He JH: Variational iteration method - a kind of nonlinear analytical technique: some examples. Int. J. Non-Linear Mech. 1999, 34: 699–708. 10.1016/S0020-7462(98)00048-1
Article
Google Scholar
He JH: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 2006, 20: 1141–1199. 10.1142/S0217979206033796
Article
Google Scholar
He JH, Wu XH: Variational iteration method: new development and applications. Comput. Math. Appl. 2007, 54: 881–894. 10.1016/j.camwa.2006.12.083
Article
MathSciNet
Google Scholar
He JH: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 1998, 167(1–2):57–68. 10.1016/S0045-7825(98)00108-X
Article
Google Scholar
He JH: Comment on ‘Variational iteration method for fractional calculus using He’s polynomials’. Abstr. Appl. Anal. 2012., 2012: Article ID 964974
Google Scholar
He JH: Asymptotic methods for solitary solutions and compactons. Abstr. Appl. Anal. 2012., 2012: Article ID 916793
Google Scholar
Barari A, Ghotbi AR, Farrokhzad F, Ganji DD: Variational iteration method and homotopy-perturbation method for solving different types of wave equations. J. Appl. Sci. 2008, 8: 120–126.
Article
Google Scholar
Wazwaz AM: The variational iteration method: a reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math. Appl. 2007, 54: 926–932. 10.1016/j.camwa.2006.12.038
Article
MathSciNet
Google Scholar
Momani S, Abusaad S: Application of He’s variational-iteration method to Helmholtz equation. Chaos Solitons Fractals 2005, 27: 1119–1123.
Article
Google Scholar
Abdou MA, Soliman AA: Variational iteration method for solving Burgers’ and coupled Burgers’ equation. J. Comput. Appl. Math. 2005, 181: 245–251. 10.1016/j.cam.2004.11.032
Article
MathSciNet
Google Scholar
Abbasbandy S: Numerical method for non-linear wave and diffusion equations by the variational iteration method. Int. J. Numer. Methods Eng. 2008, 73: 1836–1843. 10.1002/nme.2150
Article
MathSciNet
Google Scholar
Molliq Y, Noorani RMS, Hashim MI: Variational iteration method for fractional heat-and wave-like equations. Nonlinear Anal., Real World Appl. 2009, 10: 1854–1869. 10.1016/j.nonrwa.2008.02.026
Article
MathSciNet
Google Scholar
Hemeda AA: Variational iteration method for solving wave equation. Comput. Math. Appl. 2008, 56: 1948–1953. 10.1016/j.camwa.2008.04.010
Article
MathSciNet
Google Scholar
Batiha B, Noorani MSM, Hashim I: Application of variational iteration method to heat-and wave-like equations. Phys. Lett. A 2007, 369: 55–61. 10.1016/j.physleta.2007.04.069
Article
MathSciNet
Google Scholar
Biazar J, Ghazvini H: An analytical approximation to the solution of a wave equation by a variational iteration method. Appl. Math. Lett. 2008, 21: 780–785. 10.1016/j.aml.2007.08.004
Article
MathSciNet
Google Scholar
Wu GC, Lee EWM: Fractional variational iteration method and its application. Phys. Lett. A 2010, 374(25):2506–2509. 10.1016/j.physleta.2010.04.034
Article
MathSciNet
Google Scholar
He JH: A short remark on fractional variational iteration method. Phys. Lett. A 2011, 375(38):3362–3364. 10.1016/j.physleta.2011.07.033
Article
MathSciNet
Google Scholar
He JH: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 2005, 26: 695–700. 10.1016/j.chaos.2005.03.006
Article
Google Scholar
Jafari H, Momani S: Solving fractional diffusion and wave equations by modified homotopy perturbation method. Phys. Lett. A 2007, 370: 388–396. 10.1016/j.physleta.2007.05.118
Article
MathSciNet
Google Scholar
He JH, Wu XH: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 2006, 30: 700–708. 10.1016/j.chaos.2006.03.020
Article
MathSciNet
Google Scholar
Zhang S: Application of Exp-function method to a KdV equation with variable coefficients. Phys. Lett. A 2007, 365: 448–453. 10.1016/j.physleta.2007.02.004
Article
MathSciNet
Google Scholar
Odibat ZM, Momani S: Approximate solutions for boundary value problems of time-fractional wave equation. Appl. Math. Comput. 2006, 181: 767–774. 10.1016/j.amc.2006.02.004
Article
MathSciNet
Google Scholar
Datta BK: A new approach to the wave equation - an application of the decomposition method. J. Math. Anal. Appl. 1989, 142: 6–12. 10.1016/0022-247X(89)90158-3
Article
MathSciNet
Google Scholar
Momani S: Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Appl. Math. Comput. 2005, 165: 459–472. 10.1016/j.amc.2004.06.025
Article
MathSciNet
Google Scholar
Liao SJ: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 2009, 4: 983–997.
Article
Google Scholar
Jafari H, Seifi S: Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 2009, 14: 2006–2012. 10.1016/j.cnsns.2008.05.008
Article
MathSciNet
Google Scholar
Baleanu D, Diethelm K, Scalas E, Trujillo JJ Series on Complexity, Nonlinearity and Chaos. In Fractional Calculus Models and Numerical Methods. World Scientific, Boston; 2012.
Google Scholar
Ord GN: Fractal space-time: a geometric analogue of relativistic quantum mechanics. J. Phys. A 1999, 16: 1869.
Article
MathSciNet
Google Scholar
Marek-Crnjac L: Polypseudologarithms and their applications to quantum ideal gas and the quantum wave collapse. Fractal Spacetime Noncommut. Geom. Quantum High Energy Phys. 2012, 2: 15–21.
Google Scholar
Hilfer R: Exact solutions for a class of fractal time random walks. Fractals 1995, 3: 211–216. 10.1142/S0218348X95000163
Article
MathSciNet
Google Scholar
Vrobel S: Fractal time and fractal spacetime: phenomenology vs ontology. Fractal Spacetime Noncommut. Geom. Quantum High Energy Phys. 2011, 1: 41–44.
Google Scholar
Yang XJ: Advanced Local Fractional Calculus and Its Applications. World Science Publisher, New York; 2012.
Google Scholar
Yang XJ: Local Fractional Functional Analysis and Its Applications. Asian Academic Publisher Limited, Hong Kong; 2011.
Google Scholar
Yang XJ: Local fractional integral transforms. Prog. Nonlinear Sci. 2011, 4: 1–225.
Google Scholar
Hu MS, Agarwal RP, Yang XJ: Local fractional Fourier series with application to wave equation in fractal vibrating string. Abstr. Appl. Anal. 2012., 2012: Article ID 567401
Google Scholar
Yang, XJ, Baleanu, D, Zhong, WP: Approximation solution to diffusion equation on Cantor time-space. Proc. Rom. Acad., Ser. A (2013, in press)
Carpinteri A, Sapora A: Diffusion problems in fractal media defined on Cantor sets. Z. Angew. Math. Mech. 2010, 90: 203–210. 10.1002/zamm.200900376
Article
Google Scholar
Yang XJ, Baleanu D: Fractal heat conduction problem solved by local fractional variation iteration method. Therm. Sci. 2012. doi:10.2298/TSCI121124216Y
Google Scholar
He JH: A new fractal derivation. Therm. Sci. 2011, 15: 145–147.
Google Scholar
Chen W: Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 2006, 28: 923–929. 10.1016/j.chaos.2005.08.199
Article
Google Scholar
Kolwankar KM, Gangal AD: Local fractional Fokker-Planck equation. Phys. Rev. Lett. 1998, 80: 214–217. 10.1103/PhysRevLett.80.214
Article
MathSciNet
Google Scholar
Machado JAT, Kiryakova V, Mainardi F: A poster about the recent history of fractional calculus. Fract. Calc. Appl. Anal. 2010, 13(3):329–334.
MathSciNet
Google Scholar
Baleanu D, Guvenç ZB, Machado JAT: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Berlin; 2009.
Google Scholar
Baleanu D, Machado JAT, Luo ACJ: Fractional Dynamics and Control. Springer, New York; 2011.
Google Scholar
Kilbas AA, Srivastava HM, Trujillo JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam; 2006.
Google Scholar
Sabatier J, Agrawal OP, Machado JAT: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, New York; 2007.
Book
Google Scholar
Podlubny I: Fractional Differential Equations. Academic Press, New York; 1999.
Google Scholar
Mainardi F: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London; 2010.
Book
Google Scholar
Yang XJ: Local fractional variational iteration method and its algorithms. Adv. Comput. Math. Appl. 2012, 1: 139–145.
Google Scholar
Yang YJ, Baleanu D, Yang XJ: A local fractional variational iteration method for Laplace equation within local fractional operators. Abstr. Appl. Anal. 2013., 2013: Article ID 202650
Google Scholar
Yang XJ: The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems. Prespacetime J. 2012, 3(9):913–923.
Google Scholar
Hu MS, Baleanu D, Yang XJ: One-phase problems for discontinuous heat transfer in fractal media. Math. Probl. Eng. 2013., 2013: Article ID 358473
Google Scholar