( C D α + λ ) u ( t ) = y ( t ) , 0 < t < 1 , 0 < α , β ≤ 1 , △ u ( t k ) = I k ( u ( t k ) ) , k = 1 , 2 , … , p , △ C D α u ( t k ) = I k ∗ ( u ( t k ) ) , k = 1 , 2 , … , p , u ( 0 ) = γ 1 , u ( 1 ) = γ 2 ,
(2.2)

if and only if u is a solution of the fractional integral equation

u(t)={ ∫ 0 t ( t − s ) α − 1 Γ ( α ) ∫ 0 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s − λ ∫ 0 t ( t − s ) α − 1 Γ ( α ) u ( s ) d s + C t α Γ ( α + 1 ) + γ 1 , t ∈ J 0 ; ∫ t k t ( t − s ) α − 1 Γ ( α ) ∫ t k s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) ∫ t i − 1 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ( t − t k ) α Γ ( α + 1 ) Γ ( β ) ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) β − 1 y ( s ) d s + ∑ i = 2 k ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + ⋯ + ∑ i = k − 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t k − 3 t k − 2 ( t k − 2 − s ) β − 1 y ( s ) d s + ( t k − t k − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t k − 2 t k − 1 ( t k − 1 − s ) β − 1 y ( s ) d s − λ ∫ t k t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) u ( s ) d s + λ ( t − t k ) α Γ ( α + 1 ) ∑ i = 1 k I i ( u ( t i ) ) + ∑ i = 1 k I i ( u ( t i ) ) + ∑ i = 2 k λ ( t i − t i − 1 ) α Γ ( α + 1 ) I 1 ( u ( t 1 ) ) + ⋯ + ∑ i = k − 1 k λ ( t i − t i − 1 ) α Γ ( α + 1 ) I k − 2 ( u ( t k − 2 ) ) + λ ( t k − t k − 1 ) α Γ ( α + 1 ) I k − 1 ( u ( t k − 1 ) ) + ( t − t k ) α Γ ( α + 1 ) ∑ i = 1 k I i ∗ ( u ( t i ) ) + ∑ i = 2 k ( t i − t i − 1 ) α Γ ( α + 1 ) I 1 ∗ ( u ( t 1 ) ) + ⋯ + ∑ i = k − 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) I k − 2 ∗ ( u ( t k − 2 ) ) + ( t k − t k − 1 ) α Γ ( α + 1 ) I k − 1 ∗ ( u ( t k − 1 ) ) + C ( t − t k ) α Γ ( α + 1 ) + C ∑ i = 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) + γ 1 , t ∈ J k , k = 1 , 2 , … , p ,
(2.3)

where

C = − [ ∑ i = 1 p + 1 ( t i − t i − 1 ) α Γ ( α + 1 ) ] − 1 { ∑ i = 1 p + 1 ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) ∫ t i − 1 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ( 1 − t p ) α Γ ( α + 1 ) Γ ( β ) ∑ i = 1 p ∫ t i − 1 t i ( t i − s ) β − 1 y ( s ) d s + ∑ i = 2 p ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + ⋯ + ∑ i = p − 1 p ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t p − 3 t p − 2 ( t p − 2 − s ) β − 1 y ( s ) d s + ( t p − t p − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t p − 2 t p − 1 ( t p − 1 − s ) β − 1 y ( s ) d s − λ ∑ i = 1 p + 1 ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) u ( s ) d s + ( 1 − t p ) α Γ ( α + 1 ) ∑ i = 1 p ( λ I i + I i ∗ ) ( u ( t i ) ) + ∑ i = 2 p λ ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I 1 + I 1 ∗ ) ( u ( t 1 ) ) + ⋯ + ∑ i = p − 1 p ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I p − 2 + I p − 2 ∗ ) ( u ( t p − 2 ) ) + ( t p − t p − 1 ) α Γ ( α + 1 ) ( λ I p − 1 + I p − 1 ∗ ) ( u ( t p − 1 ) ) + ∑ i = 1 k I i ( u ( t i ) ) + γ 1 − γ 2 } .
(2.4)

Proof Let ( C D α +λ)u(t)=v(t), by (2.2), we have

D β C v(t)=y(t).
(2.5)

We may apply Lemma 2.2 to reduce the equation (2.5) to an equivalent integral equation

v(t)= 1 Γ ( β ) ∫ 0 t ( t − s ) β − 1 y(s)ds− c 1 ,t∈ J 0 ,

for some c 1 ∈R.

Thus,

D α C u(t)= 1 Γ ( β ) ∫ 0 t ( t − s ) β − 1 y(s)ds−λu(t)− c 1 ,t∈ J 0 ,
(2.6)

for some c 1 ∈R.

Similarly, by Lemma 2.2, we have

u ( t ) = ∫ 0 t ( t − s ) α − 1 Γ ( α ) ∫ 0 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s − λ ∫ 0 t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − c 1 t α Γ ( α + 1 ) − c 2 , t ∈ J 0 ,
(2.7)

for some c 1 , c 2 ∈R. Combining with u(0)= γ 1 , we get that c 2 =− γ 1 .

Substituting the value of c 2 in (2.7), we have

u ( t ) = ∫ 0 t ( t − s ) α − 1 Γ ( α ) ∫ 0 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s − λ ∫ 0 t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − c 1 t α Γ ( α + 1 ) + γ 1 , t ∈ J 0 ,
(2.8)

for some c 1 , c 2 ∈R.

If t∈ J 1 , then

for some d 1 , d 2 ∈R.

Thus, we have

In view of △u( t 1 )=u( t 1 + )−u( t 1 − )= I 1 (u( t 1 )) and △ C D α u( t 1 ) = C D α u( t 1 + ) − C D α u( t 1 − )= I 1 ∗ (u( t 1 )), we have

− d 1 = 1 Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + λ I 1 ( u ( t 1 ) ) + I 1 ∗ ( u ( t 1 ) ) − c 1 , − d 2 = I 1 ( u ( t 1 ) ) + ∫ 0 t 1 ( t 1 − s ) α − 1 Γ ( α ) ∫ 0 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s − λ ∫ 0 t 1 ( t 1 − s ) α − 1 Γ ( α ) u ( s ) d s − c 1 t 1 α Γ ( α + 1 ) + γ 1 .

Hence,

u ( t ) = ∫ t 1 t ( t − s ) α − 1 Γ ( α ) ∫ t 1 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ∫ 0 t 1 ( t 1 − s ) α − 1 Γ ( α ) ∫ 0 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ( t − t 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s − λ ∫ t 1 t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∫ 0 t 1 ( t 1 − s ) α − 1 Γ ( α ) u ( s ) d s + λ ( t − t 1 ) α Γ ( α + 1 ) I 1 ( u ( t 1 ) ) + I 1 ( u ( t 1 ) ) + ( t − t 1 ) α Γ ( α + 1 ) I 1 ∗ ( u ( t 1 ) ) − c 1 ( t − t 1 ) α Γ ( α + 1 ) − c 1 t 1 α Γ ( α + 1 ) + γ 1 , t ∈ J 1 .
(2.9)

By a similar process, we can get

u ( t ) = ∫ t 2 t ( t − s ) α − 1 Γ ( α ) ∫ t 2 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ∫ t 1 t 2 ( t 2 − s ) α − 1 Γ ( α ) ∫ t 1 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ∫ 0 t 1 ( t 1 − s ) α − 1 Γ ( α ) ∫ 0 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ( t 2 − t 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + ( t − t 2 ) α Γ ( α + 1 ) Γ ( β ) ∫ t 1 t 2 ( t 2 − s ) β − 1 y ( s ) d s + ( t − t 2 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s − λ ∫ t 2 t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∫ t 1 t 2 ( t 2 − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∫ 0 t 1 ( t 1 − s ) α − 1 Γ ( α ) u ( s ) d s + λ ( t − t 2 ) α Γ ( α + 1 ) I 2 ( u ( t 2 ) ) + λ ( t − t 2 ) α Γ ( α + 1 ) I 1 ( u ( t 1 ) ) + λ ( t 2 − t 1 ) α Γ ( α + 1 ) I 1 ( u ( t 1 ) ) + I 2 ( u ( t 2 ) ) + I 1 ( u ( t 1 ) ) + ( t − t 2 ) α Γ ( α + 1 ) I 2 ∗ ( u ( t 2 ) ) + ( t − t 2 ) α Γ ( α + 1 ) I 1 ∗ ( u ( t 1 ) ) + ( t 2 − t 1 ) α Γ ( α + 1 ) I 1 ∗ ( u ( t 1 ) ) − c 1 ( t − t 2 ) α Γ ( α + 1 ) − c 1 ( t 2 − t 1 ) α Γ ( α + 1 ) − c 1 t 1 α Γ ( α + 1 ) + γ 1 , t ∈ J 2
(2.10)

and

u ( t ) = ∫ t 3 t ( t − s ) α − 1 Γ ( α ) ∫ t 3 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ∫ t 2 t 3 ( t 3 − s ) α − 1 Γ ( α ) ∫ t 2 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ∫ t 1 t 2 ( t 2 − s ) α − 1 Γ ( α ) ∫ t 1 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ∫ 0 t 1 ( t 1 − s ) α − 1 Γ ( α ) ∫ 0 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ( t − t 3 ) α Γ ( α + 1 ) Γ ( β ) ∫ t 2 t 3 ( t 3 − s ) β − 1 y ( s ) d s + ( t − t 3 ) α Γ ( α + 1 ) Γ ( β ) ∫ t 1 t 2 ( t 2 − s ) β − 1 y ( s ) d s + ( t − t 3 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + ( t 2 − t 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + ( t 3 − t 2 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + ( t 3 − t 2 ) α Γ ( α + 1 ) Γ ( β ) ∫ t 1 t 2 ( t 2 − s ) β − 1 y ( s ) d s − λ ∫ t 3 t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∫ t 2 t 3 ( t 3 − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∫ t 1 t 2 ( t 2 − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∫ 0 t 1 ( t 1 − s ) α − 1 Γ ( α ) u ( s ) d s + λ ( t − t 3 ) α Γ ( α + 1 ) I 3 ( u ( t 3 ) ) + λ ( t − t 3 ) α Γ ( α + 1 ) I 2 ( u ( t 2 ) ) + λ ( t − t 3 ) α Γ ( α + 1 ) I 1 ( u ( t 1 ) ) + λ ( t 3 − t 2 ) α Γ ( α + 1 ) I 2 ( u ( t 2 ) ) + λ ( t 3 − t 2 ) α Γ ( α + 1 ) I 1 ( u ( t 1 ) ) + λ ( t 2 − t 1 ) α Γ ( α + 1 ) I 1 ( u ( t 1 ) ) + I 3 ( u ( t 3 ) ) + I 2 ( u ( t 2 ) ) + I 1 ( u ( t 1 ) ) + ( t − t 3 ) α Γ ( α + 1 ) I 3 ∗ ( u ( t 3 ) ) + ( t − t 3 ) α Γ ( α + 1 ) I 2 ∗ ( u ( t 2 ) ) + ( t − t 3 ) α Γ ( α + 1 ) I 1 ∗ ( u ( t 1 ) ) + ( t 3 − t 2 ) α Γ ( α + 1 ) I 2 ∗ ( u ( t 2 ) ) + ( t 3 − t 2 ) α Γ ( α + 1 ) I 1 ∗ ( u ( t 1 ) ) + ( t 2 − t 1 ) α Γ ( α + 1 ) I 1 ∗ ( u ( t 1 ) ) − c 1 ( t − t 3 ) α Γ ( α + 1 ) − c 1 ( t 3 − t 2 ) α Γ ( α + 1 ) − c 1 ( t 2 − t 1 ) α Γ ( α + 1 ) − c 1 t 1 α Γ ( α + 1 ) + γ 1 , t ∈ J 3 .
(2.11)

By the same method, for t∈ J k , we have

u ( t ) = ∫ t k t ( t − s ) α − 1 Γ ( α ) ∫ t k s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) ∫ t i − 1 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ( t − t k ) α Γ ( α + 1 ) Γ ( β ) ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) β − 1 y ( s ) d s + ∑ i = 2 k ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + ⋯ + ∑ i = k − 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t k − 3 t k − 2 ( t k − 2 − s ) β − 1 y ( s ) d s + ( t k − t k − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t k − 2 t k − 1 ( t k − 1 − s ) β − 1 y ( s ) d s − λ ∫ t k t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) u ( s ) d s + λ ( t − t k ) α Γ ( α + 1 ) ∑ i = 1 k I i ( u ( t i ) ) + ∑ i = 1 k I i ( u ( t i ) ) + ∑ i = 2 k λ ( t i − t i − 1 ) α Γ ( α + 1 ) I 1 ( u ( t 1 ) ) + ⋯ + ∑ i = k − 1 k λ ( t i − t i − 1 ) α Γ ( α + 1 ) I k − 2 ( u ( t k − 2 ) ) + λ ( t k − t k − 1 ) α Γ ( α + 1 ) I k − 1 ( u ( t k − 1 ) ) + ( t − t k ) α Γ ( α + 1 ) ∑ i = 1 k I i ∗ ( u ( t i ) ) + ∑ i = 2 k ( t i − t i − 1 ) α Γ ( α + 1 ) I 1 ∗ ( u ( t 1 ) ) + ⋯ + ∑ i = k − 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) I k − 2 ∗ ( u ( t k − 2 ) ) + ( t k − t k − 1 ) α Γ ( α + 1 ) I k − 1 ∗ ( u ( t k − 1 ) ) − c 1 ( t − t k ) α Γ ( α + 1 ) − c 1 ∑ i = 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) + γ 1 .
(2.12)

By (2.12) and the condition u(1)= γ 2 , we have

c 1 = [ ∑ i = 1 p + 1 ( t i − t i − 1 ) α Γ ( α + 1 ) ] − 1 { ∑ i = 1 p + 1 ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) ∫ t i − 1 s ( s − r ) β − 1 Γ ( β ) y ( r ) d r d s + ( 1 − t p ) α Γ ( α + 1 ) Γ ( β ) ∑ i = 1 p ∫ t i − 1 t i ( t i − s ) β − 1 y ( s ) d s + ∑ i = 2 p ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 y ( s ) d s + ⋯ + ∑ i = p − 1 p ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t p − 3 t p − 2 ( t p − 2 − s ) β − 1 y ( s ) d s + ( t p − t p − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t p − 2 t p − 1 ( t p − 1 − s ) β − 1 y ( s ) d s − λ ∑ i = 1 p + 1 ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) u ( s ) d s + ( 1 − t p ) α Γ ( α + 1 ) ∑ i = 1 p ( λ I i + I i ∗ ) ( u ( t i ) ) + ∑ i = 2 p λ ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I 1 + I 1 ∗ ) ( u ( t 1 ) ) + ⋯ + ∑ i = p − 1 p ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I p − 2 + I p − 2 ∗ ) ( u ( t p − 2 ) ) + ( t p − t p − 1 ) α Γ ( α + 1 ) ( λ I p − 1 + I p − 1 ∗ ) ( u ( t p − 1 ) ) + ∑ i = 1 k I i ( u ( t i ) ) + γ 1 − γ 2 } .
(2.13)

Substituting the value of c 1 in (2.8) and (2.12) and letting C=− c 1 , we can get (2.3). Conversely, assume that u is a solution of the impulsive fractional integral equation (2.3). Then by a direct computation, it follows that the solution given by (2.3) satisfies (2.2). This completes the proof. □

2.2 Nonlinear problem

Define the constant:

Λ = 2 ( p + 1 ) L 1 Γ ( α + 1 + β ) + p ( p + 1 ) L 1 Γ ( α + 1 ) Γ ( β + 1 ) + 2 ( p + 1 ) | λ | Γ ( α + 1 ) + p ( p + 1 ) ( | λ | L 2 + L 3 ) Γ ( α + 1 ) + 2 p L 2 .
(2.14)

Theorem 2.1 Assume that

(H1) There exist constants L i (i=1,2,3) such that

∥ f ( t , u ) − f ( t , v ) ∥ ≤ L 1 ∥ u − v ∥ , ∥ I k ( u ) − I k ( v ) ∥ ≤ L 2 ∥ u − v ∥ , ∥ I k ∗ ( u ) − I k ∗ ( v ) ∥ ≤ L 3 ∥ u − v ∥ , for t ∈ J , u , v ∈ E and k = 1 , 2 , … , p .

Then problem (2.1) has a unique solution provided Λ<1, where Λ is given by (2.14).

Proof Define the operator T:PC(J,E)→PC(J,E) as follows:

T u ( t ) = ∫ t k t ( t − s ) α − 1 Γ ( α ) ∫ t k s ( s − r ) β − 1 Γ ( β ) f ( r , u ( r ) ) d r d s + ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) ∫ t i − 1 s ( s − r ) β − 1 Γ ( β ) f ( r , u ( r ) ) d r d s + ( t − t k ) α Γ ( α + 1 ) Γ ( β ) ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) β − 1 f ( s , u ( s ) ) d s + ∑ i = 2 k ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 f ( s , u ( s ) ) d s + ⋯ + ∑ i = k − 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t k − 3 t k − 2 ( t k − 2 − s ) β − 1 f ( s , u ( s ) ) d s + ( t k − t k − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t k − 2 t k − 1 ( t k − 1 − s ) β − 1 f ( s , u ( s ) ) d s − λ ∫ t k t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) u ( s ) d s + ( t − t k ) α Γ ( α + 1 ) ∑ i = 1 k ( λ I i + I i ∗ ) ( u ( t i ) ) + ∑ i = 2 k ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I 1 + I 1 ∗ ) ( u ( t 1 ) ) + ⋯ + ∑ i = k − 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I k − 2 + I k − 2 ∗ ) ( u ( t k − 2 ) ) + ( t k − t k − 1 ) α Γ ( α + 1 ) ( λ I k − 1 + I k − 1 ∗ ) ( u ( t k − 1 ) ) + ∑ i = 1 k I i ( u ( t i ) ) + C ( t − t k ) α Γ ( α + 1 ) + C ∑ i = 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) + γ 1 ,
(2.15)

where

C = − [ ∑ i = 1 p + 1 ( t i − t i − 1 ) α Γ ( α + 1 ) ] − 1 { ∑ i = 1 p + 1 ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) ∫ t i − 1 s ( s − r ) β − 1 Γ ( β ) f ( r , u ( r ) ) d r d s + ( 1 − t p ) α Γ ( α + 1 ) Γ ( β ) ∑ i = 1 p ∫ t i − 1 t i ( t i − s ) β − 1 f ( s , u ( s ) ) d s + ∑ i = 2 p ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 f ( s , u ( s ) ) d s + ⋯ + ∑ i = p − 1 p ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t p − 3 t p − 2 ( t p − 2 − s ) β − 1 f ( s , u ( s ) ) d s + ( t p − t p − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t p − 2 t p − 1 ( t p − 1 − s ) β − 1 f ( s , u ( s ) ) d s − λ ∑ i = 1 p + 1 ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) u ( s ) d s + ( 1 − t p ) α Γ ( α + 1 ) ∑ i = 1 p ( λ I i + I i ∗ ) ( u ( t i ) ) + ∑ i = 2 p λ ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I 1 + I 1 ∗ ) ( u ( t 1 ) ) + ⋯ + ∑ i = p − 1 p ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I p − 2 + I p − 2 ∗ ) ( u ( t p − 2 ) ) + ( t p − t p − 1 ) α Γ ( α + 1 ) ( λ I p − 1 + I p − 1 ∗ ) ( u ( t p − 1 ) ) + ∑ i = 1 k I i ( u ( t i ) ) + γ 1 − γ 2 } .

Then the equation (2.1) has a solution if and only if the operator T has a fixed point.

Let u,v∈PC(J,E). By (2.15), we have

Using the condition (H1), by computation, we can get

Thus, ∥ T u − T v ∥ P C ≤Λ ∥ u − v ∥ P C .

As Λ<1, therefore, A is a contraction. Thus, the conclusion of the theorem follows by the contraction mapping principle. □

3 Nonlocal Dirichlet boundary value problems

In this section, we consider the following nonlocal Dirichlet boundary value problems:

{ D β C ( C D α + λ ) u ( t ) = f ( t , u ( t ) ) , 0 < t < 1 , 0 < α , β ≤ 1 , △ u ( t k ) = I k ( u ( t k ) ) , k = 1 , 2 , … , p , △ C D α u ( t k ) = I k ∗ ( u ( t k ) ) , k = 1 , 2 , … , p , u ( 0 ) + g 1 ( u ) = γ 1 , u ( 1 ) = γ 2 ,
(3.1)

and

{ D β C ( C D α + λ ) u ( t ) = f ( t , u ( t ) ) , 0 < t < 1 , 0 < α , β ≤ 1 , △ u ( t k ) = I k ( u ( t k ) ) , k = 1 , 2 , … , p , △ C D α u ( t k ) = I k ∗ ( u ( t k ) ) , k = 1 , 2 , … , p , u ( 0 ) = γ 1 , u ( 1 ) + g 2 ( u ) = γ 2 .
(3.2)

For the forthcoming analysis, we need the following assumptions:

(H2) There exists a constant L 4 such that ∥ g 1 (u)− g 1 (v)∥≤ L 4 ∥u−v∥.

(H3) There exists a constant L 5 such that ∥ g 2 (u)− g 2 (v)∥≤ L 5 ∥u−v∥.

Theorem 3.1 Assume (H1), (H2) hold if Λ+2 L 4 <1, then problem (3.1) has a unique solution, where Λ is given by (2.14).

Theorem 3.2 Assume (H1), (H3) hold if Λ+ L 5 <1, then problem (3.2) has a unique solution, where Λ is given by (2.14).

The proofs of Theorem 3.2 and Theorem 3.1 are similar. Here we only prove Theorem 3.1.

Proof We transform the problem (3.1) into a fixed point problem. Consider the operator T 1 :PC(J,E)→PC(J,E) as follows:

T 1 u ( t ) = ∫ t k t ( t − s ) α − 1 Γ ( α ) ∫ t k s ( s − r ) β − 1 Γ ( β ) f ( r , u ( r ) ) d r d s + ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) ∫ t i − 1 s ( s − r ) β − 1 Γ ( β ) f ( r , u ( r ) ) d r d s + ( t − t k ) α Γ ( α + 1 ) Γ ( β ) ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) β − 1 f ( s , u ( s ) ) d s + ∑ i = 2 k ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 f ( s , u ( s ) ) d s + ⋯ + ∑ i = k − 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t k − 3 t k − 2 ( t k − 2 − s ) β − 1 f ( s , u ( s ) ) d s + ( t k − t k − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t k − 2 t k − 1 ( t k − 1 − s ) β − 1 f ( s , u ( s ) ) d s − λ ∫ t k t ( t − s ) α − 1 Γ ( α ) u ( s ) d s − λ ∑ i = 1 k ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) u ( s ) d s + ( t − t k ) α Γ ( α + 1 ) ∑ i = 1 k ( λ I i + I i ∗ ) ( u ( t i ) ) + ∑ i = 2 k ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I 1 + I 1 ∗ ) ( u ( t 1 ) ) + ⋯ + ∑ i = k − 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I k − 2 + I k − 2 ∗ ) ( u ( t k − 2 ) ) + ( t k − t k − 1 ) α Γ ( α + 1 ) ( λ I k − 1 + I k − 1 ∗ ) ( u ( t k − 1 ) ) + ∑ i = 1 k I i ( u ( t i ) ) + C ( t − t k ) α Γ ( α + 1 ) + C ∑ i = 1 k ( t i − t i − 1 ) α Γ ( α + 1 ) + γ 1 − g 1 ( u ) ,
(3.3)

where

C = − [ ∑ i = 1 p + 1 ( t i − t i − 1 ) α Γ ( α + 1 ) ] − 1 { ∑ i = 1 p + 1 ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) ∫ t i − 1 s ( s − r ) β − 1 Γ ( β ) f ( r , u ( r ) ) d r d s + ( 1 − t p ) α Γ ( α + 1 ) Γ ( β ) ∑ i = 1 p ∫ t i − 1 t i ( t i − s ) β − 1 f ( s , u ( s ) ) d s + ∑ i = 2 p ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ 0 t 1 ( t 1 − s ) β − 1 f ( s , u ( s ) ) d s + ⋯ + ∑ i = p − 1 p ( t i − t i − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t p − 3 t p − 2 ( t p − 2 − s ) β − 1 f ( s , u ( s ) ) d s + ( t p − t p − 1 ) α Γ ( α + 1 ) Γ ( β ) ∫ t p − 2 t p − 1 ( t p − 1 − s ) β − 1 f ( s , u ( s ) ) d s − λ ∑ i = 1 p + 1 ∫ t i − 1 t i ( t i − s ) α − 1 Γ ( α ) u ( s ) d s + ( 1 − t p ) α Γ ( α + 1 ) ∑ i = 1 p ( λ I i + I i ∗ ) ( u ( t i ) ) + ∑ i = 2 p λ ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I 1 + I 1 ∗ ) ( u ( t 1 ) ) + ⋯ + ∑ i = p − 1 p ( t i − t i − 1 ) α Γ ( α + 1 ) ( λ I p − 2 + I p − 2 ∗ ) ( u ( t p − 2 ) ) + ( t p − t p − 1 ) α Γ ( α + 1 ) ( λ I p − 1 + I p − 1 ∗ ) ( u ( t p − 1 ) ) + ∑ i = 1 k I i ( u ( t i ) ) + γ 1 − g 1 ( u ) − γ 2 } .

The rest of the proof is almost the same as that of Theorem 2.1, so we omit it. □

4 Example

The following example is a direct application of our main result.

Example 4.1 Consider the following Dirichlet boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses:

{ D 3 4 C ( C D 1 4 − 1 20 ) u ( t ) = cos t ( t + 6 ) 2 ∥ u ( t ) ∥ 1 + ∥ u ( t ) ∥ , 0 < t < 1 , t ≠ 1 2 , △ u ( 1 2 ) = ∥ u ( 1 2 ) ∥ 8 + ∥ u ( 1 2 ) ∥ , △ C D 1 4 u ( 1 2 ) = 2 ∥ u ( 1 2 ) ∥ 20 + ∥ u ( 1 2 ) ∥ , u ( 0 ) = γ 1 , u ( 1 ) = γ 2 ,
(4.1)

where α= 1 4 , β= 3 4 , λ=− 1 20 , p=1, f(t,u)= cos t ( t + 6 ) 2 ∥ u ∥ 1 + ∥ u ∥ , I 1 (u)= ∥ u ∥ 8 + ∥ u ∥ and I 1 ∗ (u)= 2 ∥ u ∥ 20 + ∥ u ∥ .

Obviously, L 1 = 1 36 , L 2 = 1 8 and L 3 = 1 10 . Further,

Λ = 2 ( p + 1 ) L 1 Γ ( α + 1 + β ) + p ( p + 1 ) L 1 Γ ( α + 1 ) Γ ( β + 1 ) + 2 ( p + 1 ) | λ | Γ ( α + 1 ) + p ( p + 1 ) ( | λ | L 2 + L 3 ) Γ ( α + 1 ) + 2 p L 2 ≈ 0.882899 < 1 .

Therefore, by Theorem 2.1, we can get that the above equation (4.1) has a unique solution on [0,1].

References

  1. Kilbas AA, Srivastava HM, Trujillo JJ North-Holland Mathematics Studies 204. In Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.

    Google Scholar 

  2. Podlubny I Mathematics in Science and Engineering. In Fractional Differential Equations. Academic Press, New York; 1999.

    Google Scholar 

  3. Sabatier J, Agrawal OP, Machado JAT (Eds): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht; 2007.

    Google Scholar 

  4. Ahmad B, Nieto JJ: Sequential fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2012, 64: 3046–3052. 10.1016/j.camwa.2012.02.036

    Article  MathSciNet  Google Scholar 

  5. Kaslik E, Sivasundaram S: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal., Real World Appl. 2012, 13: 1489–1497. 10.1016/j.nonrwa.2011.11.013

    Article  MathSciNet  Google Scholar 

  6. Guezane-Lakoud A, Khaldi R: Solvability of a fractional boundary value problem with fractional integral condition. Nonlinear Anal. 2012, 75: 2692–2700. 10.1016/j.na.2011.11.014

    Article  MathSciNet  Google Scholar 

  7. Zhou P, Zhu W: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal., Real World Appl. 2011, 12: 811–816. 10.1016/j.nonrwa.2010.08.008

    Article  MathSciNet  Google Scholar 

  8. Goodrich CS: Existence of a positive solution to systems of differential equations of fractional order. Comput. Math. Appl. 2011, 62: 1251–1268. 10.1016/j.camwa.2011.02.039

    Article  MathSciNet  Google Scholar 

  9. Agarwal RP, Benchohra M, Hamani S, Pinelas S: Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half-line. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2011, 18: 235–244.

    MathSciNet  Google Scholar 

  10. Baleanu D, Agarwal RP, Mustafa OG, Cosulschi M: Asymptotic integration of some nonlinear differential equations with fractional time derivative. J. Phys. A 2011., 44: Article ID 055203

    Google Scholar 

  11. Agarwal RP, Zhou Y, Wang J, Luo X: Fractional functional differential equations with causal operators in Banach spaces. Math. Comput. Model. 2011, 54: 1440–1452. 10.1016/j.mcm.2011.04.016

    Article  MathSciNet  Google Scholar 

  12. Wang G, Agarwal RP, Cabada A: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 2012, 25: 1019–1024. 10.1016/j.aml.2011.09.078

    Article  MathSciNet  Google Scholar 

  13. Chen F, Nieto JJ, Zhou Y: Global attractivity for nonlinear fractional differential equations. Nonlinear Anal., Real World Appl. 2012, 13: 287–298. 10.1016/j.nonrwa.2011.07.034

    Article  MathSciNet  Google Scholar 

  14. Wang J, Zhou Y: A class of fractional evolution equations and optimal controls. Nonlinear Anal. 2011, 12: 262–272. 10.1016/j.nonrwa.2010.06.013

    Article  Google Scholar 

  15. Wang G, Ntouyas SK, Zhang L: Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument. Adv. Differ. Equ. 2011., 2011: Article ID 2

    Google Scholar 

  16. Wax N (Ed): Selected Papers on Noise and Stochastic Processes. Dover, New York; 1954.

    Google Scholar 

  17. Mazo R: Brownian Motion: Fluctuations, Dynamics and Applications. Oxford Univ. Press, Oxford; 2002.

    Google Scholar 

  18. Coffey WT, Kalmykov YP, Waldron JT: The Langevin Equation. 2nd edition. World Scientific, Singapore; 2004.

    Google Scholar 

  19. Kobolev V, Romanov E: Fractional Langevin equation to describe anomalous diffusion. Prog. Theor. Phys. Suppl. 2000, 139: 470–476.

    Article  Google Scholar 

  20. Lim SC, Muniandy SV: Self-similar Gaussian processes for modeling anomalous diffusion. Phys. Rev. E 2002., 66: Article ID 021114

    Google Scholar 

  21. Picozzi S, West B: Fractional Langevin model of memory in financial markets. Phys. Rev. E 2002., 66: Article ID 046118

    Google Scholar 

  22. Lim SC, Li M, Teo LP: Locally self-similar fractional oscillator processes. Fluct. Noise Lett. 2007, 7: 169–179. 10.1142/S0219477507003817

    Article  Google Scholar 

  23. Lim SC, Li M, Teo LP: Langevin equation with two fractional orders. Phys. Lett. A 2008, 372(42):6309–6320. 10.1016/j.physleta.2008.08.045

    Article  MathSciNet  Google Scholar 

  24. Lim SC, Teo LP: The fractional oscillator process with two indices. J. Phys. A 2009., 42(6): Article ID 065208

    Google Scholar 

  25. Ahmad B, Nieto JJ: Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions. Int. J. Differ. Equ. 2010., 2010: Article ID 649486

    Google Scholar 

  26. Ahmad B, Nieto JJ, Alsaedi A, El-Shahed M: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 2012, 13: 599–606. 10.1016/j.nonrwa.2011.07.052

    Article  MathSciNet  Google Scholar 

  27. Byszewski L, Lakshmikantham V: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 1991, 40: 11–19. 10.1080/00036819008839989

    Article  MathSciNet  Google Scholar 

  28. Byszewski L: Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 1991, 162: 494–505. 10.1016/0022-247X(91)90164-U

    Article  MathSciNet  Google Scholar 

  29. Balachandran K, Trujillo JJ: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 2010, 72: 4587–4593. 10.1016/j.na.2010.02.035

    Article  MathSciNet  Google Scholar 

  30. N’Guerekata GM: A Cauchy problem for some fractional abstract differential equation with nonlocal condition. Nonlinear Anal. 2009, 70: 1873–1876. 10.1016/j.na.2008.02.087

    Article  MathSciNet  Google Scholar 

  31. Feng M, Zhang X, Ge W: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011., 2011: Article ID 720702

    Google Scholar 

  32. Salem HAH: Fractional order boundary value problem with integral boundary conditions involving Pettis integral. Acta Math. Sci. 2011, 31: 661–672.

    Article  MathSciNet  Google Scholar 

  33. Ahmad B, Nieto JJ, Alsaedi A: Existence and uniqueness of solutions for nonlinear fractional differential equations with non-separated type integral boundary conditions. Acta Math. Sci. 2011, 31: 2122–2130.

    Article  MathSciNet  Google Scholar 

  34. Ahmad B, Nieto JJ: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009., 2009: Article ID 708576

    Google Scholar 

  35. Ahmad B, Ntouyas SK, Alsaedi A: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011., 2011: Article ID 107384

    Google Scholar 

  36. Benchohra M, Graef JR, Hamani S: Existence results for boundary value problems with nonlinear fractional differential equations. Appl. Anal. 2008, 87: 851–863. 10.1080/00036810802307579

    Article  MathSciNet  Google Scholar 

  37. Hamani S, Benchohra M, Graef JR: Existence results for boundary value problems with nonlinear fractional inclusions and integral conditions. Electron. J. Differ. Equ. 2010, 20: 1–16.

    Article  MathSciNet  Google Scholar 

  38. Liu X, Jia M, Wu B: Existence and uniqueness of solution for fractional differential equations with integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2009, 69: 1–10.

    MathSciNet  Google Scholar 

  39. Cabada A, Wang G: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 2012, 389: 403–411. 10.1016/j.jmaa.2011.11.065

    Article  MathSciNet  Google Scholar 

  40. Benchohra M, Hamani S, Ntouyas SK: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71: 2391–2396. 10.1016/j.na.2009.01.073

    Article  MathSciNet  Google Scholar 

  41. Wang, G, Ahmad, B, Zhang, L: New existence results for nonlinear impulsive integro-differential equations of fractional order with nonlocal boundary conditions. Nonlinear Stud. (to appear)

  42. Wang G, Ahmad B, Zhang L: Some existence results for impulsive nonlinear fractional differential equations with mixed boundary conditions. Comput. Math. Appl. 2011, 62: 1389–1397. 10.1016/j.camwa.2011.04.004

    Article  MathSciNet  Google Scholar 

  43. Wang G, Ahmad B, Zhang L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 2011, 74: 792–804. 10.1016/j.na.2010.09.030

    Article  MathSciNet  Google Scholar 

  44. Zhang L, Wang G: Existence of solutions for nonlinear fractional differential equations with impulses and anti-periodic boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2011., 2011: Article ID 7

    Google Scholar 

  45. Ahmad B, Wang G: A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations. Comput. Math. Appl. 2011, 62: 1341–1349. 10.1016/j.camwa.2011.04.033

    Article  MathSciNet  Google Scholar 

  46. Ahmad B, Nieto JJ: Existence of solutions for impulsive anti-periodic boundary value problems of fractional order. Taiwan. J. Math. 2011, 15: 981–993.

    MathSciNet  Google Scholar 

  47. Ahmad B, Sivasundaram S: Existence of solutions for impulsive integral boundary value problems of fractional order. Nonlinear Anal. Hybrid Syst. 2010, 4: 134–141. 10.1016/j.nahs.2009.09.002

    Article  MathSciNet  Google Scholar 

  48. Agarwal RP, Ahmad B: Existence of solutions for impulsive anti-periodic boundary value problems of fractional semilinear evolution equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 2011, 18: 457–470.

    MathSciNet  Google Scholar 

  49. Mophou GM: Existence and uniqueness of mild solutions to impulsive fractional differential equations. Nonlinear Anal. 2010, 72: 1604–1615. 10.1016/j.na.2009.08.046

    Article  MathSciNet  Google Scholar 

  50. Tian Y, Bai Z: Existence results for the three-point impulsive boundary value problem involving fractional differential equations. Comput. Math. Appl. 2010, 59: 2601–2609. 10.1016/j.camwa.2010.01.028

    Article  MathSciNet  Google Scholar 

  51. Zhang X, Huang X, Liu Z: The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal. Hybrid Syst. 2010, 4: 775–781. 10.1016/j.nahs.2010.05.007

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the anonymous reviewers and editors for their valuable comments and suggestions which have improved the quality of the present paper. The research was supported by the Natural Science Foundation for Young Scientists of Shanxi Province (2012021002-3), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihong Zhang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors completed the paper together. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Wang, G., Zhang, L. & Song, G. Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses. Fixed Point Theory Appl 2012, 200 (2012). https://doi.org/10.1186/1687-1812-2012-200

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2012-200

Keywords