Skip to main content

A tripled fixed point theorem for semigroups of Lipschitzian mappings on metric spaces with uniform normal structure

Abstract

In this work, we establish a tripled fixed point theorem for an asymptotically regular one-parameter semigroup = {F(t):tG, where G is an unbounded subset of [0,)} of Lipschitzian self-mappings on X×X×X in a complete bounded metric space X with uniform normal structure.

1 Introduction

The classical Banach contraction principle proved in complete metric spaces continues to be an indispensable and effective tool in theory as well as applications, which guarantees the existence and uniqueness of fixed points of contraction self-mappings besides offering a constructive procedure to compute the fixed point of the underlying mapping. There already exists an extensive literature on this topic. Keeping in view the relevance of this paper, we refer to [15].

In 2006, Bhaskar and Lakshmikantham [6] initiated the idea of a coupled fixed point in partially ordered metric spaces and proved some interesting coupled fixed point theorems for a mapping satisfying the mixed monotone property. Many authors obtained important coupled fixed point (see [69]). In this continuation, Lakshmikantham and Ciric [8] introduced coupled common fixed point theorems for nonlinear ϕ-contraction mappings in partially ordered complete metric spaces which indeed generalize the corresponding fixed point theorems contained in Bhaskar and Lakshmikantham [6]. Recently, Samet and Vetro [10] introduced the concept of fixed point of N-order for nonlinear mappings in complete metric spaces. They obtained the existence and uniqueness theorems for contractive type mappings. Their results generalized and extended coupled fixed point theorems established by Bhaskar and Lakshmikantham [6].

On the other hand, in 1989, Khamsi [11] defined normal and uniform normal structure for metric spaces and proved that if (X,d) is a complete bounded metric space with uniform normal structure, then it has the fixed point property for nonexpansive mappings and a kind of intersection property which extends the result of Maluta [12] to metric spaces. In 1995, Lim and Hong-Kun Xu [13] proved a fixed point theorem for uniformly Lipschitzian mappings in metric spaces with both property (P) and uniform normal structure, which extends the result of Khamsi [11]. This is the metric space version of Casini and Maluta’s theorem [2]. In 2007, Jen-Chih Yao and Lu-Chuan Zeng [14] established a fixed point theorem for an asymptotically regular semigroup of uniformly Lipschitzian mappings with property () in a complete bounded metric space with uniform normal structure which extends the results of Lim and Hong-Kun Xu [13]. Recently, Imdad and Soliman [15] introduced fixed point theorems for an asymptotically regular semigroup of uniformly generalized Lipschitzian mappings which generalize the results due to Jen-Chih Yao and Lu-Chuan Zeng [14].

In the present paper, we prove that asymptotically regular one parameter semigroups ={F(t):tG,where G,an unbounded subset of [0,)} of Lipschitzian self-mappings on X×X×X, has a tripled fixed point, where X denotes a complete bounded metric space with uniform normal structure. Also, some corollaries of our results are presented.

2 Preliminaries

Definition 2.1 [6]

An element (x,y)X×X is called a coupled fixed point of the mapping F:X×XX if

F(x,y)=xandF(y,x)=y.

Theorem 2.1 [6]

Let (X,) be a partially ordered set and suppose there is a metric d on X such that (X,d) is a complete metric space. Let F:X×XX be a continuous mapping having the mixed monotone property on X. Assume that there exists a constant k[0,1) with

d ( F ( x , y ) , F ( u , v ) ) k 2 [ d ( x , u ) + d ( y , v ) ] xu,yv.

If there exist x 0 , y 0 X such that x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ), then there exist x,yX such that x=F(x,y) and y=F(y,x).

Definition 2.2 [10]

An element (x,y,z)X×X×X is called a tripled fixed point of the mapping F:X×X×XX if

F(x,y,z)=x,F(y,z,x)=yandF(z,x,y)=z.

Definition 2.3 A mapping F:X×X×XX is said to be a Lipschitzian mapping if for each integer n1, there exists a constant k n >0 such that

d ( F n ( x , y , z ) , F n ( u , v , w ) ) k n 3 [ d ( x , u ) + d ( y , v ) + d ( z , w ) ] x,y,zX,
(1)

where F n (x,y,z)= F n 1 (F(x,y,z),F(y,z,x),F(z,x,y)).

If k n =k n1, then F is called uniformly Lipschitzian and if k n =1 n1, then F is called nonexpansive.

Definition 2.4 A mapping F:X×X×XX is called asymptotically regular if

lim n d ( F n + 1 ( x , y , z ) , F n ( x , y , z ) ) =0x,y,zX.
(2)

Let G be a subsemigroup of [0,) with addition ‘+’ such that

tsGt,sG with ts.

This condition is satisfied if G=[0,) or G= Z + , the set of nonnegative integers. Let ={F(t):tG} be a family of self-mappings on X×X×X. Then is called a (one-parameter) semigroup on X×X×X if the following conditions are satisfied:

  1. (i)

    F(0)(x,y,z)=x, F(0)(y,z,x)=y and F(0)(z,x,y)=z x,y,zX;

  2. (ii)

    F(s)(F(t)(x,y,z),F(t)(y,z,x),F(t)(z,x,y))=F(s+t)(x,y,z) s,tG and x,y,zX;

  3. (iii)

    x,y,zX, the self-mappings tF(t)(x,y,z), tF(t)(y,z,x) and tF(t)(z,x,y) from G into X are continuous when G has the relative topology of [0,).

A semigroup ={F(t):tG} on X×X×X is said to be asymptotically regular at a point (x,y,z)X×X×X if

lim t d ( F ( t + h ) ( x , y , z ) , F ( t ) ( x , y , z ) ) =0hG.

If is asymptotically regular at each (x,y,z)X×X×X, then is called an asymptotically regular semigroup on X×X×X.

Definition 2.5 A semigroup ={F(t):tG} on X×X×X is called a uniformly Lipschitzian semigroup if

sup { k ( t ) : t G } =k<,

where

k(t)=3sup { d ( F ( t ) ( x , y , z ) , F ( t ) ( u , v , w ) ) [ d ( x , u ) + d ( y , v ) + d ( z , w ) ] 0 : x , y , z X } .

In a metric space (X,d), let μ denote a nonempty family of subsets of X. Following Khamsi [11], we say that μ defines a convexity structure on X if μ is stable under intersection. We say that μ has property (R) if any decreasing sequence { C n } of nonempty bounded closed subsets of X with C n μ has a nonempty intersection. Recall that a subset of X is said to be admissible [5] if it is an intersection of closed balls. We denote by A(X) the family of all admissible subsets of X. It is obvious that A(X) defines a convexity structure on X. In this paper any other convexity structure μ on X is always assumed to contain A(X).

Let M be a bounded subset of X. Following Lim and Xu [13], we shall adopt the following notations:

B(x,r) is the closed ball centered at x with radius r,

r(x,M)=sup{d(x,y):yM} for xX,

δ(M)=sup{r(x,M):xM},

R(M)=inf{r(x,M):xM}.

For a bounded subset A of X, we define the admissible hull of A, denoted by ad(A), as the intersection of all those admissible subsets of X which contain A, i.e.,

ad(A)={B:ABX with B admissible}.

Proposition 2.1 [13]

For a point xX and a bounded subset A of X, we have

r ( x , a d ( A ) ) =r(x,A).

Definition 2.6 [11]

A metric space (X,d) is said to have normal (resp. uniform normal) structure if there exists a convexity structure μ on X such that R(A)<δ(A) (resp. R(A)cδ(A) for some constant c(0,1)) for all Aμ which is bounded and consists of more than one point. In this case μ is said to be normal (resp. uniformly normal) in X.

We define the normal structure coefficient N ¯ (X) of X (with respect to a given convexity structure μ) as the number

sup { R ( A ) δ ( A ) } ,

where the supremum is taken over all bounded AF with δ(A)>0. X then has uniform normal structure if and only if N ¯ (X)<1.

Khamsi proved the following result that will be very useful in the proof of our main theorem.

Proposition 2.2 [11]

Let X be a complete bounded metric space and μ be a convexity structure of X with uniform normal structure. Then μ has property (R).

Definition 2.7 [14]

Let (X,d) be a metric space and ={F(t):tG} be a semigroup on X×X×X. Let us write the set

w()= { { t n } : { t n } G  and  t n } .

Lemma 2.1 [14]

If { t n }ω(), then { t n + 1 t n }ω().

Definition 2.8 [13]

A metric space (X,d) is said to have property (P) if given any two bounded sequences { x n } and { z n } in X, one can find some z n = 1 ad{ z j :jn} such that

lim sup n d(z, x n ) lim sup j lim sup n d( z j , x n ).

Definition 2.9 Let (X,d) be a complete bounded metric space and ={F(t):tG} be a semigroup on X×X×X. Then has property () if for each xX and each { t n }w(), the following conditions are satisfied:

  1. (a)

    the sequences {F( t n )(x,y,z)}, {F( t n )(y,z,x)} and {F( t n )(z,x,y)} are bounded;

  2. (b)

    for any sequence { s n } in ad{F( t n )(x,y,z):n1}, there exists some s n = 1 ad{ s j :jn} such that

    lim sup n d ( s , F ( t n ) ( x , y , z ) ) lim sup j lim sup n d ( s j , F ( t n ) ( x , y , z ) ) ;

for any sequence { u n } in ad{F( t n )(y,z,x):n1}, there exists some u n = 1 ad{ u j :jn} such that

lim sup n d ( u , F ( t n ) ( y , z , x ) ) lim sup j lim sup n d ( u j , F ( t n ) ( y , z , x ) ) ;

for any sequence { v n } in ad{F( t n )(z,x,y):n1}, there exists some v n = 1 ad{ v j :jn} such that

lim sup n d ( v , F ( t n ) ( z , x , y ) ) lim sup j lim sup n d ( v j , F ( t n ) ( z , x , y ) ) .

Remark 2.1 If X is a complete bounded metric space with property (P), then each semigroup ={F(t):tG} on X×X×X has property ().

3 Main results

Lemma 3.1 Let (X,d) be a complete bounded metric space with uniform normal structure, and let ={F(t):tG} be a semigroup on X×X×X with property (). Then, for each xX, each { t n }ω() and for any constant N ˜ (X)<c, the normal structure coefficient with respect to the given convexity structure μ, there exist some s n = 1 ad{ s j :jn}, u n = 1 ad{ u j :jn} and v n = 1 ad{ v j :jn} satisfying the properties:

  1. (I)
    lim sup n d ( s , F ( t n ) ( x , y , z ) ) c ˆ A ( { F ( t n ) ( x , y , z ) } ) , lim sup n d ( u , F ( t n ) ( y , z , x ) ) c ˆ B ( { F ( t n ) ( y , z , x ) } ) and lim sup n d ( v , F ( t n ) ( z , x , y ) ) c ˆ C ( { F ( t n ) ( z , x , y ) } ) ,

    where

    A ( { F ( t n ) ( x , y , z ) } ) = lim sup n { d ( F ( t i ) ( x , y , z ) , F ( t j ) ( x , y , z ) ) : i , j n } , B ( { F ( t n ) ( y , z , x ) } ) = lim sup n { d ( F ( t i ) ( y , z , x ) , F ( t j ) ( y , z , x ) ) : i , j n } and C ( { F ( t n ) ( z , x , y ) } ) = lim sup n { d ( F ( t i ) ( z , x , y ) , F ( t j ) ( z , x , y ) ) : i , j n } ;
  2. (II)
    d ( s , w ) lim sup n d ( F ( t n ) ( x , y , z ) , w ) , d ( u , w ) lim sup n d ( F ( t n ) ( y , z , x ) , w ) and d ( v , w ) lim sup n d ( F ( t n ) ( z , x , y ) , w ) for all  w X .

Proof For each integer n1, let A n ={F( t j )(x,y,z):jn}, B n ={F( t j )(y,z,x):jn} and C n ={F( t j )(z,x,y):jn}. Then { A n }, { B n } and { C n } are decreasing sequences of admissible subsets of X, hence A:= n = 1 A n ϕ, B:= n = 1 B n ϕ and C:= n = 1 C n ϕ by Proposition 2.1. From Proposition 2.1, it is not difficult to see that δ( A n )=δ({F( t i )(x,y,z):in}), δ( B n )=δ({F( t i )(y,z,x):in}) and δ( C n )=δ({F( t i )(z,x,y):in}). Indeed, observe that

δ ( A n ) = sup { r ( w , A n ) : w A n } = sup w A n sup j n d ( w , F ( t j ) ( x , y , z ) ) = sup j n sup w A n d ( w , F ( t j ) ( x , y , z ) ) = sup j n r ( F ( t j ) ( x , y , z ) , A n ) = sup j n sup i n d ( F ( t j ) ( x , y , z ) , F ( t i ) ( x , y , z ) ) = δ ( { F ( t i ) ( x , y , z ) : i n } ) .

Similarly, one can obtain

δ ( B n ) = δ ( { F ( t i ) ( y , z , x ) : i n } ) , δ ( C n ) = δ ( { F ( t i ) ( z , x , y ) : i n } ) .

On the other hand, for any aA and any wX, we have

sup j n d ( w , F ( t j ) ( x , y , z ) ) =r(w, A n )r(w,A)d(w,a).

Therefore,

d(w,a) lim sup n d ( w , F ( t n ) ( x , y , z ) ) .

Also, one can deduce that for any bB, cC and any wX, we have

d ( w , b ) lim sup n d ( w , F ( t n ) ( y , z , x ) ) , d ( w , c ) lim sup n d ( w , F ( t n ) ( z , x , y ) ) ,

from which (ii) follows.

We now claim that for each n1, there exist a n A n , b n B n and c n C n such that

r( a n , A n ) c ˆ δ ( { F ( t j ) ( x , y , z ) : j n } ) ,
(3)
r( b n , B n ) c ˆ δ ( { F ( t j ) ( y , z , x ) : j n } ) ,
(4)
r( c n , C n ) c ˆ δ ( { F ( t j ) ( z , x , y ) : j n } ) .
(5)

Indeed, if δ({F( t j )(x,y,z):jn})=0, then δ( A n )=δ({F( t j )(x,y,z):jn}), we conclude that (3) holds. Without loss of generality, we may assume that δ({F( t j )(x,y,z):j0})>0. Then, for c>N(X), we choose ϵ>0 so small satisfying the following:

N(X)δ ( { F ( t j ) ( x , y , z ) : j n } ) +ϵ c ˆ δ ( { F ( t j ) ( x , y , z ) : j n } ) .
(6)

By the definition of R( A n ), one can find u n A n such that

r ( u n , A n ) < R ( A n ) + ϵ N ( X ) δ ( A n ) + ϵ = N ( X ) δ ( { F ( t j ) ( x , y , z ) : j n } ) + ϵ c ˆ δ ( { F ( t j ) ( x , y , z ) : j n } ) .

This shows that (3) holds. Obviously, it follows from (3) that for each n1,

lim sup j r( u n , x j ) c ˆ δ ( { F ( t j ) ( x , y , z ) : j n } ) ,

which implies

lim sup n lim sup j r ( u n , F ( t j ( x , y , z ) ) ) c ˆ A ( { F ( t n ) ( x , y , z ) } ) ,
(7)

where A({F( t n )(x,y,z)})={d(F( t j )(x,y,z),F( t i )(x,y,z)):i,jn}. Noticing

u n A n ad { F ( t j ) ( x , y , z ) : j n } for each n1,

we know that property () yields a point s n = 1 ad{ s j :jn} such that

lim sup j d ( s , F ( t j ) ( x , y , z ) ) lim sup n lim sup j r ( s n , F ( t j ) ( x , y , z ) ) .
(8)

Since { s j :jn} A n , sA= n = 1 ad{F( t j )(x,y,z):jn} and satisfies

lim sup j d ( s , F ( t j ) ( x , y , z ) ) c ˆ A ( { F ( t j ) ( x , y , z ) } ) ,by (7)

similarly one can obtain that

lim sup j d ( u , F ( t j ) ( y , z , x ) ) c ˆ B ( { F ( t j ) ( y , z , x ) } ) , lim sup j d ( v , F ( t j ) ( z , x , y ) ) c ˆ C ( { F ( t j ) ( z , x , y ) } ) ,

where uB= n = 1 ad{F( t j )(y,z,x):jn} and vC= n = 1 ad{F( t j )(z,x,y):jn}.

Therefore (i) holds. □

Theorem 3.1 Let (X,d) be a complete bounded metric space with uniform normal structure, and let ={F(t):tG} be an asymptotically regular semigroup on X×X×X with property () and satisfying

( lim inf t k ( t ) ) ( lim sup t k ( t ) ) < N ¯ ( X ) 1 2 .

Then there exist some x,y,zX such that F(t)(x,y,z)=x, F(t)(y,z,x)=y and F(t)(z,x,y)=z for all tG.

Proof First, we write k= lim inf t k(t) and k ˜ = lim sup t k(t). Choose a constant c ˆ such that N ˜ (X)< c ˆ <1 and k k ˜ < 1 c ˆ . We can select a sequence { t n }w() such that { t n + 1 t n }w() and lim n k( t n )= k ˜ , where k ˜ >0.

Observe that

{ d ( F ( t j ) ( x , y , z ) , F ( t i ) ( x , y , z ) ) : i , j n } = { d ( F ( t j ) ( x , y , z ) , F ( t i ) ( x , y , z ) ) : j > i n } {0}

for each nN and x,y,zX.

Now fix x 0 , y 0 , z 0 X. Then, by Lemma 3.1, we can inductively construct sequences { x l } l = 1 , { y l } l = 1 , { z l } l = 1 X such that

x l + 1 n = 1 a d { F ( t i ) ( x l , y l , z l ) : i n } , y l + 1 n = 1 a d { F ( t i ) ( y l , z l , x l ) : i n } and z l + 1 n = 1 a d { F ( t i ) ( z l , x l , y l ) : i n } , for each integer  l 0 ,

(III)

lim sup n d ( F ( t n ) ( x l , y l , z l ) , x l + 1 ) c ˆ A ( { F ( t n ) ( x l , y l , z l ) } ) , lim sup n d ( F ( t n ) ( y l , z l , x l ) , y l + 1 ) c ˆ B ( { F ( t n ) ( y l , z l , x l ) } ) , lim sup n d ( F ( t n ) ( z l , x l , y l ) , z l + 1 ) c ˆ C ( { F ( t n ) ( z l , x l , y l ) } ) ,

where

A ( { F ( t n ) ( x l , y l , z l ) } ) = lim sup n { d ( F ( t i ) ( x l , y l , z l ) , F ( t j ) ( x l , y l , z l ) ) : i , j n } , B ( { F ( t n ) ( y l , z l , x l ) } ) = lim sup n { d ( F ( t i ) ( y l , z l , x l ) , F ( t j ) ( y l , z l , x l ) ) : i , j n } and C ( { F ( t n ) ( z l , x l , y l ) } ) = lim sup n { d ( F ( t i ) ( z l , x l , y l ) , F ( t j ) ( z l , x l , y l ) ) : i , j n } ;

(IV)

d ( x l + 1 , w ) lim sup n d ( F ( t n ) ( x l , y l , z l ) , w ) , d ( y l + 1 , w ) lim sup n d ( F ( t n ) ( y l , z l , x l ) , w ) and d ( z l + 1 , w ) lim sup n d ( F ( t n ) ( z l , x l , y l ) , w ) w X .

Let

D l = lim sup n [ d ( x l + 1 , F ( t n ) ( x l , y l , z l ) ) + d ( y l + 1 , F ( t n ) ( y l , z l , x l ) ) + d ( z l + 1 , F ( t n ) ( z l , x l , y l ) ) ] and h = c ˆ k k ˜ < 1 .

Observe that for each i>j1, using (IV) we have

d ( F ( t i ) ( x l , y l , z l ) , F ( t j ) ( x l , y l , z l ) ) = d ( F ( t j ) ( x l , y l , z l ) , F ( t j ) F ( t i t j ) ( x l , y l , z l ) ) = d ( F ( t j ) ( x l , y l , z l ) , F ( t j ) ( F ( t i t j ) ( x l , y l , z l ) , F ( t i t j ) ( y l , z l , x l ) , F ( t i t j ) ( z l , x l , y l ) ) ) k ( t j ) 3 [ d ( x l , F ( t i t j ) ( x l , y l , z l ) ) + d ( y l , F ( t i t j ) ( y l , z l , x l ) ) + d ( z l , F ( t i t j ) ( z l , x l , y l ) ) ] k ( t j ) 3 lim sup n [ d ( F ( t n ) ( x l 1 , y l 1 , z l 1 ) , F ( t i t j ) ( x l , y l , z l ) ) + d ( F ( t n ) ( y l 1 , z l 1 , x l 1 ) , F ( t i t j ) ( y l , z l , x l ) ) + d ( F ( t n ) ( z l 1 , x l 1 , y l 1 ) , F ( t i t j ) ( z l , x l , y l ) ) ] .
(9)

By the asymptotic regularity of ={F(t):tG} on X×X×X, we see that

lim sup n [ d ( F ( t n ) ( x l 1 , y l 1 , z l 1 ) , F ( t n + t i t j ) ( x l 1 , y l 1 , z l 1 ) ) ] = 0 , lim sup n [ d ( F ( t n ) ( y l 1 , z l 1 , x l 1 ) , F ( t n + t i t j ) ( y l 1 , z l 1 , x l 1 ) ) ] = 0 and lim sup n [ d ( F ( t n ) ( z l 1 , x l 1 , y l 1 ) , F ( t n + t i t j ) ( z l 1 , x l 1 , y l 1 ) ) ] = 0 ,

which implies

lim sup n d ( F ( t n ) ( x l 1 , y l 1 , z l 1 ) , F ( t i t j ) ( x l , y l , z l ) ) lim sup n d ( F ( t n ) ( x l 1 , y l 1 , z l 1 ) , F ( t n + t i t j ) ( x l 1 , y l 1 , z l 1 ) ) + lim sup n d ( F ( t n + t i t j ) ( x l 1 , y l 1 , z l 1 ) , F ( t i t j ) ( x l , y l , z l ) ) lim sup n d ( F ( t i t j ) ( F ( t n ) ( x l 1 , y l 1 , z l 1 ) , F ( t n ) ( y l 1 , z l 1 , x l 1 ) , F ( t n ) ( z l 1 , x l 1 , y l 1 ) ) , F ( t i t j ) ( x l , y l , z l ) ) k ( t i t j ) 3 [ d ( F ( t n ) ( x l 1 , y l 1 , z l 1 ) , x l ) + d ( F ( t n ) ( y l 1 , z l 1 , x l 1 ) , y l ) + d ( F ( t n ) ( z l 1 , x l 1 , y l 1 ) , z l ) ] k ( t i t j ) 3 D l 1 .
(10)

Similarly, one can show that

lim sup n d ( F ( t n ) ( y l 1 , z l 1 , x l 1 ) , F ( t i t j ) ( y l , z l , x l ) ) k ( t i t j ) 3 D l 1 ,
(11)
lim sup n d ( F ( t n ) ( z l 1 , x l 1 , y l 1 ) , F ( t i t j ) ( z l , x l , y l ) ) k ( t i t j ) 3 D l 1 .
(12)

Then it follows from (10), (11) and (12) that for each i>j1,

d ( F ( t i ) ( x l , y l , z l ) , F ( t j ) ( x l , y l , z l ) ) k ( t j ) 3 k( t i t j ) D l 1 ,

which implies that for each n1,

sup { d ( F ( t i ) ( x l , y l , z l ) , F ( t j ) ( x l , y l , z l ) ) : i , j n } = sup { d ( F ( t i ) ( x l , y l , z l ) , F ( t j ) ( x l , y l , z l ) ) : i > j n } sup { k ( t j ) 3 k ( t i t j ) D l 1 : i > j n } D l 1 3 sup { k ( t j ) : j n } sup { k ( t i t j ) : i > j n } D l 1 3 sup { k ( t j ) : j n } sup { k ( t ) : G t t n + 1 t n } .
(13)

Hence, by using (III) and (9), we have

D l = lim sup n [ d ( x l + 1 , F ( t n ) ( x l , y l , z l ) ) + d ( y l + 1 , F ( t n ) ( y l , z l , x l ) ) + d ( z l + 1 , F ( t n ) ( z l , x l , y l ) ) ] c ˆ [ A ( { F ( t n ) ( x l , y l , z l ) } ) + B ( { F ( t n ) ( y l , z l , x l ) } ) + C ( { F ( t n ) ( z l , x l , y l ) } ) ] c ˆ lim sup n { d ( F ( t i ) ( x l , y l , z l ) , F ( t j ) ( x l , y l , z l ) ) + d ( F ( t i ) ( y l , z l , x l ) , F ( t j ) ( y l , z l , x l ) ) + d ( F ( t i ) ( z l , x l , y l ) , F ( t j ) ( z l , x l , y l ) ) : i , j n } c ˆ D l 1 lim sup n k ( t n ) lim sup n { k ( t ) : G t t n + 1 t n } c ˆ k k ˜ D l 1 h D l 1 h 2 D l 2 = h l D 0 .
(14)

Hence, by the asymptotic regularity of on X×X×X, we have, for each integer n1,

d ( x l + 1 , x l ) d ( x l + 1 , F ( t n ) ( x l , y l , z l ) ) + d ( x l , F ( t n ) ( x l , y l , z l ) ) d ( x l + 1 , F ( t n ) ( x l , y l , z l ) ) + lim sup m d ( F ( t m ) ( x l 1 , y l 1 , z l 1 ) , F ( t n ) ( x l , y l , z l ) ) d ( x l + 1 , F ( t n ) ( x l , y l , z l ) ) + lim sup m d ( F ( t m ) ( x l 1 , y l 1 , z l 1 ) , F ( t m + t n ) ( x l 1 , y l 1 , z l 1 ) ) + lim sup m d ( F ( t m + t n ) ( x l 1 , y l 1 , z l 1 ) , F ( t n ) ( x l , y l , z l ) ) d ( x l + 1 , F ( t n ) ( x l , y l , z l ) ) + k ( t n ) 3 lim sup m [ d ( x l , F ( t m ) ( x l 1 , y l 1 , z l 1 ) ) + d ( y l , F ( t m ) ( y l 1 , z l 1 , x l 1 ) ) + d ( z l , F ( t m ) ( z l 1 , x l 1 , y l 1 ) ) ] d ( x l + 1 , F ( t n ) ( x l , y l , z l ) ) + k ( t n ) 3 D l 1 ,
(15)

which implies

d ( x l + 1 , x l ) lim sup n [ d ( x l + 1 , F ( t n ) ( x l , y l , z l ) ) + d ( y l + 1 , F ( t n ) ( y l , z l , x l ) ) + d ( z l + 1 , F ( t n ) ( z l , x l , y l ) ) ] + 1 3 D l 1 lim sup n k ( t n ) D l + 1 3 k D l 1 .
(16)

It follows from (14) that

d( x l + 1 , x l ) D l + 1 3 k D l 1 ( h l + 1 3 k h l 1 ) D 0 h l 1 2 3 D 0 max{h,k}.

Similarly, one can deduce that

d( y l + 1 , y l ) h l 1 2 3 D 0 max{h,k},
(17)
d( z l + 1 , z l ) h l 1 2 3 D 0 max{h,k}.
(18)

Thus, we have l = 0 d( x l + 1 , x l ) 2 3 D 0 max{h,k} l = 0 h l 1 <, l = 0 d( y l + 1 , y l )< and l = 0 d( z l + 1 , z l )<. Consequently, { x l }, { y l } and { z l } are Cauchy and hence convergent as X is complete. Let x= lim l x l , y= lim l y l and z= lim l z l . Then we have

lim l d ( F ( s ) ( x l , y l , z l ) , F ( s ) ( x , y , z ) ) = 0 , lim l d ( F ( s ) ( y l , z l , x l ) , F ( s ) ( y , z , x ) ) = 0 , lim l d ( F ( s ) ( z l , x l , y l ) , F ( s ) ( z , x , y ) ) = 0 .

On the other hand, from (15) we have actually proven the following inequalities:

lim sup n d ( F ( t n ) ( x l , y l , z l ) , x l ) k ( t n ) 3 D l 1 1 3 k ( t n ) h l 1 D 0 , lim sup n d ( F ( t n ) ( y l , z l , x l ) , y l ) 1 3 k ( t n ) h l 1 D 0 , lim sup n d ( F ( t n ) ( z l , x l , y l ) , z l ) 1 3 k ( t n ) h l 1 D 0 .

Since lim n k( t n )=k, it follows that

lim sup n d ( x , F ( t n ) ( x , y , z ) ) = d ( x , x l ) + lim sup n d ( x l , F ( t n ) ( x l , y l , z l ) ) + lim sup n d ( F ( t n ) ( x l , y l , z l ) , F ( t n ) ( x , y , z l ) ) d ( x , x l ) + 1 3 lim sup n k ( t n ) h l 1 D 0 d ( x , x l ) + 1 3 k h l 1 D 0 0 , l .

Similarly, one can obtain that

lim sup n d ( y , F ( t n ) ( y , z , x ) ) d ( y , y l ) + 1 3 k h l 1 D 0 0 , l , lim sup n d ( z , F ( t n ) ( z , x , y ) ) d ( z , z l ) + 1 3 k h l 1 D 0 0 , l ,

i.e., lim n d(x,F( t n )(x,y,z))=0, lim n d(y,F( t n )(y,z,x))=0 and lim n d(z,F( t n )(z,x,y))=0. Hence, for each sG, by the continuity of F(s), we deduce

d ( x , F ( s ) ( x , y , z ) ) = lim l d ( x l , F ( s ) ( x l , y l , z l ) ) lim l lim sup n d ( x l , F ( t n + s ) ( x l 1 , y l 1 , z l 1 ) ) lim l lim sup n d ( x l , F ( t n ) ( x l 1 , y l 1 , z l 1 ) ) + lim l lim sup n d ( F ( t n ) ( x l 1 , y l 1 , z l 1 ) , F ( t n + s ) ( x l 1 , y l 1 , z l 1 ) ) lim l D l 1 lim l h l 1 D 0 = 0 .

Similarly, we get that

d ( y , F ( s ) ( y , z , x ) ) lim l D l 1 lim l h l 1 D 0 = 0 , d ( z , F ( s ) ( z , x , y ) ) lim l D l 1 lim l h l 1 D 0 = 0 .

Then we have d(x,F(s)(x,y,z))=0, d(y,F(s)(y,z,x))=0 and d(z,F(s)(z,x,y))=0, i.e., F(s)(x,y,z)=x, F(s)(y,z,x)=y and F(s)(z,x,y)=z for each sG. □

From Remark 2.1 and Theorem 3.1, we immediately obtain the following results.

Corollary 3.1 Let (X,d) be a complete bounded metric space with property (P) and uniform normal structure, and let ={F(t):tG} be an asymptotically regular semigroup on X×X×X satisfying

( lim inf t k ( t ) ) ( lim sup t k ( t ) ) < N ¯ ( X ) 1 2 .

Then there exist some x,y,zX such that F(s)(x,y,z)=x, F(s)(y,z,x)=y and F(s)(z,x,y)=z for all tG.

Remark 3.1 It will be interesting to establish Theorem 3.1 for representative ψ={F(s):sS} on X×X×X of a left amenable semigroup S as a complete bounded metric space with uniform normal structure as in Holmes and Lau [16], Lau and Takahashi [17] and Lau [18].

References

  1. Boyd DW, Wong JS: On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20: 458–464. 10.1090/S0002-9939-1969-0239559-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Casini E, Maluta E: Fixed points of uniformly Lipschitzian mappings in metric spaces with uniform normal structure. Nonlinear Anal. 1985, 9: 103–108. 10.1016/0362-546X(85)90055-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Ciric LB: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45: 267–273.

    Article  MathSciNet  MATH  Google Scholar 

  4. Dorić D, Kadelburg Z, Radenović S: Coupled fixed point results for mappings without mixed monotone property. Appl. Math. Lett. 2012. 10.1016/j.aml.2012.02.022

    Google Scholar 

  5. Dunford N, Schwartz JT: Linear Operators. Interscience, New York; 1958.

    MATH  Google Scholar 

  6. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  MATH  Google Scholar 

  7. Imdad M, Soliman AH, Choudhury BS, Das P: On n -tupled coincidence point results in metric spaces. J. Oper. 2013., 2013: Article ID 532867

    Google Scholar 

  8. Lakshmikantham V, Ciric L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MathSciNet  MATH  Google Scholar 

  9. Sabetghadam F, Masiha HP, Sanatpour AH: Some coupled fixed point theorems in cone metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 125426

    Google Scholar 

  10. Samet B, Vetro C: Coupled fixed point, F -invariant set fixed point of N -order. Ann. Funct. Anal. 2010, 1: 46–56.

    Article  MathSciNet  MATH  Google Scholar 

  11. Khamsi MA: On metric spaces with uniform normal structure. Proc. Am. Math. Soc. 1989, 106: 723–726. 10.1090/S0002-9939-1989-0972234-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Maluta E: Uniformly normal structure and related coefficients. Pac. J. Math. 1984, 111: 357–369. 10.2140/pjm.1984.111.357

    Article  MathSciNet  MATH  Google Scholar 

  13. Lim T-C, Xu H-K: Uniformly Lipschitzian mappings in metric spaces with uniform normal structure. Nonlinear Anal., Theory Methods Appl. 1995, 25(11):1231–1235. 10.1016/0362-546X(94)00243-B

    Article  MathSciNet  MATH  Google Scholar 

  14. Yao J-C, Zeng L-C: Fixed point theorem for asymptotically regular semigroups in metric spaces with uniform normal structure. J. Nonlinear Convex Anal. 2007, 8(1):153–163.

    MathSciNet  MATH  Google Scholar 

  15. Imdad M, Soliman AH: On uniformly generalized Lipschitzian mappings. Fixed Point Theory Appl. 2010., 2010: Article ID 692401

    Google Scholar 

  16. Holmes RD, Lau AT-M: Nonexpansive actions of topological semigroups and fixed points. J. Lond. Math. Soc. 1972, 5: 330–336.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lau AT-M, Takahashi W: Invariant submeans and semigroups of nonexpansive mappings on Banach spaces with normal structure. J. Funct. Anal. 1996, 142(1):79–88. 10.1006/jfan.1996.0144

    Article  MathSciNet  MATH  Google Scholar 

  18. Lau AT-M: Invariant means on almost periodic functions and fixed point properties. Rocky Mt. J. Math. 1973, 3(1):69–75. 10.1216/RMJ-1973-3-1-69

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Khaled university, under project No. (KKU_S028_33). Also, the author is grateful to an anonymous referee for his fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed H Soliman.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Soliman, A.H. A tripled fixed point theorem for semigroups of Lipschitzian mappings on metric spaces with uniform normal structure. Fixed Point Theory Appl 2013, 346 (2013). https://doi.org/10.1186/1687-1812-2013-346

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-346

Keywords