- Research
- Open Access
- Published:
On an open problem of Kyung Soo Kim
Fixed Point Theory and Applications volume 2015, Article number: 186 (2015)
Abstract
We prove a convergence theorem of the Mann iteration scheme for a uniformly L-Lipschitzian asymptotically demicontractive mapping in a \(\operatorname{CAT}(\kappa)\) space with \(\kappa>0\). We also obtain a convergence theorem of the Ishikawa iteration scheme for a uniformly L-Lipschitzian asymptotically hemicontractive mapping. Our results provide a complete solution to an open problem raised by Kim (Abstr. Appl. Anal. 2013:381715, 2013).
1 Introduction
Roughly speaking, \(\operatorname{CAT}(\kappa)\) spaces are geodesic spaces of bounded curvature and generalizations of Riemannian manifolds of sectional curvature bounded above. The precise definition is given below. The letters C, A, and T stand for Cartan, Alexandrov, and Toponogov, who have made important contributions to the understanding of curvature via inequalities for the distance function, and κ is a real number that we impose it as the curvature bound of the space.
Fixed point theory in \(\operatorname{CAT}(\kappa)\) spaces was first studied by Kirk [1, 2]. His work was followed by a series of new works by many authors, mainly focusing on \(\operatorname{CAT}(0)\) spaces (see e.g., [3–25]). Since any \(\operatorname{CAT}(\kappa )\) space is a \(\operatorname{CAT}(\kappa')\) space for \(\kappa' \geq\kappa\), all results for \(\operatorname{CAT}(0)\) spaces immediately apply to any \(\operatorname {CAT}(\kappa)\) space with \(\kappa\leq0\). However, there are only a few articles that contain fixed point results in the setting of \(\operatorname{CAT}(\kappa)\) spaces with \(\kappa>0\), because in this case the proof seems to be more complicated.
The notion of uniformly L-Lipschitzian mappings, which is more general than the notion of asymptotically nonexpansive mappings, was introduced by Goebel and Kirk [26]. In 1991, Schu [27] proved the strong convergence of Mann iteration for asymptotically nonexpansive mappings in Hilbert spaces. Qihou [28] extended Schu’s result to the general setting of asymptotically demicontractive mappings and also obtained the strong convergence of Ishikawa iteration for asymptotically hemicontractive mappings. Recently, Kim [29] proved the analogous results of Qihou in the framework of the so-called \(\operatorname{CAT}(0)\) spaces. Precisely, Kim obtained the following theorems.
Theorem A
Let \((X, \rho)\) be a complete \(\operatorname {CAT}(0)\) space, C be a nonempty bounded closed convex subset of X, and \(T:C\to C\) be a completely continuous and uniformly L-Lipschitzian asymptotically demicontractive mapping with constant \(k\in[0,1)\) and sequence \(\{a_{n}\}\) in \([1,\infty)\) such that \(\sum^{\infty}_{n=1}(a_{n}^{2}-1)<\infty\). Let \(\{\alpha_{n}\}\) be a sequence in \([\varepsilon, 1-k-\varepsilon]\) for some \(\varepsilon>0\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then \(\{x_{n}\}\) converges strongly to a fixed point of T.
Theorem B
Let \((X, \rho)\) be a complete \(\operatorname {CAT}(0)\) space, let C be a nonempty bounded closed convex subset of X, and let \(T:C\to C\) be a completely continuous and uniformly L-Lipschitzian asymptotically hemicontractive mapping with sequence \(\{a_{n}\}\) in \([1,\infty)\) such that \(\sum_{n=1}^{\infty}(a_{n}-1)<\infty\). Let \(\{\alpha_{n}\}, \{\beta_{n}\}\subset[0,1]\) be such that \(\varepsilon \leq\alpha_{n}\leq\beta_{n}\leq b\) for some \(\varepsilon>0\) and \(b\in (0,\frac{\sqrt{1+L^{2}}-1}{L^{2}} )\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then \(\{x_{n}\}\) converges strongly to a fixed point of T.
In [29], the author raised the following problem.
Problem
Can we extend Theorems A and B to the general setting of \(\operatorname{CAT}(\kappa)\) spaces with \(\kappa>0\)?
The purpose of the paper is to solve this problem. Our main discoveries are Theorems 3.2 and 3.6.
2 Preliminaries
Let \((X,\rho)\) be a metric space. A geodesic path joining \(x\in X\) to \(y\in X\) (or, more briefly, a geodesic from x to y) is a map c from a closed interval \([0,l]\subset \mathbb{R}\) to X such that \(c(0)=x\), \(c(l)=y\), and \(\rho(c(t),c(t^{\prime}))=|t-t^{\prime}|\) for all \(t,t^{\prime}\in[0,l]\). In particular, c is an isometry and \(\rho(x,y)=l\). The image \(c([0,l])\) of c is called a geodesic segment joining x and y. When it is unique this geodesic segment is denoted by \([x,y]\). This means that \(z\in[x, y]\) if and only if there exists \(\alpha\in[0, 1]\) such that
In this case, we write \(z=\alpha x\oplus(1-\alpha)y\). The space \((X,\rho)\) is said to be a geodesic space (D-geodesic space) if every two points of X (every two points of distance smaller than D) are joined by a geodesic, and X is said to be uniquely geodesic (D-uniquely geodesic) if there is exactly one geodesic joining x and y for each \(x, y\in X\) (for \(x, y \in X\) with \(\rho(x, y) < D\)). A subset C of X is said to be convex if C includes every geodesic segment joining any two of its points. The set C is said to be bounded if
Now we introduce the model spaces \(M^{n}_{\kappa}\), for more details on these spaces the reader is referred to [30, 31]. Let \(n\in\mathbb{N}\). We denote by \(\mathbb{E}^{n}\) the metric space \(\mathbb{R}^{n}\) endowed with the usual Euclidean distance. We denote by \((\cdot|\cdot)\) the Euclidean scalar product in \(\mathbb{R}^{n}\), that is,
Let \(\mathbb{S}^{n}\) denote the n-dimensional sphere defined by
with metric \(d_{\mathbb{S}^{n}}(x,y)=\arccos( x|y )\), \(x,y\in \mathbb{S}^{n}\).
Let \(\mathbb{E}^{n,1}\) denote the vector space \(\mathbb{R}^{n+1}\) endowed with the symmetric bilinear form which associates to vectors \(u = (u_{1},\ldots, u_{n+1})\) and \(v = (v_{1},\ldots, v_{n+1})\) the real number \(\langle u|v\rangle\) defined by
Let \(\mathbb{H}^{n}\) denote the hyperbolic n-space defined by
with metric \(d_{\mathbb{H}^{n}}\) such that
Definition 2.1
Given \(\kappa\in\mathbb{R}\), we denote by \(M^{n}_{\kappa}\) the following metric spaces:
-
(i)
if \(\kappa= 0\) then \(M^{n}_{0}\) is the Euclidean space \(\mathbb{E}^{n}\);
-
(ii)
if \(\kappa> 0\) then \(M^{n}_{\kappa}\) is obtained from the spherical space \(\mathbb{S}^{n}\) by multiplying the distance function by the constant \(1/\sqrt{\kappa}\);
-
(iii)
if \(\kappa< 0\) then \(M^{n}_{\kappa}\) is obtained from the hyperbolic space \(\mathbb{H}^{n}\) by multiplying the distance function by the constant \(1/\sqrt{-\kappa}\).
A geodesic triangle \(\triangle(x, y, z)\) in a geodesic space \((X,\rho)\) consists of three points x, y, z in X (the vertices of △) and three geodesic segments between each pair of vertices (the edges of △). A comparison triangle for a geodesic triangle \(\triangle(x, y, z)\) in \((X,\rho)\) is a triangle \(\overline{\triangle}(\bar{x}, \bar{y}, \bar{z})\) in \(M^{2}_{\kappa}\) such that
If \(\kappa\leq0\) then such a comparison triangle always exists in \(M^{2}_{\kappa}\). If \(\kappa> 0\) then such a triangle exists whenever \(\rho(x, y) + \rho(y, z) + \rho(z, x) < 2D_{\kappa}\), where \(D_{\kappa}=\pi/\sqrt{\kappa}\). A point \(\bar{p}\in[\bar{x}, \bar{y}]\) is called a comparison point for \(p\in[x, y]\) if \(\rho(x, p) = d_{M_{\kappa}^{2}}(\bar{x}, \bar{p})\).
A geodesic triangle \(\triangle(x, y, z)\) in X is said to satisfy the \(\operatorname{CAT}(\kappa)\) inequality if for any \(p,q\in \triangle(x, y, z)\) and for their comparison points \(\bar{p}, \bar{q}\in \overline{\triangle}(\bar{x}, \bar{y}, \bar{z})\), one has
Definition 2.2
If \(\kappa\leq0\), then X is called a \(\operatorname{CAT}(\kappa)\) space if X is a geodesic space such that all of its geodesic triangles satisfy the \(\operatorname{CAT}(\kappa)\) inequality.
If \(\kappa> 0\), then X is called a \(\operatorname {CAT}(\kappa)\) space if X is \(D_{\kappa}\)-geodesic and any geodesic triangle \(\triangle(x, y, z)\) in X with \(\rho(x, y) + \rho(y, z) + \rho(z, x) < 2D_{\kappa}\) satisfies the \(\operatorname{CAT}(\kappa)\) inequality.
Notice that in a \(\operatorname{CAT}(0)\) space \((X,\rho)\), if \(x,y,z\in X\) then the \(\operatorname{CAT}(0)\) inequality implies
This is the (CN) inequality of Bruhat and Tits [32]. This inequality is extended by Dhompongsa and Panyanak [9] as
for all \(\alpha\in[0,1]\) and \(x, y, z\in X\). In fact, if X is a geodesic space then the following statements are equivalent:
-
(i)
X is a \(\operatorname{CAT}(0)\) space;
-
(ii)
X satisfies (CN);
-
(iii)
X satisfies (CN∗).
Let \(R\in(0,2]\). Recall that a geodesic space \((X, \rho)\) is said to be R-convex for R [33] if for any three points \(x, y, z \in X\), we have
It follows from (CN∗) that a geodesic space \((X, \rho)\) is a \(\operatorname{CAT}(0)\) space if and only if \((X, \rho)\) is R-convex for \(R=2\). The following lemma generalizes Proposition 3.1 of Ohta [33].
Lemma 2.3
Let κ be an arbitrary positive real number and \((X, \rho)\) be a \(\operatorname{CAT}(\kappa)\) space with \(\operatorname{diam}(X)\leq\frac{\pi/2-\eta}{\sqrt{\kappa}}\) for some \(\eta\in(0,\pi/2)\). Then \((X, \rho)\) is R-convex for \(R=(\pi-2\eta)\tan(\eta)\).
Proof
Let \(x,y,z\in X\). Since \(\operatorname{diam}(X) < \frac{\pi}{2\sqrt {\kappa}}\), \(\rho(x, y) + \rho(x, z) + \rho(y, z) < 2D_{\kappa}\) where \(D_{\kappa}=\frac{\pi}{\sqrt{\kappa}}\). Let \(\triangle(x, y, z)\) be the geodesic triangle constructed from x, y, z and \(\overline{\triangle}(\bar{x}, \bar{y}, \bar{z})\) its comparison triangle. Then
It is sufficient to prove (1) only the case of \(\alpha=1/2\). Let \(a=d_{\mathbb{S}^{2}}(\bar{x},\bar{y})\), \(b=d_{\mathbb{S}^{2}}(\bar{x},\bar{z})\), \(c=d_{\mathbb{S}^{2}}(\bar{y},\bar{z})/2\), and \(d=d_{\mathbb{S}^{2}} (\bar{x},\frac{1}{2}\bar{y}\oplus\frac{1}{2}\bar {z} )\) and define
By using the same argument in the proof of Proposition 3.1 in [33], we obtain
where \(R=(\pi-2\eta)\tan(\eta)\). This implies that
This completes the proof. □
The following lemma is also needed.
Lemma 2.4
Let \(\{s_{n}\}\) and \(\{t_{n}\}\) be sequences of nonnegative real numbers satisfying
If \(\sum_{n=1}^{\infty} t_{n}<\infty\) and \(\{s_{n}\}\) has a subsequence converging to 0, then \(\lim_{n\to\infty} s_{n}=0\).
Definition 2.5
Let C be a nonempty subset of a \(\operatorname{CAT}(\kappa)\) space \((X,\rho)\) and \(T:C\to C\) be a mapping. We denote by \(F(T)\) the set of all fixed points of T, i.e., \(F(T)=\{x\in C: x=Tx\}\). Then T is said to
-
(i)
be completely continuous if T is continuous and for any bounded sequence \(\{x_{n}\}\) in C, \(\{Tx_{n}\}\) has a convergent subsequence in C;
-
(ii)
be uniformly L-Lipschitzian if there exists a constant \(L>0\) such that
$$\rho\bigl(T^{n}x,T^{n}y\bigr)\leq L \rho(x,y) \quad \text{for all } x, y\in C \text{ and all } n\in\mathbb{N}; $$ -
(iii)
be asymptotically demicontractive if \(F(T)\neq \emptyset\) and there exist \(k\in[0,1)\) and a sequence \(\{a_{n}\}\) with \(\lim_{n\to\infty}a_{n}=1\) such that
$$\rho^{2}\bigl(T^{n}x, p\bigr)\leq a^{2}_{n} \rho^{2}(x,p)+k \rho^{2}\bigl(x,T^{n}x\bigr) \quad \text{for all } x\in C, p\in F(T) \text{ and } n\in\mathbb{N}; $$ -
(iv)
be asymptotically hemicontractive if \(F(T)\neq \emptyset\) and there exists a sequence \(\{a_{n}\}\) with \(\lim_{n\to\infty}a_{n}=1\) such that
$$\rho^{2}\bigl(T^{n}x, p\bigr)\leq a_{n} \rho^{2}(x,p)+ \rho^{2}\bigl(x,T^{n}x\bigr) \quad \text{for all } x\in C, p\in F(T) \text{ and } n\in\mathbb{N}. $$
It follows from the definition that every asymptotically demicontractive mapping is asymptotically hemicontractive. For more details as regards these classes of mappings the reader is referred to [27, 28].
Let C be a nonempty convex subset of a \(\operatorname{CAT}(\kappa)\) space \((X,\rho)\) and \(T:C\to C\) be a mapping. Given \(x_{1}\in C\).
Algorithm 1
The sequence \(\{x_{n}\}\) defined by
is called an Ishikawa iterative sequence (see [34]).
If \(\beta_{n} = 0\) for all \(n\in\mathbb{N}\), then Algorithm 1 reduces to the following.
Algorithm 2
The sequence \(\{x_{n}\}\) defined by
is called a Mann iterative sequence (see [35]).
3 Main results
We first discuss the strong convergence of Mann iteration for uniformly L-Lipschitzian asymptotically demicontractive mappings. The following lemma follows immediately from Lemma 6 of [29] and [30], p.176.
Lemma 3.1
Let \(\kappa>0\) and \((X, \rho)\) be a \(\operatorname{CAT}(\kappa)\) space with \(\operatorname{diam}(X)\leq \frac{\pi/2-\eta}{\sqrt{\kappa}}\) for some \(\eta\in(0,\pi/2)\). Let C be a nonempty convex subset of X, \(T:C\to C\) be a uniformly L-Lipschitzian mapping, and \(\{\alpha _{n}\}\), \(\{\beta_{n}\}\) be sequences in \([0, 1]\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then
for all \(n\geq1\).
The following theorem is one of our main results.
Theorem 3.2
Let \(\kappa>0\) and \((X, \rho)\) be a \(\operatorname{CAT}(\kappa)\) space with \(\operatorname{diam}(X)\leq \frac{\pi/2-\eta}{\sqrt{\kappa}}\) for some \(\eta\in(0,\pi/2)\). Let C be a nonempty closed convex subset of X, and \(T:C\to C\) be a completely continuous and uniformly L-Lipschitzian asymptotically demicontractive mapping with constant \(k\in[0,1)\) and sequence \(\{a_{n}\}\) in \([1,\infty)\) such that \(\sum^{\infty}_{n=1}(a_{n}^{2}-1)<\infty\). Let \(\{\alpha_{n}\}\) be a sequence in \([\varepsilon, R/2-k-\varepsilon]\) for some \(\varepsilon>0\) where \(R=(\pi-2\eta)\tan(\eta)\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then \(\{x_{n}\}\) converges strongly to a fixed point of T.
Proof
Let \(p\in F(T)\). By (1), we have
It follows from the asymptotically demicontractiveness of T that
Since \(\varepsilon\leq\alpha_{n}\leq R/2-k-\varepsilon\), we have \(\varepsilon\leq R/2-\alpha_{n}-k\). Thus,
Therefore,
Since \(\sum^{\infty}_{n=1}(a_{n}^{2}-1)<\infty\), \(\sum^{\infty}_{n=1}\rho^{2}(x_{n},T^{n}x_{n})<\infty\), which implies that \(\lim_{n\to\infty}\rho(x_{n}, T^{n}x_{n})=0\). By Lemma 3.1, we have
Since T is completely continuous, \(\{Tx_{n}\}\) has a convergent subsequence in C. By (7), \(\{x_{n}\}\) has a convergent subsequence, say \(x_{n_{k}}\to q\in C\). Moreover,
That is \(q\in F(T)\). It follows from (6) that
Since \(\sum^{\infty}_{n=1}(a_{n}^{2}-1)<\infty\), by Lemma 2.4 we have \(x_{n}\to q\). This completes the proof. □
Corollary 3.3
(Theorem 7 of [29])
Let \((X, \rho)\) be a \(\operatorname{CAT}(0)\) space, C be a nonempty bounded closed convex subset of X, and \(T:C\to C\) be a completely continuous and uniformly L-Lipschitzian asymptotically demicontractive mapping with constant \(k\in[0,1)\) and sequence \(\{a_{n}\}\) in \([1,\infty)\) such that \(\sum^{\infty}_{n=1}(a_{n}^{2}-1)<\infty\). Let \(\{\alpha_{n}\}\) be a sequence in \([\varepsilon, 1-k-\varepsilon]\) for some \(\varepsilon>0\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then \(\{x_{n}\}\) converges strongly to a fixed point of T.
Proof
It is well known that every convex subset of a \(\operatorname {CAT}(0)\) space, equipped with the induced metric, is a \(\operatorname{CAT}(0)\) space. Then \((C,\rho)\) is a \(\operatorname{CAT}(0)\) space and hence it is a \(\operatorname{CAT}(\kappa)\) space for all \(\kappa>0\). Notice also that C is R-convex for \(R=2\). Since C is bounded, we can choose \(\eta\in(0,\pi /2)\) and \(\kappa>0\) so that \(\operatorname{diam}(C)\leq \frac{\pi/2-\eta}{\sqrt{\kappa}}\). The conclusion follows from Theorem 3.2. □
Next, we prove the strong convergence of Ishikawa iteration for uniformly L-Lipschitzian asymptotically hemicontractive mappings. The following lemmas are also needed.
Lemma 3.4
Let \(\kappa>0\) and \((X, \rho )\) be a \(\operatorname{CAT}(\kappa)\) space with \(\operatorname{diam}(X)\leq \frac{\pi/2-\eta}{\sqrt{\kappa}}\) for some \(\eta\in(0,\pi/2)\). Let \(R=(\pi-2\eta)\tan(\eta)\), C be a nonempty convex subset of X, and \(T:C\to C\) be a uniformly L-Lipschitzian and asymptotically hemicontractive mapping with sequence \(\{a_{n}\}\) in \([1,\infty)\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
where \(\{\alpha_{n}\}\) and \(\{\beta_{n}\}\) are sequences in \([0,1]\). Then the following inequality holds:
for all \(p\in F(T)\).
Proof
Let \(p\in F(T)\). By (1), we have
and
Since T is asymptotically hemicontractive,
and
It follows from (9) and (11) that
Substituting (12) into (10) and using (1), we get
Substituting (13) into (8), we obtain
This completes the proof. □
Lemma 3.5
Let \(\kappa>0\) and \((X, \rho)\) be a \(\operatorname{CAT}(\kappa)\) space with \(\operatorname{diam}(X)\leq\frac{\pi/2-\eta}{\sqrt{\kappa}}\) for some \(\eta\in(0,\pi/2)\). Let C be a nonempty convex subset of X, and \(T:C\to C\) be a uniformly L-Lipschitzian and asymptotically hemicontractive mapping with sequence \(\{a_{n}\}\) in \([1,\infty)\) such that \(\sum_{n=1}^{\infty}(a_{n}-1)<\infty\). Let \(\{\alpha_{n}\}, \{\beta_{n}\}\subset[0,1]\) be such that \(\frac{1-\beta_{n}}{1-\alpha_{n}}\leq\frac{R}{2}\) where \(R=(\pi-2\eta)\tan(\eta)\) and \(\alpha_{n}, \beta_{n}\in[\varepsilon, b]\) for some \(\varepsilon>0\) and \(b\in (0,\frac{\sqrt{R^{2}+4RL^{2}-4L^{2}}-R}{2L^{2}} )\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then
Proof
First, we prove that \(\lim_{n\to\infty}\rho(x_{n},T^{n}x_{n})=0\). Since \(\frac{1-\beta_{n}}{1-\alpha_{n}}\leq\frac{R}{2}\), by Lemma 3.4 we have
Since \(\{\alpha_{n}(1+a_{n}\beta_{n})\rho^{2}(x_{n},p) \}^{\infty }_{n=1}\) is a bounded sequence, there exists \(M>0\) such that
Let \(D=R(1-b)-(1+L^{2}b^{2})>0\). Since \(\lim_{n\to\infty}a_{n}=1\), there exists a natural number N such that
for all \(n\geq N\). Suppose that \(\lim_{n\to\infty}\rho(x_{n},T^{n}x_{n})\neq0\). Then there exist \(\varepsilon_{0}>0\) and a subsequence \(\{x_{n_{i}}\}\) of \(\{x_{n}\}\) such that
Without loss of generality, we let \(n_{1}\geq N\). From (15), we have
Then
From this, together with (16), (17) and the fact that \(\varepsilon\leq\alpha_{n}\leq\beta_{n}\), we obtain
If we take \(i\to\infty\), the right side of (18) is bounded while the left side is unbounded. This is a contradiction. Therefore \(\lim_{n\to\infty}\rho(x_{n},T^{n}x_{n})=0\), and hence \(\lim_{n\to\infty}\rho (x_{n},Tx_{n})=0\) by Lemma 3.1. □
Theorem 3.6
Let \(\kappa>0\) and \((X, \rho)\) be a \(\operatorname{CAT}(\kappa)\) space with \(\operatorname{diam}(X)\leq\frac{\pi/2-\eta}{\sqrt{\kappa}}\) for some \(\eta\in(0,\pi/2)\). Let C be a nonempty closed convex subset of X, and \(T:C\to C\) be a completely continuous and uniformly L-Lipschitzian asymptotically hemicontractive mapping with sequence \(\{a_{n}\}\) in \([1,\infty)\) such that \(\sum_{n=1}^{\infty}(a_{n}-1)<\infty\). Let \(\{\alpha_{n}\}, \{\beta_{n}\}\subset[0,1]\) be such that \(\frac{1-\beta_{n}}{1-\alpha_{n}}\leq\frac{R}{2}\) where \(R=(\pi-2\eta)\tan(\eta)\) and \(\alpha_{n}, \beta_{n}\in[\varepsilon, b]\) for some \(\varepsilon>0\) and \(b\in (0,\frac{\sqrt{R^{2}+4RL^{2}-4L^{2}}-R}{2L^{2}} )\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then \(\{x_{n}\}\) converges strongly to a fixed point of T.
Proof
Since T is completely continuous, \(\{Tx_{n}\}\) has a convergent subsequence in C. By using Lemma 3.5, we can show that \(\{x_{n}\}\) has a convergent subsequence, say \(x_{n_{k}}\to q\in C\). Hence \(q\in F(T)\) by (14) and the continuity of T. It follows from (15) and (16) that
Since \(\sum^{\infty}_{n=1}(a_{n}-1)<\infty\), by Lemma 2.4 we have \(x_{n}\to q\). This completes the proof. □
As consequences of Theorem 3.6, we obtain the following.
Corollary 3.7
Let \(\kappa>0\) and \((X, \rho)\) be a \(\operatorname {CAT}(\kappa)\) space with \(\operatorname{diam}(X)\leq\frac{\pi/2-\eta}{\sqrt{\kappa}}\) for some \(\eta\in(0,\pi/2)\). Let C be a nonempty closed convex subset of X, and \(T:C\to C\) be a completely continuous and uniformly L-Lipschitzian asymptotically demicontractive mapping with sequence \(\{a_{n}\}\) in \([1,\infty)\) such that \(\sum_{n=1}^{\infty}(a_{n}^{2}-1)<\infty\). Let \(\{\alpha_{n}\}, \{\beta_{n}\}\subset[0,1]\) be such that \(\frac{1-\beta_{n}}{1-\alpha_{n}}\leq\frac{R}{2}\) where \(R=(\pi-2\eta)\tan(\eta)\) and \(\alpha_{n}, \beta_{n}\in[\varepsilon, b]\) for some \(\varepsilon>0\) and \(b\in (0,\frac{\sqrt{R^{2}+4RL^{2}-4L^{2}}-R}{2L^{2}} )\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then \(\{x_{n}\}\) converges strongly to a fixed point of T.
Corollary 3.8
(Theorem 11 of [29])
Let \((X, \rho)\) be a \(\operatorname{CAT}(0)\) space, let C be a nonempty bounded closed convex subset of X, and let \(T:C\to C\) be a completely continuous and uniformly L-Lipschitzian asymptotically hemicontractive mapping with sequence \(\{a_{n}\}\) in \([1,\infty)\) such that \(\sum_{n=1}^{\infty}(a_{n}-1)<\infty\). Let \(\{\alpha_{n}\}, \{\beta_{n}\}\subset[0,1]\) be such that \(\varepsilon \leq\alpha_{n}\leq\beta_{n}\leq b\) for some \(\varepsilon>0\) and \(b\in (0,\frac{\sqrt{1+L^{2}}-1}{L^{2}} )\). Given \(x_{1}\in C\), define the iteration scheme \(\{x_{n}\}\) by
Then \(\{x_{n}\}\) converges strongly to a fixed point of T.
References
Kirk, WA: Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003). Colecc. Abierta, vol. 64, pp. 195-225. Univ. Sevilla Secr. Publ., Seville (2003)
Kirk, WA: Geodesic geometry and fixed point theory II. In: International Conference on Fixed Point Theory and Applications, pp. 113-142. Yokohama Publ., Yokohama (2004)
Dhompongsa, S, Kaewkhao, A, Panyanak, B: Lim’s theorems for multivalued mappings in \(\operatorname {CAT}(0)\) spaces. J. Math. Anal. Appl. 312, 478-487 (2005)
Dhompongsa, S, Kirk, WA, Sims, B: Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal. 65, 762-772 (2006)
Chaoha, P, Phon-on, A: A note on fixed point sets in \(\operatorname{CAT}(0)\) spaces. J. Math. Anal. Appl. 320, 983-987 (2006)
Fujiwara, K, Nagano, K, Shioya, T: Fixed point sets of parabolic isometries of \(\operatorname {CAT}(0)\)-spaces. Comment. Math. Helv. 81, 305-335 (2006)
Leustean, L: A quadratic rate of asymptotic regularity for \(\operatorname {CAT}(0)\) spaces. J. Math. Anal. Appl. 325, 386-399 (2007)
Shahzad, N, Markin, J: Invariant approximations for commuting mappings in \(\operatorname{CAT}(0)\) and hyperconvex spaces. J. Math. Anal. Appl. 337, 1457-1464 (2008)
Dhompongsa, S, Panyanak, B: On Δ-convergence theorems in \(\operatorname{CAT}(0)\) spaces. Comput. Math. Appl. 56, 2572-2579 (2008)
Espinola, R, Fernandez-Leon, A: \(\operatorname{CAT}(k)\)-Spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353, 410-427 (2009)
Shahzad, N: Fixed point results for multimaps in \(\operatorname{CAT}(0)\) spaces. Topol. Appl. 156, 997-1001 (2009)
Razani, A, Salahifard, H: Invariant approximation for \(\operatorname{CAT}(0)\) spaces. Nonlinear Anal. 72, 2421-2425 (2010)
Saejung, S: Halpern’s iteration in \(\operatorname{CAT}(0)\) spaces. Fixed Point Theory Appl. 2010, Article ID 471781 (2010)
Kakavandi, BA, Amini, M: Duality and subdifferential for convex functions on complete \(\operatorname{CAT}(0)\) metric spaces. Nonlinear Anal. 73, 3450-3455 (2010)
Abkar, A, Eslamian, E: Common fixed point results in \(\operatorname{CAT}(0)\) spaces. Nonlinear Anal. 74, 1835-1840 (2011)
Khan, AR, Khamsi, MA, Fukhar-ud-din, H: Strong convergence of a general iteration scheme in \(\operatorname{CAT}(0)\) spaces. Nonlinear Anal. 74, 783-791 (2011)
Cho, YJ, Ciric, L, Wang, SH: Convergence theorems for nonexpansive semigroups in \(\operatorname{CAT}(0)\) spaces. Nonlinear Anal. 74, 6050-6059 (2011)
Lin, LJ, Chuang, CS, Yu, ZT: Fixed point theorems and Δ-convergence theorems for generalized hybrid mappings on \(\operatorname{CAT}(0)\) spaces. Fixed Point Theory Appl. 2011, Article ID 49 (2011)
Piatek, B: Halpern iteration in \(\operatorname{CAT}(\kappa)\) spaces. Acta Math. Sin. Engl. Ser. 27, 635-646 (2011)
Abbas, M, Kadelburg, Z, Sahu, DR: Fixed point theorems for Lipschitzian type mappings in \(\operatorname{CAT}(0)\) spaces. Math. Comput. Model. 55, 1418-1427 (2012)
Bacak, M, Searston, I, Sims, B: Alternating projections in \(\operatorname{CAT}(0)\) spaces. J. Math. Anal. Appl. 385, 599-607 (2012)
Chang, SS, Wang, L, Lee, HWJ, Chan, CK, Yang, L: Demiclosed principle and Δ-convergence theorems for total asymptotically nonexpansive mappings in \(\operatorname{CAT}(0)\) spaces. Appl. Math. Comput. 219, 2611-2617 (2012)
He, JS, Fang, DH, Lopez, G, Li, C: Mann’s algorithm for nonexpansive mappings in \(\operatorname {CAT}(\kappa)\) spaces. Nonlinear Anal. 75, 445-452 (2012)
Kimura, Y, Sato, K: Convergence of subsets of a complete geodesic space with curvature bounded above. Nonlinear Anal. 75, 5079-5085 (2012)
Wangkeeree, R, Preechasilp, P: Viscosity approximation methods for nonexpansive mappings in \(\operatorname{CAT}(0)\) spaces. J. Inequal. Appl. 2013, Article ID 93 (2013)
Goebel, K, Kirk, WA: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Stud. Math. 47, 137-140 (1973)
Schu, J: Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 158, 407-413 (1991)
Qihou, L: Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings. Nonlinear Anal. 26, 1835-1842 (1996)
Kim, KS: Some convergence theorems for contractive type mappings in \(\operatorname{CAT}(0)\) spaces. Abstr. Appl. Anal. 2013, Article ID 381715 (2013)
Bridson, M, Haefliger, A: Metric Spaces of Non-Positive Curvature. Springer, Berlin (1999)
Kirk, WA, Shahzad, N: Fixed Point Theory in Distance Spaces. Springer, Cham (2014)
Bruhat, F, Tits, J: Groupes réductifs sur un corps local. I. Données radicielles valuées. Publ. Math. Inst. Hautes Études Sci. 41, 5-251 (1972)
Ohta, S: Convexities of metric spaces. Geom. Dedic. 125, 225-250 (2007)
Ishikawa, S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147-150 (1974)
Mann, WR: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506-510 (1953)
Acknowledgements
The author thanks a referee for his/her careful reading and valuable comments and suggestions which led to the present form of the paper. This research was supported by Chiang Mai University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The author declares that there is no conflict of interests regarding the publication of this article.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Panyanak, B. On an open problem of Kyung Soo Kim. Fixed Point Theory Appl 2015, 186 (2015). https://doi.org/10.1186/s13663-015-0438-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13663-015-0438-7
MSC
- 47H09
- 49J53
Keywords
- Mann iteration
- Ishikawa iteration
- strong convergence
- fixed point
- \(\operatorname{CAT}(\kappa)\) space