Skip to main content

Ishikawa iteration process for asymptotic pointwise nonexpansive mappings in metric spaces

Abstract

Let (M,d) be a complete 2-uniformly convex metric space, C be a nonempty, bounded, closed and convex subset of M, and T be an asymptotic pointwise nonexpansive self mapping on C. In this paper, we define the modified Ishikawa iteration process in M, i.e.,

x n + 1 = t n T n ( s n T n ( x n ) ⊕ ( 1 − s n ) ( x n ) ) ⊕(1− t n ) x n

and we investigate when the Ishikawa iteration process converges weakly to a fixed point of T.

MSC:06F30, 46B20, 47E10.

1 Introduction

The class of asymptotic nonexpansive mapping have been extensively studied in fixed point theory since the publication of the fundamental paper [1]. Kirk and Xu [2] studied the asymptotic nonexpansive mapping in uniformly convex Banach spaces. Their result has been generalized by Hussain and Khamsi [3] to metric spaces. Khamsi and Kozlowski [4] extended their result to modular function spaces. In almost all papers, authors do not describe any algorithm for constructing a fixed point for the asymptotic nonexpansive mapping. Ishikawa [5] and Mann [6] iterations are two of the most popular methods to check that these two iterations were originally developed to provide ways of computing fixed points for which repeated function iteration failed to converge. Espinola et al. [7] examined the convergence of iterates for asymptotic pointwise contractions in uniformly convex metric spaces. Kozlowski [8] proved convergence to a fixed point of some iterative algorithms applied to asymptotic pointwise mappings in Banach spaces. In [9], the authors discussed the convergence of these iterations in modular function spaces. In a recent paper [10], the authors investigate the existence of a fixed point of asymptotic pointwise nonexpansive mappings and study the convergence of the modified Mann iteration in hyperbolic metric spaces. It is well known that the iteration processes for generalized nonexpansive mappings have been successfully used to develop efficient and powerful numerical methods for solving various nonlinear equations and variational problems. The purpose of this paper is to discuss the behavior of the modified Ishikawa iteration process associated with asymptotic pointwise mappings, defined in hyperbolic metric spaces.

For more on metric fixed point theory, the reader may consult the book of Khamsi and Kirk [11].

2 Basic definitions and results

Throughout this paper, (M,d) denotes a metric space. Let us assume that there exists a family ℱ of metric segments such that any two points x, y in M are endpoints of a unique metric segment [x,y]∈F ([x,y] is an isometric image of the real line interval [0,d(x,y)]). For any β∈[0,1], there exists a unique z∈[x,y] such that

d(x,z)=(1−β)d(x,y)andd(z,y)=βd(x,y)

and we will write

z=βx⊕(1−β)y.

These metric spaces are usually called convex metric spaces [12]. A hyperbolic metric space is a convex metric space, which satisfies the following condition:

d ( α p ⊕ ( 1 − α ) x , α q ⊕ ( 1 − α ) y ) ≤αd(p,q)+(1−α)d(x,y)

for all p, q, x, y in M, and α∈[0,1] (see [13]).

Obviously, the class of hyperbolic spaces includes convex subsets of normed linear spaces. As nonlinear examples, one can consider the CAT(0) spaces [14–16] (see Example 2.1) as well as the Hilbert open unit ball equipped with the hyperbolic metric [17].

Definition 2.1 [17]

Let (M,d) be a hyperbolic metric space. We say that M is uniformly convex if for any a∈M, for every r>0, and for each ϵ>0

δ(r,ε)=inf { 1 − 1 r d ( 1 2 x ⊕ 1 2 y , a ) ; d ( x , a ) ≤ r , d ( y , a ) ≤ r , d ( x , y ) ≥ r ε } >0.

Throughout this work, M is a hyperbolic metric space.

The following theorem is a metric version of the parallelogram identity.

Theorem 2.1 [18]

Let (M,d) be uniformly convex hyperbolic metric space. Fix a∈M. For each r>0 and for each ε>0, denote

Ψ(r,ε)=inf { 1 2 d 2 ( a , x ) + 1 2 d 2 ( a , y ) − d 2 ( a , 1 2 x ⊕ 1 2 y ) } ,

where the infimum is taken over all x,y∈M such that d(a,x)≤r, d(a,y)≤r, and d(x,y)≥rε. Then Ψ(r,ε)>0 for any r>0 and for each ε>0. Moreover, for a fixed r>0, we have

  1. (i)

    Ψ(r,0)=0;

  2. (ii)

    Ψ(r,ε) is a nondecreasing function of ε;

  3. (iii)

    if lim n → ∞ Ψ(r, t n )=0, then lim n → ∞ t n =0.

Khamsi and Khan [18] used the above function to introduce the nonlinear version of the p-uniform convexity in Banach spaces ([19], see also [20], p.310).

Definition 2.2 We say that (M,d) is 2-uniformly convex if

c M =inf { Ψ ( r , ε ) r 2 ε 2 ; r > 0 , ε > 0 } >0.

From the definition of c M , we obtain the following inequality:

d 2 ( a , 1 2 x ⊕ 1 2 y ) + c M d 2 (x,y)≤ 1 2 d 2 (a,x)+ 1 2 d 2 (a,y),
(2.1)

for any a∈M and x,y∈M.

Example 2.1 Let (X,d) be a metric space. A geodesic space is a metric space such that every x,y∈X can be joined by a geodesic map c:[0,l]→X were c(0)=x, c(l)=y, and d(c(t),c( t ′ ))=|t− t ′ | for all t, t ′ ∈[0,l]. Moreover, c is an isometry and d(x,y)=l. X is said to be uniquely geodesic if for every x,y∈X there is exactly one geodesic joining them, which will be denoted by [x,y], and called the segment joining x to y.

A geodesic triangle Δ( x 1 , x 2 , x 3 ) in a geodesic metric space (X,d) consists of three points x 1 , x 2 , x 3 in X (the vertices of Δ) and three geodesic segments between each pair of vertices (the edges of Δ). A comparison triangle for Δ( x 1 , x 2 , x 3 ) in (X,d) is a triangle Δ ¯ ( x 1 , x 2 , x 3 ):=Δ( x ¯ 1 , x ¯ 2 , x ¯ 3 ) in R 2 such that d R 2 ( x ¯ i , x ¯ j )=d( x i , x j ) for i,j∈{1,2,3}. Such a triangle always exists (see [21]).

A geodesic metric space is a CAT(0) space if every geodesic triangle satisfies the following CAT(0) inequality:

d(x,y)≤d( x ¯ , y ¯ )

for all x,y∈Δ and all comparison points x ¯ , y ¯ ∈ Δ ¯ . If x, y 1 , y 2 are points of a CAT(0) space and y 0 = y 1 ⊕ y 2 2 is the midpoint of the segment [ y 1 , y 2 ], then the CAT(0) inequality implies:

d 2 (x, y 0 )≤ 1 2 d 2 (x, y 1 )+ 1 2 d 2 (x, y 2 )− 1 4 d 2 ( y 1 , y 2 ),

which is the (CN) inequality of Bruhat and Tits [22]. As for the Hilbert space, the (CN) inequality implies that CAT(0) spaces are uniformly convex with

δ(r,ε)=1− 1 − ε 2 4 .

One may also find the modulus of uniform convexity via similar triangles. The (CN) inequality also implies that

Ψ(r,ε)= r 2 ε 2 4 .

This clearly implies that any CAT(0) space is 2-uniformly convex with c M = 1 4 .

The following inequality plays an important role in the study of the convergence of Ishikawa iterations.

Theorem 2.2 [10]

Assume that (M,d) is 2-uniformly convex. Then for any α∈(0,1), there exists C M >0 such that

d 2 ( a , α x ⊕ ( 1 − α ) y ) + C M min ( α 2 , ( 1 − α ) 2 ) d 2 (x,y)≤α d 2 (a,x)+(1−α) d 2 (a,y),

for any a,x,y∈M.

The following technical result is a generalization of Lemma 2.3 of [18].

Lemma 2.1 Let (M,d) be 2-uniformly convex. Assume that { t n }⊂[0,1] be bounded away from 0 and 1, i.e., there exists two real numbers α, β such that 0<α≤ t n ≤β<1 and there exists r≥0 such that

lim sup n → ∞ d( u n ,a)≤r, lim sup n → ∞ d( v n ,a)≤rand lim n → ∞ d ( a , t n u n ⊕ ( 1 − t n ) v n ) =r.

Then

lim n → ∞ d( u n , v n )=0.

Proof By replacing α by t n , x by u n and y by v n in Theorem 2.2, we get

C M min ( t n 2 , ( 1 − t n ) 2 ) d 2 ( u n , v n ) ≤ t n d 2 ( a , u n ) + ( 1 − t n ) d 2 ( a , v n ) − d 2 ( a , t n u n ⊕ ( 1 − t n ) v n ) ,

for any a, u n , v n ∈M. Let U be a nontrivial ultrafilter over ℕ. Then lim U t n =t, t∈[α,β]. Therefore,

C M min ( lim U t n 2 , lim U ( 1 − t n ) 2 ) lim U d 2 ( u n , v n ) ≤ lim U t n lim U d 2 ( a , u n ) + lim U ( 1 − t n ) lim U d 2 ( a , v n ) − lim U d 2 ( a , t n u n ⊕ ( 1 − t n ) v n ) .

Hence,

C M min ( t 2 , ( 1 − t ) 2 ) lim U d 2 ( u n , v n )≤t r 2 +(1−t) r 2 − lim U ( t n d 2 ( a , u n ) + ( 1 − t n ) d 2 ( a , v n ) ) ,

which implies

C M min ( t 2 , ( 1 − t ) 2 ) lim U d 2 ( u n , v n )=0.

But C M >0, min( t 2 , ( 1 − t ) 2 )≠0. Since t is bounded away from 0 and 1, then

lim U d( u n , v n )=0.

Since U was an arbitrary nontrivial ultrafilter over â„•, we get

lim n → ∞ d( u n , v n )=0.

 □

Recall that τ:M→ R + is called a type if there exists { x n } in M such that

τ(x)= lim sup n → ∞ d(x, x n ).

Theorem 2.3 [18]

Assume that (M,d) is complete and uniformly convex. Let C be any nonempty closed, bounded and convex subset of M. Let Ï„ be a type defined on C. Then any minimizing sequence of Ï„ is convergent. Its limit is independent of the minimizing sequence.

In fact, if M is 2-uniformly convex, and τ is a type defined on a nonempty closed, bounded and convex subset C of M, then there exists a unique x 0 ∈C such that

τ 2 ( x 0 )+2 c M d 2 ( x 0 ,x)≤ τ 2 (x),
(2.2)

for any x∈C. In this inequality, one may find an analogy with the Opial property used in the study of the fixed point property in Banach and metric spaces.

Definition 2.3 [23]

Let C be a nonempty subset of (M,d). A self mapping T on C is said to be asymptotic pointwise nonexpansive if for any x∈C, there exists a sequence { k n (x)}⊂[0,∞) such that

d ( T n ( x ) , T n ( y ) ) ≤ k n (x)d(x,y),

for any y∈C, and lim n → ∞ k n (x)=1. A point c∈C is called a fixed point of T if T(c)=c. The set of all fixed points of T is denoted by Fix(T).

Let x∈C. Set K n (x)=max{ k n (x),1}. Then we have K n (x)≥1, lim n → ∞ K n (x)=1, and d( T n (x), T n (y))≤ K n (x)d(x,y) for all y in C, and n≥1. In other words, in the above definition, we will always assume K n (x)≥1 for all n≥1, and x∈C.

In [10], the authors gave the following existence fixed point theorem for asymptotic pointwise nonexpansive mappings in hyperbolic metric spaces.

Theorem 2.4 Let (M,d) be a complete hyperbolic metric space which is 2-uniformly convex. Let C be a nonempty, closed, convex and bounded subset of M. Let T be an asymptotic pointwise nonexpansive self mapping on C. Then T has a fixed point in C. Moreover, the fixed point set Fix(T) is convex.

3 Ishikawa iteration process

In this section, we define and prove the weak convergence theorem of the modified Ishikawa iteration process for asymptotic pointwise nonexpansive mappings in a complete hyperbolic 2-uniformly convex metric space (M,d).

Let C be a nonempty, closed, convex and bounded subset of a complete hyperbolic 2-uniformly convex metric space (M,d). Let T be an asymptotic pointwise nonexpansive self mapping on C. Let { t n }⊂[0,1] be bounded away from 0 and 1 and { s n }⊂[0,1]. The modified Ishikawa iteration process is defined by

x n + 1 = t n T n ( s n T n ( x n ) ⊕ ( 1 − s n ) ( x n ) ) ⊕(1− t n ) x n ,

for any n≥1, where x 1 ∈C is a fixed arbitrary point, see (cf. [24] and [25]).

In order to prove our main result, the following lemmas are needed.

Lemma 3.1 Let C be a nonempty, closed, convex and bounded subset of a complete hyperbolic 2-uniformly convex metric space (M,d). Let T be an asymptotic pointwise nonexpansive self mapping on C. Assume that ∑ n = 1 ∞ ( k n (x)−1)<∞, for any x∈C, where { k n (x)} is as in Definition  2.3. Let { t n }⊂[0,1] be bounded away from 0 and 1 and { s n }⊂[0,1] in the modified Ishikawa iteration process

x n + 1 = t n T n ( s n T n ( x n ) ⊕ ( 1 − s n ) ( x n ) ) ⊕(1− t n ) x n ,

where n≥1 and x 1 ∈C is a fixed arbitrary point. Then for any ω∈Fix(T), lim n → ∞ d( x n ,ω) exists.

Proof

d ( x n + 1 , ω ) ≤ t n d ( T n ( s n T n ( x n ) ⊕ ( 1 − s n ) x n ) , ω ) + ( 1 − t n ) d ( x n , ω ) = t n d ( T n ( s n T n x n ⊕ ( 1 − s n ) x n ) , T n ω ) + ( 1 − t n ) d ( x n , ω ) ≤ t n k n ( ω ) d ( s n T n ( x n ) ⊕ ( 1 − s n ) x n , ω ) + ( 1 − t n ) d ( x n , ω ) ≤ t n k n ( ω ) [ s n d ( T n ( x n ) , ω ) + ( 1 − s n ) d ( x n , ω ) ] + ( 1 − t n ) d ( x n , ω ) ≤ t n k n ( ω ) [ s n k n ( ω ) d ( x n , ω ) + ( 1 − s n ) d ( x n , ω ) ] + ( 1 − t n ) d ( x n , ω ) ≤ [ t n s n k n 2 ( ω ) + ( 1 − s n ) t n k n ( ω ) + ( 1 − t n ) ] d ( x n , ω ) = [ t n s n k n ( ω ) ( k n ( ω ) − 1 ) + t n k n ( ω ) + ( 1 − t n ) ] d ( x n , ω ) = [ t n s n k n ( ω ) ( k n ( ω ) − 1 ) + t n ( k n ( ω ) − 1 ) + 1 ] d ( x n , ω ) = [ t n s n k n ( ω ) ( k n ( ω ) − 1 ) + t n ( k n ( ω ) − 1 ) ] d ( x n , ω ) + d ( x n , ω ) .

Hence,

d ( x n + 1 , ω ) ≤ [ k n ( ω ) ( k n ( ω ) − 1 ) + ( k n ( ω ) − 1 ) ] d ( x n , ω ) + d ( x n , ω ) = ( k n ( ω ) + 1 ) ( k n ( ω ) − 1 ) d ( x n , ω ) + d ( x n , ω ) = ( k n 2 ( ω ) − 1 ) d ( x n , ω ) + d ( x n , ω ) .

Now let δ(C)=sup{d( c 1 , c 2 ); c 1 , c 2 ∈C} be the diameter of C. Hence,

d( x n + m ,ω)−d( x n ,ω)≤δ(C) ∑ i = 0 m − 1 ( k n + i 2 ( ω ) − 1 ) ,

for any n,m≥1. If we let m→∞, we get

lim sup m → ∞ d( x m ,ω)≤d( x n ,ω)+δ(C) ∑ i = n ∞ ( k i 2 ( ω ) − 1 ) ,

for any n≥1. Note that ∑ i = n ∞ ( k i 2 (ω)−1) is convergent. Indeed since lim n → ∞ k n (ω)=1, then ( k n (ω)) is bounded. Moreover,

k n 2 (ω)−1= ( k n ( ω ) − 1 ) ( k n ( ω ) + 1 ) ≤ ( k n ( ω ) − 1 ) ( sup n k n ( ω ) + 1 ) .

Since ∑ i = n ∞ ( k n (ω)−1) is convergent, then ∑ i = n ∞ k n 2 (ω)−1 is also convergent.

Next, we let n→∞ and get

lim sup m → ∞ d ( x m , ω ) ≤ lim inf n → ∞ d ( x n , ω ) + δ ( C ) lim inf n → ∞ ∑ i = n ∞ ( k i 2 ( ω ) − 1 ) = lim inf n → ∞ d ( x n , ω ) .

Since C is bounded, we conclude that lim sup m → ∞ d( x m ,ω)= lim inf n → ∞ d( x n ,ω), which implies the desired conclusion. □

Lemma 3.2 Let (M,d), C and T be as in Lemma  3.1. Assume that { t n }⊂[0,1] is bounded away from 0 and 1, and { s n }⊂[0,1] is bounded away from 1. Define

y n = s n T n ( x n )⊕(1− s n )( x n ),

for any n≥1. Then

lim n → ∞ d ( x n , T n ( y n ) ) =0.

Proof Using Theorem 2.4, T has a fixed point ω∈C. Lemma 3.1 implies that lim n → ∞ d( x n ,ω) exists. Set r= lim n → ∞ d( x n ,ω). Without loss of generality, we may assume r>0. Let U be a nontrivial ultrafilter over â„•. Then lim U t n =t∈[α,β] and lim U s n =s∈[0, β ∗ ], for any 0<α≤β<1 and β ∗ <1. Moreover, we have

lim U d ( T n ( y n ) , ω ) = lim U d ( T n ( y n ) , T n ( ω ) ) ≤ lim U k n ( ω ) d ( y n , ω ) ≤ lim U k n ( ω ) d ( s n T n ( x n ) ⊕ ( 1 − s n ) ( x n ) , ω ) ≤ lim U k n ( ω ) [ s n d ( T n ( x n ) , ω ) + ( 1 − s n ) d ( x n , ω ) ] ≤ lim U k n ( ω ) [ s n k n ( ω ) d ( x n , ω ) + ( 1 − s n ) d ( x n , ω ) ] ≤ lim U [ s n k n 2 ( ω ) d ( x n , ω ) + ( 1 − s n ) k n ( ω ) d ( x n , ω ) ] = lim U [ s n k n 2 ( ω ) + ( 1 − s n ) k n ( ω ) ] d ( x n , ω ) .

Therefore,

lim U d ( T n ( y n ) , ω ) ≤ ( s ⋅ 1 + ( 1 − s ) ⋅ 1 ) r=r.

Since U was an arbitrary nontrivial ultrafilter over â„•, we get

lim sup n → ∞ d ( T n ( y n ) , ω ) ≤r.

We have

x n + 1 = t n T n ( y n )⊕(1− t n )( x n ),

for any n≥1, and lim n → ∞ d( x n + 1 ,ω)=r. Using Lemma 2.1, with u n = T n ( y n ) and v n = x n , we obtain

lim n → ∞ d ( T n ( y n ) , x n ) =0.

 □

Lemma 3.3 Let (M,d), C, T, { t n } and { s n } be as in Lemma  3.2. Then

lim n → ∞ d ( x n , T n ( x n ) ) =0

provided that L= sup x ∈ C k n (x)<∞, i.e., T is uniformly Lipschitzian mapping on C.

Proof Using Theorem 2.4, T has a fixed point ω∈C. We have from Lemma 3.1

lim sup n → ∞ d( x n ,ω)= lim n → ∞ d( x n ,ω)=r.
(3.1)

Moreover, we have

d ( T n ( x n ) , ω ) =d ( T n ( x n ) , T n ( ω ) ) ≤ k n (ω)d( x n ,ω).
(3.2)

Hence,

lim sup n → ∞ d ( T n ( x n ) , ω ) ≤r.
(3.3)

Let us prove that lim n → ∞ d( y n ,ω)=r. Indeed we have

d ( T n ( y n ) , ω ) ≤ k n (ω)d( y n ,ω).
(3.4)

Also

d ( T n ( y n ) , ω ) ≤d ( T n ( y n ) , x n ) +d( x n ,ω).

Using Lemma 3.1 and Lemma 3.2, we get

lim sup n → ∞ d ( T n ( y n ) , ω ) ≤r.
(3.5)

Now use (3.1) and (3.5) to get

r = lim n → ∞ d ( T n ( y n ) , ω ) = lim inf n → ∞ d ( T n ( y n ) , ω ) ≤ lim inf n → ∞ k n ( ω ) d ( y n , ω ) ≤ lim inf n → ∞ d ( y n , ω ) ≤ lim sup n → ∞ d ( y n , ω ) ≤ r .

Therefore,

lim n → ∞ d( y n ,ω)= lim inf n → ∞ d( y n ,ω)= lim sup n → ∞ d( y n ,ω)=r.
(3.6)

Since M is 2-uniformly convex, (2.2) implies

d 2 ( s n T n ( x n ) ⊕ ( 1 − s n ) x n , ω ) + C M min ( s n 2 , ( 1 − s n ) 2 ) d 2 ( x n , T n ( x n ) ) ≤ s n d 2 ( T n ( x n ) , ω ) + ( 1 − s n ) d 2 ( x n , ω ) ,

which implies

d 2 ( y n , ω ) + C M min ( s n 2 , ( 1 − s n ) 2 ) d 2 ( x n , T n ( x n ) ) ≤ s n d 2 ( T n ( x n ) , ω ) + ( 1 − s n ) d 2 ( x n , ω ) .

Let U be a nontrivial ultrafilter over â„•. Then

lim U d 2 ( y n , ω ) + C M lim U min ( s n 2 , ( 1 − s n ) 2 ) lim U d 2 ( x n , T n ( x n ) ) ≤ lim U s n d 2 ( T n ( x n ) , ω ) + lim U ( 1 − s n ) d 2 ( x n , ω ) .

Using Lemma 3.1, relations (3.3) and (3.6), we get

r 2 + C M min ( s 2 , ( 1 − s ) 2 ) lim U d 2 ( x n , T n ( x n ) ) ≤s r 2 +(1−s) r 2 = r 2 ,

where C M >0 depends only on M. We have

min ( s 2 , ( 1 − s ) 2 ) lim U d 2 ( x n , T n ( x n ) ) ≤ r 2 − r 2 =0.

Therefore,

min ( s 2 , ( 1 − s ) 2 ) lim U d 2 ( x n , T n ( x n ) ) =0.

Now we distinguish two cases for s.

Case 1. If s≠0, then lim U d( x n , T n ( x n ))=0.

Case 2. If s=0, we have

d( y n , x n )=d ( s n T n ( x n ) ⊕ ( 1 − s n ) ( x n ) , x n ) = s n d ( T n ( x n ) , x n ) .

Since C is bounded, we get

lim U d( y n , x n )=s lim U d ( T n ( x n ) , x n ) =0.
(3.7)

But

d ( T n ( y n ) , T n ( x n ) ) ≤Ld( y n , x n ),

if used with (3.7), we will get

lim U d ( T n ( y n ) , T n ( x n ) ) ≤L lim U d( y n , x n )=0.
(3.8)

On the other hand, we have

d ( x n , T n ( x n ) ) ≤d ( x n , T n ( y n ) ) +d ( T n ( y n ) , T n ( x n ) ) .

Hence,

lim U d ( x n , T n ( x n ) ) ≤ lim U d ( x n , T n ( y n ) ) + lim U d ( T n ( y n ) , T n ( x n ) ) ,

which implies lim U d( x n , T n ( x n ))=0. Since U was an arbitrary nontrivial ultrafilter over â„•, we get

lim n → ∞ d ( x n , T n ( x n ) ) =0.

 □

Lemma 3.4 Let (M,d), C, T, { t n } and { s n } be as in Lemma  3.1. Assume L= sup x ∈ C k n (x)<∞, i.e., T is uniformly Lipschitzian mapping on C. Then

lim n → ∞ d ( x n , T ( x n ) ) =0.

Proof Note that

d ( x n , T ( x n ) ) ≤d ( x n , T n ( x n ) ) +d ( T n ( x n ) , T n ( x n ) ) ,

implies

d ( x n , T ( x n ) ) ≤d ( x n , T n ( x n ) ) +Ld ( T n − 1 ( x n ) , x n ) ,
(3.9)

for any n≥2. Since

d ( T n − 1 ( x n ) , x n ) ≤d ( T n − 1 ( x n ) , T n − 1 x n − 1 ) +d ( T n − 1 ( x n − 1 ) , x n ) ,

we get

d ( T n − 1 ( x n ) , x n ) ≤Ld( x n , x n − 1 )+d ( T n − 1 ( x n − 1 ) , x n ) ,
(3.10)

for any n≥2. Moreover, we have

d ( x n , x n − 1 ) = t n − 1 d ( T n − 1 ( s n − 1 T n − 1 ( x n − 1 ) ⊕ ( 1 − s n − 1 ) x n ) , x n − 1 ) + ( 1 − t n − 1 ) d ( x n − 1 , x n − 1 ) = t n − 1 d ( T n − 1 ( s n − 1 T n − 1 ( x n − 1 ) ⊕ ( 1 − s n − 1 ) x n − 1 ) , x n − 1 ) ,

which implies

d( x n , x n − 1 )= t n − 1 d ( T n − 1 ( y n − 1 ) , x n − 1 ) .
(3.11)

Also, we have

d ( T n − 1 ( x n − 1 ) , x n ) = t n − 1 d ( T n − 1 ( s n − 1 T n − 1 ( x n − 1 ) ⊕ ( 1 − s n − 1 ) x n − 1 ) , T n − 1 ( x n − 1 ) ) + ( 1 − t n − 1 ) d ( x n − 1 , T n − 1 ( x n − 1 ) ) = t n − 1 d ( T n − 1 ( y n − 1 ) , T n − 1 ( x n − 1 ) ) + ( 1 − t n − 1 ) d ( x n − 1 , T n − 1 ( x n − 1 ) ) ,

which implies

d ( T n − 1 ( x n − 1 ) , x n ) ≤L t n − 1 d( y n − 1 , x n − 1 )+(1− t n − 1 )d ( x n − 1 , T n − 1 ( x n − 1 ) ) .
(3.12)

Substituting (3.10), (3.11) and (3.12) into (3.9), we get

d ( x n , T ( x n ) ) ≤ d ( x n , T n ( x n ) ) + L [ L t n − 1 d ( T n − 1 ( y n − 1 ) , x n − 1 ) + L t n − 1 d ( y n − 1 , x n − 1 ) + ( 1 − t n − 1 ) d ( x n − 1 , T n − 1 ( x n − 1 ) ) ] .

Let U be an arbitrary nontrivial ultrafilter over â„•, then

lim U d ( x n , T ( x n ) ) ≤ lim U d ( x n , T n ( x n ) ) + L [ L lim U t n − 1 d ( T n − 1 ( y n − 1 ) , x n − 1 ) + L lim U t n − 1 d ( y n − 1 , x n − 1 ) + lim U ( 1 − t n − 1 ) d ( x n − 1 , T n − 1 ( x n − 1 ) ) ] .

Using Lemma 3.2 and (3.7), we get

lim U d ( x n , T ( x n ) ) ≤0+L [ L t ⋅ 0 + L t ⋅ 0 + ( 1 − t ) ⋅ 0 ] ,

which implies lim U d( x n ,T( x n ))=0, for any nontrivial ultrafilter U over â„•. Therefore, we have

lim n → ∞ d ( x n , T ( x n ) ) =0.

 □

We conclude this paper by a result connecting the sequence { x n } and Fix(T).

Theorem 3.1 Let (M,d), C, T, { t n } and { s n } be as in Lemma  3.1. Define the type Ï„(x)= lim sup n → ∞ d( x n ,x) on C. If ω is the minimum point of Ï„, i.e., Ï„(ω)=inf{Ï„(x);x∈C}, then T(ω)=ω.

Proof For any m,n≥1, we have

d 2 ( x n , ω ⊕ T m ( ω ) 2 ) + c M d 2 ( ω , T m ( ω ) ) ≤ 1 2 d 2 ( x n ,ω)+ 1 2 d 2 ( x n , T m ( ω ) ) .

If we let n→∞, we get

lim sup n → ∞ d 2 ( x n , ω ⊕ T m ( ω ) 2 ) + c M d 2 ( ω , T m ( ω ) ) ≤ 1 2 lim sup n → ∞ d 2 ( x n , ω ) + 1 2 lim sup n → ∞ d 2 ( x n , T m ( ω ) ) .

Using the definition of the type, we get

τ 2 ( ω ⊕ T m ( ω ) 2 ) + c M d 2 ( ω , T m ( ω ) ) ≤ 1 2 τ 2 (ω)+ 1 2 τ 2 ( T m ( ω ) ) ,

for any m≥1. Since

τ ( T m ( ω ) ) = lim sup n → ∞ d ( x n , T m ( ω ) ) = lim sup n → ∞ d ( T m ( x n ) , T m ( ω ) ) ,

we get

τ ( T m ( ω ) ) ≤ k m (ω) lim sup n → ∞ d( x n ,ω)= k m (ω)τ(ω),

for any m≥1. Since ω is the minimum point of τ, we get

τ(ω)≤τ ( ω ⊕ T m ( ω ) 2 ) .

Hence,

τ 2 (ω)+ c M d 2 ( ω , T m ( ω ) ) ≤ 1 2 τ 2 (ω)+ k m 2 ( ω ) 2 τ 2 (ω),

for any m≥1. Therefore, we have

c M d 2 ( ω , T m ( ω ) ) ≤ k m 2 ( ω ) − 1 2 τ 2 (ω),

for any m≥1. This implies that lim m → ∞ d(ω, T m (ω))=0. Since

d ( ω , T ( ω ) ) ≤ d ( ω , T m + 1 ( ω ) ) + d ( T m + 1 ( ω ) , T ( ω ) ) ≤ d ( ω , T m + 1 ( ω ) ) + k 1 ( ω ) d ( T m ( ω ) , ω ) ,

for any m≥1, we conclude that d(ω,T(ω))=0, i.e., ω∈Fix(T). □

References

  1. Goebel K, Kirk WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 1972, 35: 171–174. 10.1090/S0002-9939-1972-0298500-3

    Article  MATH  MathSciNet  Google Scholar 

  2. Kirk WA, Xu HK: Asymptotic pointwise contractions. Nonlinear Anal. 2008, 69: 4706–4712. 10.1016/j.na.2007.11.023

    Article  MATH  MathSciNet  Google Scholar 

  3. Hussain N, Khamsi MA: On asymptotic pointwise contractions in metric spaces. J. Math. Anal. Appl. 2009, 71(10):4423–4429.

    MATH  MathSciNet  Google Scholar 

  4. Khamsi MA, Kozlowski WK: On asymptotic pointwise nonexpansive mappings in modular function spaces. J. Math. Anal. Appl. 2011, 380(2):697–708. 10.1016/j.jmaa.2011.03.031

    Article  MATH  MathSciNet  Google Scholar 

  5. Ishikawa S: Fixed point by a new iteration method. Proc. Am. Math. Soc. 1974, 44: 147–150. 10.1090/S0002-9939-1974-0336469-5

    Article  MATH  MathSciNet  Google Scholar 

  6. Mann RW: Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4: 506–510. 10.1090/S0002-9939-1953-0054846-3

    Article  MATH  Google Scholar 

  7. Espinola R, Fernandez-Leon A, Piatek B: Fixed points of single- and set-valued mappings in uniformly convex metric spaces with no metric convexity. Fixed Point Theory Appl. 2010., 2010: Article ID 169837

    Google Scholar 

  8. Kozlowski WM: Fixed point iteration processes for asymptotic pointwise nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 2011, 377: 43–52. 10.1016/j.jmaa.2010.10.026

    Article  MATH  MathSciNet  Google Scholar 

  9. Bin Dehaish BA, Kozlowski WM: Fixed point iteration process for asymptotic pointwise nonexpansive mapping in modular function spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 118

    Google Scholar 

  10. Ibn Dehaish BA, Khamsi MA, Khan AR: Mann iteration process for asymptotic pointwise mapping in metric spaces. J. Math. Anal. Appl. 2013, 397: 861–868. 10.1016/j.jmaa.2012.08.013

    Article  MATH  MathSciNet  Google Scholar 

  11. Khamsi MA, Kirk WA: An Introduction to Metric Spaces and Fixed Point Theory. Wiley, New York; 2001.

    Book  Google Scholar 

  12. Menger K: Untersuchungen über allgemeine Metrik. Math. Ann. 1928, 100: 75–163. 10.1007/BF01448840

    Article  MATH  MathSciNet  Google Scholar 

  13. Reich S, Shafrir I: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 1990, 15: 537–558. 10.1016/0362-546X(90)90058-O

    Article  MATH  MathSciNet  Google Scholar 

  14. Kirk WA: Fixed point theory for nonexpansive mappings, I and II. Lecture Notes in Mathematics 886. In Fixed Point Theory. Springer, Berlin; 1981:485–505.

    Google Scholar 

  15. Kirk WA: A fixed point theorem in CAT(0) spaces and R -trees. Fixed Point Theory Appl. 2004, 4: 309–316.

    MathSciNet  Google Scholar 

  16. Leustean L:A quadratic rate of asymptotic regularity for CAT(0)-spaces. J. Math. Anal. Appl. 2007, 325: 386–399. 10.1016/j.jmaa.2006.01.081

    Article  MATH  MathSciNet  Google Scholar 

  17. Goebel K, Reich S Series of Monographs and Textbooks in Pure and Applied Mathematics 83. In Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York; 1984.

    Google Scholar 

  18. Khamsi MA, Khan AR: Inequalities in metric spaces with applications. Nonlinear Anal. 2011, 74: 4036–4045. 10.1016/j.na.2011.03.034

    Article  MATH  MathSciNet  Google Scholar 

  19. Xu HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16: 1127–1138. 10.1016/0362-546X(91)90200-K

    Article  MATH  MathSciNet  Google Scholar 

  20. Beauzamy B: Introduction to Banach Spaces and Their Geometry. North-Holland, Amsterdam; 1985.

    MATH  Google Scholar 

  21. Bridson M, Haefliger A: Metric Spaces of Non-Positive Curvature. Springer, Berlin; 1999.

    Book  MATH  Google Scholar 

  22. Bruhat F, Tits J: Groupes réductifs sur un corps local. I. Données radicielles valuées. Publ. Math. IHÉS 1972, 41: 5–251.

    Article  MATH  MathSciNet  Google Scholar 

  23. Kirk WA: Fixed points of asymptotic contractions. J. Math. Anal. Appl. 2003, 277: 645–650. 10.1016/S0022-247X(02)00612-1

    Article  MATH  MathSciNet  Google Scholar 

  24. Khan AR, Khamsi MA, Fukhar-ud-din H:Strong convergence of a general iteration scheme in CAT(0) spaces. Nonlinear Anal. 2011, 74: 783–791. 10.1016/j.na.2010.09.029

    Article  MATH  MathSciNet  Google Scholar 

  25. Schu J: Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 1991, 158: 407–413. 10.1016/0022-247X(91)90245-U

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buthinah A Bin Dehaish.

Additional information

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Bin Dehaish, B.A. Ishikawa iteration process for asymptotic pointwise nonexpansive mappings in metric spaces. Fixed Point Theory Appl 2013, 98 (2013). https://doi.org/10.1186/1687-1812-2013-98

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-98

Keywords